Peer Instruction: Wie man es schafft, Studenten zum Nachdenken zu bringen

E. Mazur

Hochschuldidaktik im Methodenheft? – Ein Vorwort der Herausgeber

verschwendung, sowohl für die Studenten wie für die Lehrenden! Welche Ineffizienz! Und die Studenten und ich waren der Überzeugung, diese Art der Vorlesung stellte „Lehren“ dar. Was für ein Trugschluss!

In den meisten naturwissenschaftlichen Einführungskursen ersuchen wir die Studenten Lehrbücher von enzyklopädiischen Ausmaßen zu kaufen und dann benutzen wir die Vorlesungszeit darzustellen, was im Text steht. Im besten Fall wird das Lehrbuch dazu benutzt, den Lehrstoff, der in der Vorlesung weitergegeben wird, zu veranschaulichen. Wen wundert dann, dass die Anwesenheit in Einführungskursen relativ gering ist verglichen mit entsprechenden Kursen in den Geisteswissenschaften. Und wen wundert, dass die Meinung der Studenten über einführende naturwissenschaftliche Veranstaltungen sehr gering ist.

Bei dieser Methode gibt es eine Menge Probleme. Erstens erwarten in großen naturwissenschaftlichen Einführungskursen weder die Dozenten noch die Studenten irgendwelche Vorbereitungen. Im Verhältnis zu gedruckten Materialien. Die Studenten haben sich daran gewöhnt, das zu erwarten, was Lehrer gewohnt sind anzubieten: eine Vorlesung. Es bedarf einer beträchtlichen Anstrengung, diese tief verwurzelte Gewohnheit zu verändern. Zweitens unterscheidet sich das Lesen eines Lehrbuches erheblich vom Lesen einer Geschichte. Die meisten Studenten neigen zunächst dazu, ihre Lehrbücher zu schnell zu lesen - ohne Pause oder Nachdenken über den Inhalt dessen, was sie gerade gelesen haben. Vielleicht wird die Methode, die ich befürworte, einen Wechsel in der Art und Weise nach sich ziehen, in der Lehrbucher geschrieben werden. Und drittens: Wenn man während der Unterrichtszeit keine Vorlesung hält, was tut man dann?

wort zu wählen (das kann durch Handheben, Kärtchen, Formblätter oder ein elektro- nisches Wahlssystem geschehen). Die Anzahl der Studenten, die die korrekte Antwort wählen, steigt nach der Diskussion immer an, was die Schlussfolgerung nahe legt, dass die Studenten ihre Begründung für ihre Auswahl zuerst erläutert haben und sich dadurch gegenseitig etwas lehren. Wenn ca. die Hälfte der Studenten vor der Diskussion die richtige Antwort wählten (mit korrekter Begründung), genügte ungefähr eine Minute Diskussion, um den Verständnisgrad der Klasse dramatisch zu verbessern. Kein Dozent, der agiert und anschaulich er auch sein mag, kann dieses Niveau der Einbindung und Teilnahme nur durch Vorträge erreichen.

Beispiel für eine Veranstaltung

Als ein Beispiel für Peer Instruction wird eine 90-minütige Veranstaltung über die Newton'schen Gesetze mit folgen- der Gliederung vorgestellt:

1. Newton'sches Gesetz
2. Definition von Kraft und Masse
3. Newton'sches Gesetz

Von den Studenten wird verlangt, vor dem Besuch der Ver- anstaltung die Skripte sowie die entsprechenden Abschnitte aus dem Lehrbuch zu lesen. Zu Anfang der Veranstaltung be- arbeiten sie das kurze Quiz (Abb. 1). Bitte beachten Sie, dass dieses Quiz nur testet, ob vor der Vorlesung gelesen wurde oder nicht; es testet nicht das Verständnis des Ma- terials. Wäre es so, würde es diejenigen Studenten benach- teilen (und daher entmutigen), die zwar gelesen haben, aber nicht in der Lage waren, die Konzepte aus dem Gele- senen zu verstehen.

1. Welches dieser Gesetze gehört nicht zu den Newton'schen Gesetzen?
 a) Zu jeder Aktion gehört eine entgegengesetzte gleiche Re- aktion.
 b) \(F = m a \)
 c) Alle Objekte fallen mit gleicher Beschleunigung
 d) Bei Abwesenheit einer resultierenden externen Kraft blei- ben Objekte, die sich in Ruhe befinden in Ruhe und Ob- jeke, die sich gleichförmig bewegen bleiben in gleichfö- miger Bewegung.

2. Das Trägheitsgesetz
 a) ist in der Leseaufgabe nicht enthalten
 b) drückt das Bestreben von Körpern aus, ihren Bewe- gungszustand aufrecht zu erhalten
 c) ist das 3. Newton'sche Gesetz.

3. „Impuls“ ist
 a) nicht in der Leseaufgabe enthalten,
 b) ein anderer Begriff für Kraft,
 c) ein anderer Begriff für Beschleunigung.

Abb. 1: Quiz zur Überprüfung, ob die Studenten den Leseauftrag vor Be- such der Veranstaltung erfüllt haben. Die richtigen Antworten sind 1, 3, 2, 3. Antwortswerte: 1a: 15%, 1b: 2%, 1c: 83%, 1d: 0%; 2a: 1%, 2b: 96%, 2c: 1%; 3a: 83%, 3b: 16%, 3c: 2%. Diese und folgende Statistiken stammen aus einem repräsentativen Semester, während dessen Peer In- struction durchgeführt wurde.

1. Ein Auto durchfährt eine Kurve mit konstantem Tempo.

Wirkt hier eine resultierende Kraft auf das Auto, wenn es die Kurve durchfährt?

a) Nein, da sein Tempo konstant bleibt.
 b) Ja.
 c) Es hängt von der Krümmung der Kurve und dem Tempo des Autos ab.

Danach definiere ich die Konzepte von Kraft und Masse und formuliere das 2. Newton'sche Gesetz. Um nun sicher zu stellen, dass die Beziehung zwischen Kraft, Beschleuni- gung und Geschwindigkeit verstanden wurden, verwende

Kraft

Luftkissen

Abb. 3: Concept Test über Kraft. Antwort 2 ist richtig. Antwortstatistiken vor (nach) der Diskussion: 1: 16% (5%), 2: 65% (85%), 3: 19% (12%). Überzeugung vor (nach) der Diskussion: Ziemlich sicher 50% (71%), nicht ganz sicher: 43% (25), nur geraten: 7% (4%).

ich die Frage, die in Abb. 3 dargestellt ist. Die Statistiken unter den Abbildungen zeigen auf, wie die „Überzuge-Deinen-Nachbarn-Diskussionen“ die Anzahl der korrekten Antworten erhöhen und die Überzeugung der Studenten verstärken. Mit den ungefähr 20% der Studenten, die nach der Diskussion falsche Antworten geben, würde ich vermutlich extra Zeit verbringen, die korrekten Antwort zu diskutieren.

Ein wichtiger Gesichtspunkt bei der Erklärung dieser Frage ist (um jeden Preis!) die Vermeidung des Geräusches von Gleichungen. Meine verbale Argumentation ist folgende: Kraft ruft Beschleunigung hervor, die aussagt, wie sehr die Geschwindigkeit eines Objektes in einem vorgegebenen Zeitraum zuminnt. Daher muss die Kraft nur halb so groß, ist auch die Beschleunigung nur halb so groß. Daher muss die Kraft ein doppelt so langes Zeitintervall wirken, um für den Wagen die gleiche Geschwindigkeitserhöhung zu erzielen.

Der nächste Concept Test (Abb. 4) baut die vorhergehende Frage weiter aus. Beachten Sie, wie viel besser die Studenten dieses Mal vor der „Überzuge-Deinen-Nachbarn-Diskussion“ abschneiden. Da schon 90% eine richtige Antwort vor der Diskussion abgeben, ist nur wenig Raum für eine Verbesserung. Immerhin erhöht die Diskussion jedoch die Überzeugung der Studenten. Der Prozentsatz der richtigen Antworten nach der Diskussion ist ein eindeutiger Hinweis darauf, dass eine weitere Diskussion über diese Frage nicht mehr nötig ist.

Eine konstante Kraft wirkt für einen kurzen Zeitraum auf einen Wagen, der sich anfänglich in Ruhe auf der Luftkissenbahn befindet. Die Kraft gibt dem Wagen eine bestimmte Endgeschwindigkeit.

Kraft

Luftkissen

Abb. 4: Concept Test über Kraft. Antwort 3 ist richtig. Antwortstatistiken vor (nach) der Diskussion: 1: 10% (1%), 2: 90% (99%). Überzeugung: ziemlich sicher: 64% (95%), nicht ganz sicher: 34% (4%), nur geraten: 2% (1%).

Geschwindigkeit des leichteren Wagens.

Eine konstante Kraft wirkt für einen kurzen Zeitraum auf einen Wagen, der sich anfänglich in Ruhe auf der Luftkissenbahn befindet. Die Kraft gibt dem Wagen eine bestimmte Geschwindigkeit.

Kraft

Luftkissen

Angenommen wir wiederholen das Experiment, aber anstatt aus der Ruhe zu starten, bewege sich der Wagen bereits in die Richtung der Kraft in dem Moment, in dem wir anfangen, die Kraft auszuzuben. Nachdem wir die gleiche konstante Kraft den gleichen kurzen Zeitraum lang ausüben, ist die Geschwindigkeitserhöhung des Wagens

1. gleich der zweimaligen Anfangsgeschwindigkeit
2. gleich der Anfangsgeschwindigkeit im Quadrat
3. gleich der vierfachen Anfangsgeschwindigkeit
4. die gleiche wie beim Start aus dem Stand
5. nicht aus den angegebenen Informationen zu bestimmen.
den Aufzugboden auf die Person einwirkt gleich groß und entgegengesetzt dem Gewicht der Person ist, wenn der Aufzug steht, sind die beiden Kräfte keine Wechselwirkungs Kräfte.

Die letzte Frage, die ich verwende (Abb. 7), beinhaltet Gravitation, testet aber eigentlich das Verständnis der Studenten zur Beschleunigung. Diese Frage bietet die Gelegenheit zurückzudenken und die Verbindung zwischen dem Lehrmaterial in vorhergehenden Vorlesungen und dem in dieser Vorlesung herzustellen. Während zwei Drittel der Studenten die richtige Antwort geben, ist nur ein Drittel von ihrer Antwort überzeugt (der am häufigsten auftretende Fehler ist die Annahme, dass bei Geschwindigkeitszunahme, die Beschleunigung ebenfalls zunimmt).

Literatur

Anschrift des Verfassers:
E-Mail: mazor@physics.harvard.edu

Abb. 6: Concept Test über das 3. Newton’sche Gesetze. Antwort 4 ist richtig. Antwortstatistiken vor (nach) der Diskussion: 1: 14% (7%), 2: 2% (2%), 4: 74% (86%), 9% (5%). Überzeugung vor (nach) der Diskussion: ziemlich sicher 59% (71%), nicht ganz sicher: 36% (26%), nur geraten: 5% (3%).