Jour Fixe: “New approaches to low-dissipation logics”

The Zukunftskolleg invited everyone to the jour fixe led by Angelo di Bernardo (Research Fellow / Physics).

We invited you to our Jour fixe on 9 May 2023.

Angelo Di Bernardo (Research Fellow / Physics) gave a talk entitled “New approaches to low-dissipation superconducting logics”.

Abstract:

The key element of conventional metal-oxide semiconductor (CMOS) electronics, which underlies the functioning of any modern computers, is a three-terminal device called transistor. In a transistor, the current of electron charges flowing through a small constriction of the device is controlled via a voltage, which is applied with an electrode very close (i.e., within distance of a few tens of nanometers) to the constriction. Through the gate voltage, the resistance of the transistor is varied between two states, which allows to encode the two bits (‘1’ and ‘0’) on which our computer logics relies.
It has been recently discovered that the superconducting equivalent of such effect [1-19], which had remained unknown for years, can also be realized: applying a gate voltage to a superconducting constriction, it is possible to switch its state between a null-resistance and a non-null resistance value. This effect has raised great interest because it can lead to the development of superconducting logics, which is the superconducting equivalent of CMOS logics.
In this talk, Angelo described the physics of the effect and the work that he is currently carrying out with support of an EU-funded FET-Open program called ‘SuperGate’  that the University of Konstanz is leading to develop a disruptive technology based on gate-controlled superconducting devices.



References:

1.    G. De Simoni et al., Nat. Nanotechnol. 13 (2018), 802-805. https://doi.org/10.1038/s41565-018-0190-3.
2.    G. De Simoni et al., ACS Nano 13 (2019), 7871-7876. https://doi.org/10.1021/acsnano.9b02209
3.    F. Paolucci et al., Nano Lett. 19 (2019), 6263-6269. https://doi.org/10.1021/acs.nanolett.9b02369.
4.    F. Paolucci et al. Phys. Rev. Appl. 11 (2019), 024061. https://doi.org/10.1103/PhysRevApplied.11.024061.
5.    G. De Simoni et al., Appl. Phys. Lett. 116 (2020), 242601. https://doi.org/10.1063/5.0011304.
6.    L. Bours et al., Phys. Rev. Res. 2 (2020), 033353. https://doi.org/10.1103/PhysRevResearch.2.033353.
7.    C. Puglia et al., Appl. Phys. Lett. 116 (2020), 252601. https://doi.org/10.1063/5.0013512.
8.    C. Puglia et al., Phys. Rev. Appl. 13 (2020), 054026. https://doi.org/10.1103/PhysRevApplied.13.054026.
9.    M. Rocci et al., ACS Nano 14 (2020), 12621-12628. https://doi.org/10.1021/acsnano.0c05355.
10.    G. De Simoni et al., ACS Appl. Electron. Mater. 3 (2021), 3927 https://doi.org/10.1021/acsaelm.1c00508.
11.    F. Paolucci et al., Nano Lett. 21 (2021), 10309-10314. https://doi.org/10.1021/acs.nanolett.1c03481.
12.    M. F. Ritter et al., Nat. Commun. 12 (2021), 1266. https://doi.org/10.1038/s41467-021-21231-2.
13.    M. F. Ritter et al., Nat. Electron. 5, (2022), 71-77. https://doi.org/10.1038/s41928-022-00721-1.
14.    L. D. Alegria et al., Nat. Nanotech. 16 (2021), 404-408. https://doi.org/10.1038/s41565-020-00834-8.
15.    I. Golokolenov et al., Nat. Commun. 12 (2021), 2747. https://doi.org/10.1038/s41467-021-22998-0.
16.    T. Elalaily et al., Nano Lett. 21 (2021), 9684-9690. https://doi.org/10.1021/acs.nanolett.1c03493.
17.    T. Elalaily et al., ACS Nano 17 (2023), 5528. https://doi.org/10.1021/acsnano.2c10877.
18.    J. Basset et al., Phys. Rev. Res. 3 (2021), 043169. https://doi.org/10.1103/PhysRevResearch.3.043169.
19.    P. Orús et al., Sci. Rep. 11 (2021), 17698. https://doi.org/10.1038/s41598-021-97075-z