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We consider generalized linear dynamic factor models.
These models have been developed recently and they
are used for high dimensional time series in order to
overcome the ‘‘curse of dimensionality’’. We present a
structure theory with emphas is on the zeroless case,
which is generic in the setting considered. Accordingly
the latent variables are modeled as a possibly singular
autoregressive process and (generalized) Yule–Walker
equations are used for parameter estimation. The
Yule–Walker equations do not necessarily have a
unique solution in the singular case, and the resulting
complexities are examined with a view to find a stable
and coprime system.
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1. Introduction

Generalized linear dynamic factor models (GDFMs)
have been introduced in [9, 12], and, in a slightly
different form, in [23, 24]. The idea is to generalize
and combine linear dynamic factor models with

strictly idiosyncratic1 noise as analyzed in [21] and
[22] and generalized linear static factor models,
introduced in [5] and [6]. Factor models in a time
series setting may be used to compress information
contained in the data in both the cross-sectional
dimension, N say, and in the time dimension T. In
this way it is possible to overcome the ‘‘curse of
dimensionality’’ plaguing traditional multivariate
time series modeling, where, e.g. in the (unrestricted)
autoregressive case, the dimension of the parameter
space is proportional to N 2, whereas the number of
data points for a fixed T is linear inN. The price to be
paid for overcoming this curse of dimensionality is to
require a certain kind of similarity or co-movement
between the single time series. GDFMs are used,
both for forecasting and for analysis of high dimen-
sional time series (see e.g. [8, 13, 25]). In forecasting,
the forecasts of the latent variables are used to
forecast the observed variables.

The basic idea of GDFMs is that theN-dimensional
observation at time t, yNt say, can be represented as

yNt ¼ ŷNt þ uNt ð1Þ
where ðŷNt Þ is the process of latent variables, which are
strongly dependent on the cross-sectional dimension,

1 ‘‘Idiosyncratic’’ means specific for a particular univariate time
series, as opposed to ‘‘co-moving’’. We use the term ‘‘strictly
idiosyncratic’’ noise if the noise components are mutually
uncorrelated in cross-section, i.e. if the noise spectrum is diagonal.
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and where ðuNt Þ is the wide sense idiosyncratic noise, i.
e. ðuNt Þ is weakly dependent in the cross-sectional
dimension. The precise meaning of the words weak
and strong dependence will be given below.

Throughout, we assume

EŷNt ¼ EuNt ¼ 0 8t ð2Þ

E½ŷNt uNs
0� ¼ 0 8s; t ð3Þ

and that ðŷNt Þ and ðuNt Þ are wide sense stationary with
absolutely summable covariances. Thus, using an
obvious notation for the spectral densities corre-
sponding to (1), we obtain

fNy ð�Þ ¼ fNŷ ð�Þ þ fNu ð�Þ: ð4Þ
The latent variables are obtained from dynamic fac-
tors see (8) below.

Throughout, z is used for a complex variable as well
as for the backward shift on Z. This is opposite to the
most common convention in control, but consistent
with much econometrics literature.

The following assumptions constitute the class of
GDFMs considered here:

Assumption 1: There is anN0 such that forallN � N0; f
N
ŷ

is a rational spectral density with constant rank q < N
on ½��; ��.

Since we are considering high dimensional time
series, for asymptotic analysis, not only sample size T,
but also the cross-sectional dimension N is tending to
infinity; thus we consider a doubly indexed stochastic
process ðyit j i 2 N; t 2 ZÞ, where i is the cross-sec-
tional index and t denotes time. Therefore we consider
a sequence of GDFMs (1), indexed by the cross-sec-
tional dimensions N. We assume:

Assumption 2: The double-indexed sequence ðyit j i 2
N; t 2 ZÞ corresponds to a nested sequence of models, in
the sense that ŷit and uit do not depend on N for i � N.

Assumption 3: The rank q of fNŷ is independent of N
ðN � some N0Þ.
Assumption 4: The dimension, n say, of a minimal state
space realization of a stable and mini-phase spectral
factor of fNŷ is independent of N ðN � some N0Þ.

Next,wedefineweakand strongdependence as in [12].
Weuse e.g.!N

u;r todenote the r-th largest eigenvalueof f
N
u .

Assumption 5: (weak dependence) !N
u;1 is uniformly

bounded in � and N.

Assumption 6: (Strong dependence) The first q (i.e. the
q largest) eigenvalues of fNŷ diverge to infinity for all
frequencies, as N ! 1.

A simple example for strong dependence is a spec-
tral density fNŷ where every entry is equal to one.
Clearly, such a matrix has rank 1 and its largest
eigenvalue is equal to N.

Contrary to the strictly idiosyncratic case where fNu
is assumed to be diagonal, generalized factor models
are not generically identifiable for any fixed N, no
matter how large. Nevertheless, as has been shown in
[12], the elements of ŷNt (and thus of uNt ) are uniquely
determined from ðyNt Þ for N ! 1. Moreover, con-
sider the N-indexed sequence of dynamic principal
component decompositions

fNy ð�Þ ¼ ON
1 ðe�i�Þ�N

1 ð�ÞON
1 ðe�i�Þ�

þON
2 ðe�i�Þ�N

2 ð�ÞON
2 ðe�i�Þ�

ð5Þ

where�N
1 is the q� q diagonal matrix consisting of the

q largest eigenvalues of fNy ordered as a descending
sequence on its diagonal and ON

1 is the matrix whose
columns are the corresponding eigenvectors; the
second part on the right hand side of the above
equation is defined analogously for the smallest
eigenvalues. Here, e.g. ON

1 ðzÞ� denotes ON
1 ðz�1Þ0. As

has been shown in [12], such a sequence of PCA
models, for N ! 1 converges to the corresponding
GDFMs in the sense that e.g. the scalar components

of the latent PCA variables ŷNPCA;t ¼ ON
1 ðzÞON

1 ðzÞ�yNt
converge to the respective scalar components of ŷNt .

From now on, unless the contrary is stated explicitly,
for the sake of simplicity of notation, we will omit the
superscript N. In general terms, this paper is concerned
with identification of GDFMs, where the latent vari-
ables have a singular rational spectral density, or to be
more precise, with the identification of a stable linear
(state space or ARMA) system generating the latent
variables, from the observations y1; :::; yT. We neither
impose additional structure on the noise, nor are we
interested in estimating the noise parameters.

The emphasis of this paper is on structure theory
and based on this structure theory an estimation
algorithm is proposed. It heavily draws from previous
work ([2–4]). In the structure theory considered here
an idealized setting is considered, as we commence
from the population second moments of the latent
variables, rather than from the sample secondmoments
of the observations in order to obtain the parameters of
the system generating the latent variables.

As in [2], our emphasis is on the zeroless case, which
in our setting is generic. We extend, the results given in
the previous paper. The contributions in this paper
include the characterization of the latent variable
model as a singular autoregression (where the driving
white noise has a singular variance matrix), and the
analysis of (generalized) Yule–Walker equations to
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obtain a singular autoregression. In the singular case,
the Yule–Walker equations do not necessarily have a
unique solution, and we must pay more attention to
the nontrivial task of selecting a solution with prop-
erties such as stability and minimality.

The paper is organized as follows: In section 2, we
review spectral factorization and realization of tall
rational transfer functions. The relation between the
dimensions of (minimal) states, of minimal static
factors and of minimal dynamic factors is also
reviewed. Section 3 is concerned with zeroless
transfer functions and their realization by (possibly
singular) autoregressive systems. Section 4 is con-
cerned with stable solutions of (generalized) Yule–
Walker equations. As the static factors can be
obtained by a linear static transformation from the
latent variables and the static factors have smaller
dimension, we concentrate on realizing the static
factors by autoregressive systems.

2. Realization of Rational Tall Transfer

Functions

In this and the next section, we commence from the
population spectral density fŷ of the latent variables
ðŷtÞ rather than from data. This is justified as such an
analysis gives valuable insights and as the effect of the
wide sense idiosyncratic noise can be removed for
letting N and T going to infinity at suitable rates. The
latter has been shown in [9, 10, 23] and also follows
from the discussion in Section 4.

2.1. Spectral Factorization and Wold Decomposition

We have the following result [14, 20].

Theorem 1: Every N�N rational spectral density fŷ of
constant rank q for all � 2 ½��; �� can be factorized as

fŷð�Þ ¼ 1

2�
wðe�i�Þwðe�i�Þ� ð6Þ

where wðzÞ, z 2 C is a N� q real rational matrix of full
column rank which has no poles and no zeros for jzj � 1.

In addition, it is easy to show that wðzÞ is unique up
to postmultiplication by constant orthogonal matrices.

The spectral factors

wðzÞ ¼
X1
j¼0

wjz
j; wj 2 RN�q ð7Þ

correspond to a causal linear finite dimensional
system

ŷt ¼
X1
j¼0

wj�t�j ð8Þ

where the inputs ð�tÞ are white noise with
E½�t�0t� ¼ 2�Iq. This input process ð�tÞ is a minimal
dynamic factor. We will be concerned with the case
where w is tall, i.e. N > q holds.

The Smith–McMillan form of wðzÞ is given by

w ¼ udv ð9Þ
where u and v are unimodular (i.e. polynomial with
constant nonzero determinant) and d is an N� q
rational matrix whose top q� q block is diagonal with
diagonal elements ni

di
where di and ni are coprime, monic

polynomials and diþ1 divides di and ni divides niþ1. All
other elements of d are zero. The matrix d is unique for
given w and the finite zeros of w are the finite zeros of
the ni and the poles of w are the zeros of the di. Note
that wðzÞ has no poles and no zeros for jzj � 1.

For N > q, w has no unique left inverse, not even a
unique causal left inverse. We define a particular left
inverse by

w� ¼ v�1ðd 0dÞ�1d 0u�1 ð10Þ
As is easily seen, w� has no poles and no zeros
for jzj � 1. As is also easily seen, for given w, the input
�t in (8) is uniquely determined from ŷt; ŷt�1; : : :,
independently of the particular choice of the causal
inverse by

�t ¼
X1
j¼0

w�
j ŷt�j ð11Þ

Thus (8) corresponds to aWold decomposition (see, e.g.
[15]).

2.2. ARMA Representation

Every rational causal transfer function can be realized
by an ARMA system (or left matrix fraction
description), by a right matrix fraction description
(MFD), or by a state space system. Let us start with
ARMA systems:

aðzÞŷt ¼ bðzÞ�t: ð12Þ

We assume that ða; bÞ are left coprime (see e.g. [15]);
then the set of all observationally equivalent left
coprime ARMA systems is obtained as ðua; ubÞwhere u
is an arbitrary unimodular matrix. Note that for such a
coprime ARMA system the zeros ofwðzÞ correspond to
the zeros of bðzÞ and the poles of wðzÞ are the zeros of
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det aðzÞ. Thus the conditions stated in Theorem 1 on
the poles and zeros of the transfer function w ¼ a�1b
are, for left coprime a; b, equivalent to

det aðzÞ 6¼ 0; jzj � 1 ð13Þ
and

bðzÞhas full rank q; jzj � 1 ð14Þ
A right MFD

w ¼ dc�1 ð15Þ
where d and c are polynomial matrices of appropriate
dimension, corresponds to the cascade of an (non-
singular) AR system followed by a finite impulse
response system, and has been used in [12]. We do
not further explore such representations in this paper.

2.3. State Space Realization

We can also consider state space realizations of w of
the form

xtþ1 ¼ Fxt þ G�tþ1 ð16Þ

ŷt ¼ Hxt ð17Þ
where xt is the n-dimensional state and F 2 Rn�n,
G 2 Rn�q, H 2 RN�n. Note that the state space form
(16)–(17) is different from the form considered in [15];
we have chosen this form because of its convenience for
our purposes. We assume that the system is minimal,
stable, i.e.

j�maxðFÞj < 1 ð18Þ
(where �maxðFÞ denotes an eigenvalue of maximum
modulus) and mini-phase, i.e. the right side of (20)
below has no zeros for jzj � 1. The transfer function
for (16) and (17) is given by

wðzÞ ¼ HðI� FzÞ�1G ¼ HGþ
X1
j¼1

HF jGzj:

ð19Þ
As wðzÞ (which has rank q almost everywhere) has no
poles or zeros in jzj � 1, wð0Þ ¼ HG has rank q also.
AsG has q columns this means rkG ¼ q. If ðF;G;HÞ is
minimal the poles of wðzÞ are the reciprocals of the
eigenvalues of F. Also, the transfer function w has a
zero for some finite z0 if and only if the matrix

MðzÞ ¼ I� Fz �G
H 0

� �
ð20Þ

has rank less than nþ q at z0. Starting with the power
series expansion (7), the form (16) and (17) can be
obtained by the ‘‘Akaike–Kalman procedure’’ [1]
from the equation

ŷt
ŷt þ 1=t
ŷt þ 2=t

..

.

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Ŷt

¼
w0 w1 � � �
w1 w2 � � �
w2 w3 � � �
..
. ..

. . .
.

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

�t
�t � 1

..

.

0
B@

1
CA

ð21Þ
where ŷtþrjt denotes the (best linear least squares)
predictor of ŷtþr given the infinite past ŷt; ŷt�1; : : :.
The matrix H is called the (block) Hankel matrix of
the transfer function. As is well known, every basis
for the (finite dimensional) space spanned by the
(one-dimensional) components of Ŷt in the Hilbert
space of all square integrable random variables,
defines a minimal state. Let S 2 Rn�1 denote the
matrix selecting the first components from Ŷt making
up a basis. Note that although S is an infinite matrix,
it has only a finite number (n in fact) of nonzero
entries, where n is the basis dimension. Then the
equations

xt ¼ SŶt ð22Þ

S

w1 w2 � � �
w2 w3 � � �
..
. ..

. . .
.

0
B@

1
CA ¼ FSH ð23Þ

G ¼ S w0
0;w

0
1; : : :

� �0 ð24Þ

w0;w1; : : : . . .ð Þ ¼ HSH ð25Þ
(compare [17]) define a (minimal) state space system
(16) and (17) in echelon form. From now on, we mainly
consider echelon forms; every other minimal state is
obtained by premultiplying the echelon state by a
constant nonsingular matrix.

2.4. Static Factors

A static factor of the latent variables ðŷtÞ is a process
ðztÞ of dimension lesser than or equal to n, with the
property that for some constant matrix L, there holds
ŷt ¼ Lzt for all t. A minimal static factor is one for
which zt has least dimension. It is obvious that xt itself
is a static factor, but our interest is in studying min-
imal static factors.
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We note the standard result:

Lemma 1: Let ðŷtÞ be a stationary vector process. Then
the dimension of a minimal static factor is the rank, call
it r, of the zero-lag variance matrix E½ŷtŷ0t�.
Proof: Suppose zt is a static factor, with ŷt ¼ Lzt.
Then E½ŷtŷ0t� ¼ LE½ztz0t�L0, and it follows that there can
be no static factor of dimension less than the rank of
E½ŷtŷ0t�. To show that there is indeed a static factor
with this dimension, let M be any matrix with least
number of columns such that E½ŷtŷ0t� ¼ MM0. Notice
that M is unique up to right multiplication by an
orthogonal matrix. Make the definition

zt ¼ ðM0MÞ�1M0ŷt ð26Þ
which means that zt has dimension equal to the rank
of E½ŷtŷ0t� and has variance I. It is trivial to verify, by
considering E½ðŷt �MztÞðŷt �MztÞ0�, also that

ŷt ¼ Mzt ð27Þ
Thus zt is indeed a minimal static factor. &

Observe that a minimal static factor is not required
to have a unit variance matrix. For any nonsingularR,
Rzt with zt as just defined, is a minimal static factor
(and indeed all minimal static factors are obtained this
way). Also, there is an infinite family of minimal static
factors of unit variance, obtained by multiplying zt by
an arbitrary orthogonal matrix.

Knowing H and xt, we can also construct a minimal
static factor. Let T be any nonsingular matrix such that
HT ¼ ½H1 0�whereH1 has full column rank. Because xt
has a nonsingular covariance, the fact that rkE½ŷtŷ0t� ¼
r means that rkH1 ¼ r and H1 has r columns. A
particular minimal static factor is then defined by

�zt ¼ ½Ir 0�T�1xt ð28Þ
for it is trivial to verify that ŷt ¼ H1�zt, and �zt has
dimension r. Evidently, n � r � q and xt is a minimal
static factor if and only if rkH ¼ n. A particular
minimal static factor can be obtained from the echelon
form (22) by selecting the first r linearly independent
components of ŷt

zt ¼ S1Ŷt: ð29Þ

S ¼ S1

S2

� �
;S1 2 Rr�1;S2 2 Rðn�rÞ�1 ð30Þ

Note that n ¼ r holds if and only if ŷtþ1jt; ŷtþ2jt; : : : do
not contain further linearly independent components
and xt is a minimal static factor if and only if all

Kronecker indices of H (see [15], chapter 2) are equal
to zero or one.

Any minimal static factor is obtainable by a simple
static linear transformation of the latent variables ŷt
and vice versa. This means that, using the minimal
static factor zt above as an example,

zt ¼ ðM0MÞ�1M0wðzÞ�t ¼ kðzÞ�t ð31Þ

yt ¼ MkðzÞ�t ¼ wðzÞ�t ð32Þ
for some kðzÞ transfer function corresponding to the
choice of the static factor. As with wðzÞ, kðzÞ has no
poles and zeros in jzj � 1. It is also easy to show that a
minimal state space realization for zt is obtainable from
a minimal fF;G;Hg as fF;G;Cg and conversely, by

C ¼ ðM0MÞ�1M0H ð33Þ

H ¼ MC ð34Þ
Because zt has the same dynamics as ŷt and is of smaller
dimension independent of N, modeling of ðztÞ is more
convenient. As ðztÞ is an ARMA process, ARMA
identification procedures, such as the autoregression-
regression approach [18, 19] may be applied to this
case, as has been done in [27]. Here, however, we will be
able to deal with an autoregressive approach, which is
simpler and can be applied in a generic situation.

3. Zeroless Transfer Functions and

Autoregressive Systems

Of particular interest for us are zeroless transfer func-
tions, because, as reviewed below, tall rational transfer
functions are generically zeroless. As we will show, in
this case the latent variables may be represented by an
AR system. However, these AR systems differ from the
usual ones, as they may be singular in the sense that
their driving white noise may have a singular variance
matrix. In this case, the static factors may also be
represented by an autoregression, and again the vari-
ance matrix of the driving white noise may be singular.
Such an AR model will be obtained by solving the
Yule–Walker equations. These equations commence
from a finite number of second moments of the static
factors (and thus of the latent variables), they are linear
in the unknown parameters and they give the correct
spectral factors. However, as opposed to the usual case,
for singular AR systems, the solutions of the Yule–
Walker equations may not be unique, a fact which
generates additional complexity.

Generalized Dynamic Factor Models 5



Definition 1: An N� q transfer function wðzÞ is called
zeroless if the numerator polynomials of the diagonal
matrix in its Smith–McMillan form (9) are all equal to
one.

For N ¼ q, the zeroless case is nongeneric; in the tall
case however, the zeroless case is generic. We have [2]:

Theorem 2: Consider an N� q rational transfer func-
tion wðzÞ with a minimal state space realization
ðF;G;HÞ with state dimension n. If N > q holds, then
for given n, the transfer function wðzÞ is zeroless for
generic values of ðF;G;HÞ.

This can be seen from the fact that the zeros of w are
the intersection of the sets of zeros of the determinants
of all q� q submatrices of w. A detailed proof is given
in [2].

As is easily seen from (31), kðzÞ is zeroless if and
only if wðzÞ is zeroless. In the zeroless case, the
numerator polynomials of the diagonal matrix in the
Smith-McMillan form (9) are all equal to one and thus
k� corresponding to (10) is polynomial. Then the input
�t is determined from a finite number of outputs
zt; zt�1; : : : ; zt�L, for some L.

Note that rk H ¼ n implies that w and thus k
are zeroless. This is easily seen from (20) as always
rkG ¼ q holds. However, for zeroless transfer func-
tions w, q < rkH < n may hold; in other words,
assuming that wðzÞ is zeroless is more general than
assuming rk H ¼ n.

Theorem 3: Let ðŷtÞ satisfy Assumptions 1–4 and let zt
be an associated minimal static factor, of dimension r;
then the following statements for ðztÞ are equivalent:

(i) The spectral factors k of the spectral density fz of
ðztÞ satisfying the properties listed in Theorem 1
are zeroless

(ii) There exists a polynomial left inverse k� corre-
sponding to (10) and thus the input �t in (31) is
determined from a finite number of outputs
zt; zt�1; : : : ; zt�L, for some L

(iii) ðztÞ is a stationary solution of a stable AR system

zt ¼ e1zt�1 þ � � � þ epzt�p þ �t; ei 2 Rr�r ð35Þ

where

det ðI� e1z� � � � � epz
pÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

eðzÞ

6¼ 0; jzj � 1

and �t is a zero mean white noise process with rk
�� ¼ q, �� ¼ E½�t�0t�.

Proof: (i) ) (ii) has been shown above. In order to
show (i) ) (iii), we commence from an ARMA rep-
resentation for zt

~eðzÞzt ¼ fðzÞ�t ð36Þ
where ~e; f are relatively left prime and ~e is stable. As
kðzÞ ¼ ~e�1ðzÞfðzÞ is zeroless, the same holds for fðzÞ.
As is well known every zeroless tall polynomial matrix
f can be completed by a suitable choice of a polyno-
mial matrix g to a unimodular matrix u ¼ ðf; gÞ by
extending the Smith–McMillan form of f ¼ ~u~d~v to

ðf; gÞ ¼ ~u ~d;
0
I

� �� �
~v 0
0 I

� �

Then

~eðzÞzt ¼ uðzÞ �t
0

� �

and

u�1ðzÞ~eðzÞzt ¼ �t
0

� �
ð37Þ

gives an autoregressive representation, and pre-
multiplying (37) by ~e�1ð0Þuð0Þ gives the desired form
(35). The stability of eðzÞ follows from the stability of
~eðzÞ.
That (ii) implies (i) is straightforward and that (iii)

implies (ii) can be seen as follows: Let P satisfy

�� ¼ PP0;P 2 Rr�q; rk P ¼ q ð38Þ
Then premultiplying (35) by ðP0PÞ�1P0 yields a k� of
the desired form. &

As is well known, in the regular case, i.e. when �� is
nonsingular, the matrices

�m ¼

�0 � � � � � � �m�1

..

.
�0

..

.

..

. . .
. ..

.

�m�1 � � � � � � �0

0
BBBB@

1
CCCCA; ð39Þ

where �j ¼ E½ztþjz
0
t�, are nonsingular for all m 2 N and

eðzÞ is uniquely determined from the (population)
second moments of ðztÞ [14]. For singular AR systems,
as we may have, the situation is more subtle.

Consider the following Yule–Walker equations (see
[14] pages 326–327):

ðe1; . . . ; epÞ�p ¼ ð�1; . . . ; �pÞ ð40Þ

�� ¼ �0 � ðe1; . . . ; epÞð�1; . . . ; �pÞ0 ð41Þ

Formula (40) may be used to determine ðe1; . . . ; epÞ.
Note that in the case q < r, as opposed to the regular
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case r ¼ q, the matrix �pþ1 will be singular and the
matrix �p may be singular, i.e. the components of the
vectors ðz0t�1; . . . ; z

0
t�p�1Þ0 and ðz0t�1; . . . ; z

0
t�pÞ0 will, or

may be, respectively, linearly dependent and thus the
solution for ðe1; . . . ; epÞ may not be unique. However,
by the projection theorem, every solution determines
the same predictor ztjt�1 and �t.

The possible nonuniqueness of the solutions of the
(generalized) Yule–Walker equations can be seen
from a description of the class of observationally
equivalent systems. The idea is to relate the singular
AR case to the ARMA case (see [15]). We obtain the
following result (in which we denote by �ðeðzÞÞ the
degree of the polynomial matrix eðzÞ):

Theorem 4: (i) Every singular AR system with rk�� ¼ q
can be written as

eðzÞzt ¼ f�t; f 2 Rr�q ð42Þ
where ð�tÞ is white noise with E½�t�0t� ¼ Iq, eð0Þ ¼ I and
where eðzÞ and f are relatively left prime.

(ii) Let ðeðzÞ; fÞ be relatively left prime; then the class of
all observationally equivalent ð�eðzÞ; �fÞ satisfying the
degree restrictions �ð�eðzÞÞ � p, eð0Þ ¼ I and �ð�fÞ ¼ 0, is
given by

�eðzÞ; �f� � ¼ uðzÞðeðzÞ; fÞ ð43Þ
where the polynomial matrix uðzÞ satisfies

det uðzÞ 6¼ 0; jzj � 1 ð44Þ

uð0Þ ¼ I ð45Þ

�ðuðzÞeðzÞÞ � p ð46Þ

�ðuðzÞfÞ ¼ 0 ð47Þ
In addition, ð�eðzÞ; �fÞ is relatively left prime if and only if
uðzÞ is unimodular.

(iii) Let ðeðzÞ; fÞ be relatively left prime; then eðzÞ with
eð0Þ ¼ I is unique if and only if rk ðep; fÞ ¼ r holds.

Proof: For (i) it only remains to show that ðeðzÞ; fÞ can
be chosen as relatively left prime. Assume that ðeðzÞ; fÞ
are not relatively left prime, then we can always find a
relatively left prime observationally equivalent system
ð�eðzÞ; �fðzÞÞ, where the degree of �fðzÞ is not necessarily
zero. By Theorem 3, �fðzÞ must be zeroless and thus
can be extended to a unimodular matrix. Pre-
multiplying ð�eðzÞ; �fðzÞÞ by the inverse of this unim-
odular matrix yields the desired result. (ii) and (iii) are
straightforward. &

4. The Yule–Walker Equations

As the set of the solutions of (40) is a nontrivial affine
space in the case of �p being singular, we want to study
the properties of certain solutions. In particular, we
want to ensure that we can pick a solution which will
provide a stable system. Should such a solution not be
coprime, then we need to be able to determine from it
a coprime stable solution. We distinguish between
population results and sample results.

Population Results
In this section, we examine the extent to which
the solution of the (generalized) Yule–Walker
equation (40) automatically gives a stable matrix
polynomial.

For future reference, let us define the block com-
panion matrix of the polynomial eðzÞ ¼ I� e1z� :::�
epz

p of (35)

E ¼

e1 e2 � � � ep�1 ep
I 0 � � � 0 0
0 I � � � 0 0
..
. ..

. ..
.

0 0 � � � I 0

0
BBBB@

1
CCCCA ð48Þ

and

Q ¼ diagð��; 0; . . . ; 0Þ ð49Þ
Note that the zeros of eðzÞ (i.e. the roots of detðeðzÞÞ)
correspond to the inverted eigenvalues of E so that by
the zero condition of (35), E has all eigenvalues inside
the unit circle. Note further that (as can be checked by
straightforward calculations using (39) through (41))
the following discrete-time Lyapunov equation holds

�p � E�pE
0 ¼ Q ð49Þ

Observe that for any solution of the (generalized)
Yule–Walker equation (40) ð�e1�e1:::�epÞ, if we define �E
as E with ei replaced by �ei, then (49) holds with �E
replacing E.

Before stating the main result, we prove two lemmas.

Lemma 2: Let A be a square real matrix. Let �ðAÞ be an
arbitrary eigenvalue of A. Then there holds

j�ðAÞj � max
jjxjj¼1

jx�Axj

Proof: Let y be a unit length eigenvector corre-
sponding to �ðAÞ. There holds Ay ¼ �ðAÞy and
therefore

Generalized Dynamic Factor Models 7



j�ðAÞj ¼ jy��ðAÞyj ¼ jy�Ayj � max
jjxjj¼1

jx�Axj

Lemma 3: Let A be a matrix defined by

A ¼ ð0a�b IaÞT 0 0
Ic 0

� �
T0 0b�a

Ia

� �

with T an orthogonal matrix. Then all eigenvalues of A
have magnitude less than 1.

Proof: Observe first that if x is a unit norm vector of
dimension a, then (with obvious definition of U)

y ¼ T0 0b�a

Ia

� �
x ¼ Ux

also has unit norm, as easily can be seen. Evidently,

max
jjxjj¼1

jx�Axj ¼ max
jjyjj¼1;y¼Ux

jy� 0 0
Ic 0

� �
yj

� max
jjyjj¼1

jy� 0 0
Ic 0

� �
yj

Now observe that for any unit norm y,

jy� 0 0
Ic 0

� �
yj ¼ jðy�1 y�2 . . . y�aþbÞ

0
..
.

0
y1
y2

..

.

yc

0
BBBBBBBBB@

1
CCCCCCCCCA
j

By the Cauchy-Schwarz inequality, we see that the
right side of this equation is bounded by the product
of jjyjj, which is 1, and jjðy01 y02 . . . y0c 0 . . . 0Þjj; the
second of these two norms is less than 1 unless
ycþ1 ¼ ycþ2 ¼ . . . yaþb ¼ 0. But if it happens that
ycþ1 ¼ ycþ2 ¼ . . . yaþb ¼ 0 then the Cauchy-Schwarz
inequality can only hold with equality in case all yi are
zero, which is a contradiction. Hence we know that
the Cauchy-Schwarz inequality is strict.

Consequently, we have

max
jjxjj¼1

jx�Axj � max
jjyjj¼1

jy� 0 0
Ic 0

� �
yj < 1

and the result follows by Lemma 2. &

Theorem 5: Let ðŷtÞ satisfy Assumptions 1–4, let ðztÞ be
a minimal static factor satisfying condition (iii) of
Theorem 3. Let �m be as in (39) and let �ei; i ¼ 1; . . . ; p
denote the solution of the Yule-Walker equation (40)
defined by

ð�e1; �e2; . . . ; �epÞ ¼ ð�1; �2; . . . ; �pÞ�#
p ð50Þ

where the superscript # denotes the matrix pseudo
inverse. Then the system defined by the �ei is stable, and
there are s eigenvalues of �E, the block companion
matrix associated with the �ei, which are identical with
eigenvalues of E defined in (48).

Proof: Let Op denote an orthogonal matrix such that

Op�pO
0
p ¼

�1 0
0 0

� �

with �1 diagonal and nonsingular. For the purposes
of the proof, most of our calculations will be carried
out in a changed coordinate basis defined by Op.
Accordingly, define

ð�f1; �f2; . . . ; �fpÞ ¼ ð�e1; �e2; . . . ; �epÞO0
p

ðf1; f2; . . . ; fpÞ ¼ ðe1; e2; . . . ; epÞO0
p

Since

ð�f1; �f2; . . . ; �fpÞOp�pO
0
p ¼ ð�e1; �e2; . . . ; �epÞ�pO

0
p

¼ ð�1; �2; . . . ; �pÞO0
p

¼ ðe1; e2; . . . ; epÞ�pO
0
p

¼ ðf1; f2; . . . ; fpÞOp�pO
0
p

or equivalently

ð�f1; �f2; . . . ; �fpÞ �1 0
0 0

� �
¼ ðf1; f2; . . . ; fpÞ �1 0

0 0

� �

we see that the first s columns of the block row matrix
ðf1; f2; . . . ; fp) are identical with those of ð�f1; �f2; . . . ; �fpÞ.
Also, we can argue that the last rp� s columns are 0:

ð�f1; �f2; . . . ; �fpÞ ¼ ð�1; �2; . . . ; �pÞ�#
p O

0
p

¼ ð�1; �2; . . . ; �pÞO0
p

��1
1 0
0 0

� �

Now consider the block companion matrices �E;E
defined by the ð�eiÞ; ðeiÞ, together with their transforms

�F ¼ Op
�EO0

p

F ¼ OpEO
0
p

Partition these two matrices in the same manner as the
right side of Op�pO

0
p, so that �F11;F11 are s� s:

�F ¼ �F11
�F12

�F21
�F22

� �

F ¼ F11 F12

F21 F22

� �

8 M. Deistler et al.



Now the matrix F satisfies the following transformed
version of (49):

�1 0
0 0

� �
� F

�1 0
0 0

� �
F0 ¼ OpQO0

p

and similarly for �F. The 22 block term on the left side
is �F21�1F

0
21 while the 22 block term on the right is

nonnegative definite. It follows that F21 is zero.
Likewise, �F21 is zero, and so �F;F are both upper tri-
angular. Now consider

F� �F ¼ OpðE� �EÞO0
p

¼ Op

e1 � �e1 e2 � �e2 . . . ep�1 � �ep�1 ep � �ep
0 0 . . . 0 0
0 0 . . . 0 0
..
. ..

. ..
.

0 0 . . . 0 0

0
BBBB@

1
CCCCAO0

p

¼ Op

f1 � �f1 f2 � �f2 . . . fp�1 � �fp�1 fp � �fp
0 0 . . . 0 0
0 0 . . . 0 0
..
. ..

. ..
.

0 0 . . . 0 0

0
BBBBB@

1
CCCCCA

We have shown above that the first s columns of
ðf1; f2; . . . fpÞ are identical with those of ð�f1; �f2; . . . �fpÞ,
and so the first s columns of the matrix on the right of
the above equation are zero. This means that the first
s columns of �F and F are the same, i.e. �F11 ¼ F11.
Since E and therefore F has all eigenvalues in j�j < 1,
the same is true of F11 ¼ �F11. We now have to
examine the last rp� s columns of �F, and in par-
ticular the last rp� s rows of these columns; this is
because �F is block triangular, and the lower trian-
gular block has yet to be proved to have eigenvalues
in j�j < 1. Observe that

�F ¼ Op
�EO0

p ¼ Op

�e1 �e2 . . . �ep�1 �ep
I 0 . . . 0 0
0 I . . . 0 0
..
. ..

. ..
.

0 0 . . . I 0

0
BBBB@

1
CCCCAO0

p

¼ Op

�f1 �f2 . . . �fp�1
�fp

0 0 . . . 0 0
0 0 . . . 0 0
..
. ..

. ..
.

0 0 . . . 0 0

0
BBBBB@

1
CCCCCAþOp

0 0 . . . 0 0
I 0 . . . 0 0
..
. ..

. ..
.

0 0 . . . I 0

0
BB@

1
CCAO0

p

Now our interest is in the last rp� s columns, and the
entries of the last rp� s columns of ð�f1 �f2 . . . �fp�1

�fpÞ
have all been shown to be zero. Since what is in the
first s columns is immaterial, we can say that the last

rp� s columns of �F are actually identical with the last
rp� s columns of the matrix

Op

0 0 . . . 0 0
I 0 . . . 0 0
..
. ..

. ..
.

0 0 . . . I 0

0
BB@

1
CCAO0

p

Thus

�F22 ¼ ð0ðrp�sÞ�s Irp�sÞOp

0 0 . . . 0 0
I 0 . . . 0 0
..
. ..

. ..
.

0 0 . . . I 0

0
BB@

1
CCA

O0
p

0s�ðrp�sÞ
Irp�s

� �
By the previous lemma, we know that j�ið �F22Þj < 1 for
every eigenvalue of �F22. In summary,

�F ¼ F11
�F12

0 �F22

� �
ðÞ

where �F12 is irrelevant, F11 has eigenvalues of mag-
nitude less than 1 by hypothesis and the triangularity
of F, and �F22 has just been proved to have the same
property. &

4.1. Sample Results

In this section, we briefly discuss estimation in the
framework of GDFMs. We do not intend to give a
detailed account here, this will be done in a sub-
sequent paper. The purpose of this subsection is
twofold: First to shortly describe an estimation pro-
cedure, in order to demonstrate the usefulness of the
‘‘structural’’ results, described above. Second to ana-
lyze the (generalized) Yule–Walker equations for the
case where the population second moments have been
replaced by sample counterparts.

As has been shown in [11] and [23] a consistent
estimator ẑt of zt can be obtained by a static PCA of yt
as follows: Consider the eigenvalue decomposition

T�1
XT
t¼1

yNt y
N0
t ¼ ON

1 �
N
1 O

N0
1 þON

2 �
N
2 O

N0
2 ð51Þ

where �N
1 is the diagonal r� rmatrix, whose diagonal

elements are the largest r eigenvalues of the matrix on
the l.h.s. and ON

1 is the N� r matrix of the corre-
sponding eigenvectors. Then define

ẑNt :¼ N�1=2ON0
1 yNt ð52Þ

Now the following can be shown: Under the additional
assumptions that the r largest eigenvalues of E½yNt yN

0
t �

Generalized Dynamic Factor Models 9



diverge to infinity, for N ! 1, and the other eigen-
values are bounded, the estimators ẑNt converge for
N;T ! 1 to a suitably normalized version of zt. Let
�̂j ¼ T�1

PT�j
t¼1 ẑtþjẑ

0
t, j � 0 and let �̂p be defined ana-

logously. Note that the �̂j are not the usual sample
covariances corresponding to �j, because the zt are not
directly observed. Note also, that, if the rank of �p is
equal to s < rp holds, then ‘‘typically’’ �̂p will be of
rank pr. Nevertheless, in such a case, for the purpose of
‘‘regularization’’ a truncation setting the ‘‘small’’
eigenvalues of �̂p equal to zero will give a numerically
stable procedure. Define �̂

s

p ¼ Os
p�

s
pO

s0
p where �s

p 2
Rs�s is a diagonal matrix consisting of the s largest
eigenvalues of �̂p, and Os

p 2 Rpr�s is the matrix of the
corresponding eigenvectors. The next theorems show
that the minimal norm solution of eventually trun-
cated sample Yule–Walker equations yields consistent
estimators corresponding to stable autoregressions.

Theorem 6: If rk�p ¼ s < pr and if all nonzero
eigenvalues of �p are distinct, then the minimal norm
solution of the Yule–Walker equations corresponding
to (40) defined by

ðê1; :::êpÞ ¼ ð�̂1; :::; �̂pÞOs
pð�s

pÞ�1Os0
p ð53Þ

defines a function of �̂0; :::; �̂p which is continuous at
�0; :::; �p (here the �̂j as well as the êj are considered to
be matrices with real entries).&

Proof: As the eigenvalues and the corresponding
suitable normalized eigenvectors of a symmetric
matrix are locally continuous functions of the entries
of the matrix, the right side of (53) is obviously a
continuous function at �0; :::; �p. &

Remark 1: Under suitable assumptions the sample
covariances �̂j are consistent estimators of the popula-
tion counterparts �j. Therefore the continuity result of
Theorem 6 implies that the ðê1; :::êpÞ are consistent
estimators of the minimal norm solution (50) of the
Yule–Walker equations (40).

Remark 2: The condition that all nonzero eigenvalues of
�̂p are distinct is imposed for convenience and can be
relaxed.

Theorem 7:

(i) If rk�p ¼ pr holds, then the Yule–Walker estim-
ator corresponding to (40) (i.e. when the �j in (40)
are replaced by �̂j) yields a stable autoregression

(ii) For rk�p ¼ s < pr, the solution (53) corresponds
to a stable autoregression

Proof: (i) As we need to show det êðzÞ 6¼ 0; jzj � 1 we
proceed as follows: Let

Ê ¼

ê1 � � � � � � êp�1 êp
Ir 0 � � � 0 0

0 Ir
. .
. ..

.
0

..

. � � � Ir 0 0
0 � � � 0 Ir 0

0
BBBBB@

1
CCCCCA

then det êðzÞ 6¼ 0; jzj � 1 is equivalent to postulating
that the roots of

detðÊ� zIrpÞ ð54Þ
are within the unit circle. Define the ðTþ pÞ � rp
matrices

Z ¼

0 � � � 0
ẑ01 0 � � � 0

ẑ02
. .
. ..

.

..

. ..
. ..

.
ẑ01

..

. ..
. ..

. ..
.

ẑ0T ẑ0T�1 � � � ẑ0T�pþ1

0 . .
. . .

. ..
.

..

. . .
.

ẑ0T ẑ0T�1

0 � � � 0 ẑ0T

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

ð55Þ

and

Y ¼

ẑ01 0 � � � 0

ẑ02
. .
. ..

.

..

. ..
. ..

.
ẑ01

..

. ..
. ..

. ..
.

ẑ0T ẑ0T�1 � � � ẑ0T�pþ1

0 . .
. . .

. ..
.

..

. . .
.

ẑ0T ẑ0T�1

..

. � � � 0 ẑ0T
0 � � � 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Consider the ‘‘thin’’ singular value decompositions2

Z ¼ U1�1V1 and Y ¼ U2�2V
0
2. Note that �1 ¼

�2 ¼: � and V1 ¼ V2 ¼: V can be chosen because
Z0Z ¼ Y0Y holds. Furthermore U1 ¼ ð0;U0Þ0 and U2 ¼
ðU0; 0Þ0 can be chosen because of the form of Z and Y. It
is straightforward to show that

Ê ¼ Y0ZðZ0ZÞ�1

2 The singular value decomposition of Y 2 Rm�h;m � h is defined as

Y ¼ U�V0 with U 2 Rm�m;� 2 Rm�h;V 2 Rh�h, whereas
the ‘‘thin’’ singular value decomposition of Y 2 Rm�h;m � h is
defined as Y ¼ U�V0 with U 2 Rm�h;� 2 Rh�h;V 2 Rh�h.

10 M. Deistler et al.



and therefore

Ê ¼ V�U0
2U1�

�1V0

holds. The roots of (54) are the same as the roots of

detð��1V0ðÊ� zIrpÞV�Þ ¼ detðU0
2U1 � zIrpÞ

Now we have

j�maxðU0
2U1Þj � maxkxk¼1jx�U0

2U1xj
< maxkxk¼1jx�U0

1U1xj ¼ 1

where the first inequality holds due to Lemma 2
and the strict inequality is valid because of the form
of U1 ¼ ð0;U0Þ0 and U2 ¼ ðU0; 0Þ0 (compare with
the proof of Lemma 3, strict Cauchy–Schwarz
inequality).

(ii) First we want to repeat that, as is well known, the
sample covariance matrix �̂p is ‘‘typically’’ non-
singular. We assume that we know the rank s of the
true matrix �p and set the smallest singular values ofY
and Zwhich are ‘‘typically’’ not zero to zero: Using an
evident notation we define

~Z ¼ ðU1s;UxÞ �1s 0
0 0

� �
V0

1s

V0
x

� �
¼ U1s�1sV

0
1s

ð56Þ
where

Z ¼ U1�V
0 ¼ ð U1s|{z}

ðTþpÞ�s

; Ux|{z}
ðTþpÞ�ðrp�sÞ

Þ �1s 0
0 �x

� �
V0

1s

V0
x

� �

ð57Þ
We call ~Z ¼ U1s�1sV

0
1s the ‘‘very thin’’ singular value

decomposition of ~Z (note s < rp) and define ~Y ana-
logously, i.e. ~Y ¼ U2s�2sV

0
2s. Then, as Y0Y ¼ Z0Z

holds, we have ~Y0 ~Y ¼ ~Z0 ~Z and thus we can choose
�1s ¼ �2s ¼: �s, V1s ¼ V2s ¼: Vs, U1s ¼ ð0;U0

sÞ0 and
U2s ¼ ðU0

s; 0Þ0. From now on, for the simplicity of
notation, we us Z and Y for ~Z and ~Y, respectively. As
can be easily seen V½;�r�V0 ¼ Irðp�1Þ; 0

� �
, where V½;�r� is

V is defined by omitting the last r rows in V from (56).
Now observe that

ðY0Þ½;�rðp�1Þ�Z ¼ ðVsÞ½;�rðp�1Þ��sU
0
2sU1s�sV

0
s

ð58Þ
holds, which is an estimate of Tð�1; . . . ; �pÞ0 (note that
if �x 6¼ 0 holds, then (58) does not correspond to the
sample covariances Tð�̂1; . . . ; �̂pÞ0). It follows that

ê ¼ ðê1; :::; êpÞ
¼ ðYÞ0½;�rðp�1Þ�ZðZ0ZÞ#

¼ ðVsÞ½;�rðp�1Þ��sU
0
2sU1s�sV

0
sVs�

�2
s V0

s

¼ ðVsÞ½;�rðp�1Þ��sU
0
2sU1s�s�

�2
s V0

s

¼ ðVsÞ½;�rðp�1Þ��sU
0
2sU1s�

�1
s V0

s

Therefore

Ê ¼ ðVsÞ½;�rðp�1Þ��sU
0
2sU1s�

�1
s V0

s

V½;�r�V0

 !

¼
ðVsÞ½;�rðp�1Þ��sU

0
2sU1s�

�1
s V0

s

ððVsÞ½;�r�; ðVxÞ½;�r�Þ
V0

s

V0
x

� �
0
B@

1
CA

¼
ðVsÞ½;�rðp�1Þ��sU

0
2sU1s�

�1
s V0

s

ðVsÞ½;�r�V
0
s þ ðVxÞ½;�r�ÞV0

x

 !

¼
ðVsÞ½;�rðp�1Þ��sU

0
2sU1s�

�1
s V0

s

ðVsÞ½;�r�V
0
s

 !

þ 0

ðVxÞ½;�r�V
0
x

 !

holds. Call the first summand on the r.h.s. in the last
equality above B and the second summand ~V. Recall
that we want to show that the roots of detðÊ� zIrpÞ
are within the unit circle. Now we have (with the
penultimate equality following using (59) and (60)
below)

detðÊ� zIrpÞ ¼ detðBþ ~V� zIrpÞ ¼ detðV0ðBþ ~V� zIrpÞVÞ

¼ det
��1

s 0

0 Irp�s

 !zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{~��1

V0ðBþ ~V� zIrpÞV
�s 0

0 Irp�s

� �
0
BBBB@

1
CCCCA ¼ det ~��1V0ðBþ ~VÞV~�� zIrp

� �

¼ det
U0

2sU1s ��1
s V0

s
�V

0 V0
x
�V

 !
� zIrp

 !
¼ detðU0

2sU1s � zIsÞdetðV0
x
�V� zIrp�sÞ
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with �V :¼ 0
ðVxÞ½;�r�

� �
. As the matrices V0

x
�V ¼

V0
x

0
ðVxÞ½;�r�

� �
¼ ðV0

x; 0Þ
0
Vx

� �
and U0

2sU1s (compare

with the proof of Lemma 3, strict Cauchy–Schwarz
inequality) have all eigenvalues of magnitude less than
1 the result follows.

To obtain the background equalities, observe that
(using a comparison of Z and Y to justify the third
equality)

B ¼
ðVsÞ½;�rðp�1Þ��sU

0
2sU1s�

�1
s V0

s

ðVsÞ½;�r�V
0
s

 !

¼
ðVsÞ½;�rðp�1Þ��sU

0
2sU1s�

�1
s V0

s

ðVsÞ½;�r��sU
0
1sU1s�

�1
s V0

s

 !

¼
ðVsÞ½;�rðp�1Þ��sU

0
2sU1s�

�1
s V0

s

ðVsÞrðp�1Þ�sU
0
2sU1s�

�1
s V0

s

 !

¼ Vs�sU
0
2sU1s�

�1
s V0

s

where ðVsÞrðp�1Þ is the matrix consisting of the last
rðp� 1Þ rows of Vs. Therefore

~��1V0BV~� ¼ ~��1V0Vs�sU
0
2sU1s�

�1
s V0

sV
~�

¼~��1 Is

0

� �
�sU

0
2sU1s�

�1
s ðIs; 0Þ~�

¼ ��1
s �sU

0
2sU1s�

�1
s �s 0

0 0

� �

¼ U0
2sU1s 0

0 0

� �
ð59Þ

and

~��1V0 ~VV~�

¼ ��1
s 0

0 Irp�s

 !
V 0 ~VV

�s 0

0 Irp�s

� �

¼ ��1
s 0

0 Irp�s

 !
V0 0

ðVxÞ½;�r�V
0
x

 !
V

�s 0

0 Irp�s

� �

¼ ��1
s 0

0 Irp�s

 !
V0 0

ðVxÞ½;�r�

 !
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�V

V0
xV

�s 0

0 Irp�s

� �

¼ ��1
s V0

s
�V

V0
x
�V

 !
ð0; Irp�sÞ

¼ 0 ��1
s V0

s
�V

0 V0
x
�V

 !

ð60Þ

5. Changing from Non-coprime Fractional

Descriptions to Coprime Fractional

Descriptions

In this section, we postulate that we have solved the
Yule–Walker equations to determine a polynomial
eðzÞ ¼ I� e1z� e2z

2 � � � � � epz
p, ep 6¼ 0 and we have

a matrix f for which ff0 ¼ ��. However, the pair
ðeðzÞ; fÞ may not be left coprime; we shall show how
one can obtain a left coprime pair ð~eðzÞ; ~fÞ generating
almost the same spectrum; moreover, and this is the
key point, in this if it occurs, coprime pair, ~eð0Þ ¼
I; ~eðzÞ has maximum degree p, and ~f is constant. The
determinantal zeros of ~eðzÞ are always a subset of
those of eðzÞ; so if the noncoprime pair defines a stable
AR system, the coprime pair will also define a stable
system.

5.1. A Preliminary Transformation

Let T be an orthogonal matrix such that

Tf ¼ �f
0

� �
ð61Þ

where �f is square and nonsingular. Define ~f ¼ Tf.
Define also

TeðzÞT0 ¼ �eðzÞ ¼ �e1ðzÞ
�e2ðzÞ

� �
ð62Þ

Observe that �eð0Þ ¼ I and �eðzÞ has degree p. Of course,
eðzÞ and �eðzÞ have the same determinant. Observe
further that

e�1ðzÞf ¼ T0�e�1ðzÞ~f ð63Þ
We shall now work with �e�1ðzÞ~f without any signi-
ficant loss of generality.

5.2. Identifying the Consequences of Lack of

Coprimeness

It is trivial that the pair ðeðzÞ; fÞ is not coprime if and
only if the same is true of ð�eðzÞ; ~fÞ. Because

ð�eðzÞ ~fÞ ¼ �e1ðzÞ �f
�e2ðzÞ 0

� �
ð64Þ

and because �f is square and nonsingular, it is evident
that �eðzÞ; ~f is not coprime if and only if for some
z0 6¼ 0, the matrix �e2ðz0Þ has less than full (row) rank.
(That z0 6¼ 0 follows from the fact that �e2ð0Þ includes
the identity as a submatrix). Equivalently, there

12 M. Deistler et al.



exists a square non-unimodular DðzÞ with Dð0Þ
nonsingular and a matrix ~e2ðzÞ with full rank for all z
such that

�e2ðzÞ ¼ DðzÞ~e2ðzÞ ð65Þ
Without loss of generality, we can suppose that ~e2ðzÞ is
row proper. For if not, it can be multiplied on the left
by a unimodular matrix to produce this property, and
then the inverse of the unimodular matrix can be
incorporated into DðzÞ. We now aim to look at the
degree of ~e2ðzÞ and at ~e2ð0Þ.

Lemma 4: The above construction results in ~e2ðzÞ
having degree at most p

Proof:Denote the i-th row of �e2ðzÞ by e2iðzÞ, and the ij
element of DðzÞ by dijðzÞ. Let the i-th row degree of
~e2ðzÞ be ki. Then by the predictable degree property
([17], p. 387, attributed to [16] and [26]), there holds

deg e2iðzÞ ¼ max
j

ðdeg dijðzÞ þ kjÞ ð66Þ

In this equation as is usual the degree of a zero element
is set equal to �1. Let kmax be the largest of the kj.
Consider the corresponding column ofDðzÞ. Since this
column cannot contain all zero elements, it follows
that for some i, we have

deg e2iðzÞ � kmax ¼ deg ~e2ðzÞ ð67Þ
from which the claim is immediate by maximizing
over i.

Next, ifDð0Þ is not the identity matrix, replace DðzÞ
by DðzÞD�1ð0Þ and replace �e2ðzÞ by Dð0Þ~e2ðzÞ. This
will result in �e2ð0Þ ¼ ~e2ð0Þ.

5.3. The Coprime Fractional Description

Let us observe now that

�e�1ðzÞ~f ¼ �e1ðzÞ
�e2ðzÞ

� ��1 �f

0

 !

¼ �e1ðzÞ
DðzÞ~e2ðzÞ

� ��1 �f

0

 !

¼ �e1ðzÞ
~e2ðzÞ

� ��1 �f

0

 !
ð68Þ

By setting

~eðzÞ ¼ �e1ðzÞ
~e2ðzÞ

� �
ð69Þ

we have a left coprime fraction ~eðzÞ; ~f in which ~eðzÞ has
degree bounded by p and ~eð0Þ ¼ I, as required.

6. Conclusions

In this paper, we have focused on Generalized
Dynamic Factor Models and in particular with find-
ing models for the latent variables. These latent vari-
ables can be generated by dynamic or static factors.
The (minimal) static factors exhibit all the dynamics of
the latent variables. Because static factors have
smaller dimension than the latent variables and in
addition this dimension does not depend on the cross-
sectional dimension N it is more convenient to model
static factors than latent variables. The emphasis in
our paper is on AR models for the static factors. This
restriction is justified as the autoregressive case in our
setting is generic. A key advantage of parameter
estimation in ARmodels compared to ARMA or state
space models is that the estimates can be obtained by
solving linear equations, viz. the Yule–Walker equa-
tions. For the problem of interest, the AR model may
be singular and the Yule–Walker equations may have
no unique solution. However, even in the nonunique
case the minimal norm solution of the Yule–Walker
equations, both for population and sample covar-
iances, is shown to be stable. In the paper we proposed
an estimation algorithm. However we did not discuss
the estimation of the integer parameters q; r and s.
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