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Abstract

In this paper we present a new estimation procedure named MF-IVL

for VAR systems in the case of mixed-frequency data, where the data

maybe, e.g., stock or �ow data. The main idea of this new procedure is to

project the slow components on the present and past fast ones in order to

create instrumental variables. This procedure is shown to be generically

consistent. Our claim is that the procedure is fast and more accurate

when compared to the extended Yule-Walker procedure. A comparison of

these two procedures is given by simulation.
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1 Introduction

We propose a simple and fast algorithm for estimating the parameters in a

multivariate high-frequency VAR system from mixed-frequency data. The VAR

system is of the form

yt =

yft
yst

 = A1yt−1 + · · ·+Apyt−p + νt, t ∈ Z, (1.1)

where Ai ∈ Rn×n and the polynomial order p is given or estimated. Throughout

we assume the stability condition

det (a(z)) 6= 0 |z| ≤ 1, (1.2)

where a(z) = I − A1z − · · · − Apzp. Here z is used for the complex variable as

well as for the backward shift on the integers Z. We assume that (νt) is white

noise and we only consider the stable steady state solution yt = a(z)−1νt. The

innovation covariance matrix Σν = E
(
νtν

T
t

)
is assumed to be non-singular. The

VAR system (1.1) can be written in state space form as



yt

yt−1
...

yt−p+1


︸ ︷︷ ︸

xt+1

=



A1 · · · Ap−1 Ap

In

. . .

In 0


︸ ︷︷ ︸

A



yt−1

yt−2
...

yt−p


︸ ︷︷ ︸

xt

+



In

0

...

0


︸ ︷︷ ︸
B

νt, (1.3)

yt =

(
A1 · · · Ap

)
xt + νt. (1.4)

In this paper we consider the problem of estimating the parameters of the n-

dimensional high-frequency VAR model (1.1) using mixed-frequency data. We
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actually observe mixed-frequency data of the form

yft
wt

 , (1.5)

where

wt =

N∑
i=1

ciy
s
t−i+1, (1.6)

where ci ∈ R, 1 < N ∈ N and at least one ci 6= 0. Here the nf -dimensional,

say, fast component yft is observed at the highest (sampling) frequency t ∈ Z

and the ns-dimensional slow component wt is observed only for t ∈ NZ, i.e. for

every N -th time point. In this paper we assume that nf ≥ 1.

Generic identi�ability of the high-frequency parameters Ai, i = 1, . . . , p and Σν

has been shown in Anderson et al. (2016). Estimation procedures, in particular,

a procedure based on the extended Yule-Walker (XYW) equations (see Chen

and Zadrozny (1998)) and a procedure based on the Gaussian Likelihood as well

as an EM algorithm are discussed in Koelbl et al. (2016); Koelbl (2015). There

it is shown that the MLE as well as the EM estimator heavily depend on the

initial estimator used. The purpose of this paper is to describe an estimation

procedure which can be used both as an estimator on its own as well as an initial

estimator, because it is easy to calculate and outperforms the estimator based

on the XYW equations.

2 The Mixed-Frequency IVL Estimator

For the case of stock variables (i.e. c1 = 1, ci = 0, i = 2, . . . , N) the estimation

procedure proposed is as follows: The basic idea is to generate instrumental vari-

ables by projecting the slow components yst on the space generated by present
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and a su�cient number of lagged fast components yfj . To be more precise,

let, for a suitable chosen 1 ≤ k ≤ t, Hfk(t) = span
{
yfj : t− k ≤ j ≤ t

}
be the

Hilbert space spanned by the one-dimensional components of the yfj in the un-

derlying space of square integrable random variables L2 over (Ω,A,P) and let

xkt|t−1 denote the (componentwise) projection of the state xt onto Hfk(t − 1).

Projecting the state equation (1.3) onto Hfk(t), we obtain

xkt+1|t = Axkt|t−1 +
{
A
(
xkt|t − x

k
t|t−1

)
+ Bνkt|t

}
. (2.1)

In a �rst step we show that the matrix E
(
xkt|t−1

(
xkt|t−1

)T)
is generically non-

singular for k ≥ np−1: For k0 = np−1 and Y −t,k =

((
yft

)T
,
(
yft−1

)T
, . . . ,

(
yft−k

)T)T
it follows that Γff (k0) = E

(
Y −t,k0

(
Y −t,k0

)T)
> 0,

xk0t|t−1 = E
(
xt

(
Y −t−1,k0

)T)
︸ ︷︷ ︸

Z0

Γff (k0)
−1
Y −t−1,k0

and therefore generically

E
(
xk0t|t−1

(
xk0t|t−1

)T)
= Z0Γff (k0)

−1
ZT0 > 0 (2.2)

since Z0 has generically full row rank (see Anderson et al. (2016)).

This implies that

A =

(
Exkt+1|t

(
xkt|t−1

)T)(
Exkt|t−1

(
xkt|t−1

)T)−1
(2.3)
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since xkt|t−1 is uncorrelated with
(
xkt|t − x

k
t|t−1

)
and νkt|t. Note that, for k ≥ p−1,

xkt|t−1 =



yft−1

PHf
k(t−1)

(
yst−1

)
...

yft−p

PHf
k(t−1)

(
yst−p

)


.

In the next step the instruments x̂kt+1|t are obtained by using the coe�cient

of the regression, e.g. yst on yft , . . . , y
f
t−k in order to approximate yst , and the

coe�cient of the regression yst on y
f
t+1, . . . , y

f
t−k+1 in order to approximate yst−1

for t ∈ NZ. Using this instrumental variables, we estimate A according to

(2.3). From what was said above, under suitable conditions guaranteeing con-

sistent estimation of the respective population second moments by their sample

counterparts, the estimator of the system parameters A1, . . . , Ap can easily be

shown to be consistent (see e.g. Hannan (1970); Koelbl (2015)). As shown in

Anderson et al. (2016), the innovation covariance matrix Σν can be generically

consistently estimated according to the following formula

vec (Σν) =
(

(G ⊗ G)
(
I(np)2 − (A⊗A)

)−1
(GT ⊗ GT )

)−1
vec (γ(0))

where G = (In, 0, . . . , 0), ⊗ denotes the Kronecker symbol and γ (j) = E
(
yty

T
t−j
)
.

Of course the choice of k is important for estimating the system parameters.

Our approach is to regress yst on yft , . . . , y
f
t−k and to determine the maximum

lag k by using AIC. Note that the structure of the matrix A, as far as the a

priori zeros and ones are concerned, is not preserved by the estimation procedure

described.

Note that the estimator (denoted by MF-IVL estimator) described above does
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not necessarily give a stable AR system, nor a positive de�nite innovation co-

variance matrix. Projecting a symmetric matrix on the space of positive de�nite

matrices is in a certain sense a standard procedure (see Higham (1989); Koelbl

(2015)). Projecting unstable system parameters on the space of stable ones is

described in Koelbl (2015) and, for the univariate case, in Orbandexivry et al.

(2013).

For the case of the more general observation scheme (1.6), we proceed as follows:

Let

zt =

N∑
i=1

ciyt−i+1 =

∑N
i=1 ciy

f
t−i+1

wt

 . (2.4)

From (1.3) we obtain



zt

zt−1
...

zt−p+1


︸ ︷︷ ︸

ft+1

= A



zt−1

zt−2
...

zt−p


︸ ︷︷ ︸

ft

+B

(
N∑
i=1

ciνt−i+1

)
. (2.5)

Let fkt+1|t denote the projection of ft+1 on the space Hfk (t). Projecting both

sides of (2.5) on the space Hfk (t) we get in an obvious notation

fkt+1|t = Afkt|t−N +

{
A
(
fkt|t − f

k
t|t−N

)
+ B

(
N∑
i=1

ciνt−i+1|t

)}
. (2.6)

Post-multiplying (2.6) by
(
fkt|t−N

)T
and taking the expectations we obtain

E
(
fkt+1|t

(
fkt|t−N

)T)
= AE

(
fkt|t−N

(
fkt|t−N

)T)
. (2.7)

Again, identi�ability of the system parameters can been shown if we show that
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the matrix E
(
fkt|t−N

(
fkt|t−N

)T)
is non-singular. This is proved as follows: For

k0 = np− 1 it follows that

fk0t|t−N = E
(
ft

(
Y −t−N,k0

)T)
︸ ︷︷ ︸

Zg

0

Γff (k0)
−1
Y −t−N,k0

since Γff (k0) is again positive de�nite. Therefore it follows that E
(
fkt|t−N

(
fkt|t−N

)T)
=

Zg

0Γff (k0)
−1

(Zg

0 )
T
is generically non-singular since Zg

0 has generically full row

rank (see Koelbl (2015)). Using (2.7), a consistent estimation procedure is ob-

tained analogously to the stock case described above. The innovation covariance

matrix Σν can be estimated as in Koelbl et al. (2016).

3 Simulations

In this section we present a simulation study comparing the accuracy of IVL

with the accuracy of XYW estimator and comparing these procedures as initial

estimators for the EM algorithm. We consider the following data generating

processes corresponding to the following two models:

Example 1. Model 1 (which was also presented in Koelbl et al. (2016)) is of

the form:

yt =

−1.2141 1.1514

−0.9419 0.8101

 yt−1 + νt, (3.1)

and Model 2 is of the form:

yt =


1.5284 0.2727 1.0181

1.6881 −1.5235 −1.1424

−0.6785 1.0936 1.2108

 yt−1 +


−0.8089 0.4224 0.1477

−0.4461 −0.9209 −0.3154

−0.0496 0.6999 −0.0982

 yt−2 + νt.

(3.2)

In both cases the innovations are standard normally distributed, i.e. νt ∼

N (0, Ii), i = 2, 3.
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Model 1 Model 2
Estimators Absolute Relative Absolute Relative

HF YW 0.002 1 0.017 1

MF

XYW 0.315 133.67 0.721 43.52
IVL 0.056 23.53 0.075 4.55

EM-XYW 0.006 2.38 0.066 3.99
EM-IVL 0.004 1.74 0.027 1.64

Table 1: Absolute and relative mean squared errors of the system parameters

The simulation study reports the mean squared errors

MSE
(
θ̂
)

=
1

m

m∑
j=1

n2p∑
i=1

(
θi − θ̂ji

)2

for the parameters θ = vec (A1) and θ = vec (A1, A2), respectively. The sample

size is T = 500 and we performed m = 103 simulation runs. Only the case of

stock variables has been considered. We put N = 2 and ns = 1. The follow-

ing estimation procedures has been compared in this study: The Yule-Walker

estimator obtained from high-frequency data, denoted by HF-YW. This estima-

tor serves as an overall benchmark and therefore also the mean squared errors

relative to the mean squared errors of the HF-YW estimators are presented.

By MF-XYW we denote the mixed-frequency XYW estimator, by MF-IVL the

mixed-frequency estimator introduced in the paper. By MF-EM-XYW we de-

note the mixed-frequency EM algorithm initialized with the XYW estimator and

MF-EM-IVL the mixed-frequency EM algorithm initialized with the MF-IVL

estimator, respectively. Table 1 summarizes the results.

Note that for the two models MF-IVL outperforms MF-XYW as far as the

overall mean squared errors are concerned. This also holds for the estimators

for the individual system- as well as for the corresponding estimates of the noise

parameters. When used as initial estimators, again, MF-IVL outperforms MF-

XYW. In addition, the number of iterations for the EM algorithm decreases for
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both models when initialized with the MF-IVL instead of the MF-XYW.

4 Conclusions

This paper proposes a new estimation procedure in the framework of VAR

models and mixed-frequency data. The procedure is obtained by creating in-

strumental variables by projecting the slow variables on present and past fast

ones. We show generic consistency of the system parameters for stock and �ow

variables. Simulations are presented to compare the properties of our proce-

dure compared to the XYW estimator. Both procedures are less accurate when

compared to the MLE, our procedure however outperforms the XYW estimator.
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