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1. Introduction1

In many areas of application, several single time series are2

available and information exceeding the univariate information in3

every single time series is of interest. The main reasons for joint4

modeling of multivariate time series are:5

1. The analysis of dynamic relations between time series.6

2. Improvement of forecasts and nowcasts.7

3. Extraction of factors common to all time series.8

Here we restrict ourselves to multivariate AR and ARMA systems9

and to the stationary case. Whereas the standard (regular) AR case10

is well understood nowadays (see e.g. Lütkepohl (2005)) and this is11

also more or less true for the standard ARMA case (Reinsel (1993);12

Lütkepohl (2005); Hannan and Deistler (2012)), there are certain13

important aspects, in particular for applications in economics and14

finance,which still need further clarification. Herewe consider two15

of these aspects:16

1. Singular AR and ARMA systems, i.e. systems where the output17

spectrum is singular. Such systems occur in dynamic stochastic18

∗ Corresponding author at: Institute of Statistics and Mathematical Methods in
Economics, Vienna University of Technology, Vienna, Austria.

E-mail addresses: brian.anderson@anu.edu.au (B.D.O. Anderson),
deistler@tuwien.ac.at (M. Deistler), elisabeth.felsenstein@tuwien.ac.at
(E. Felsenstein), lukas.koelbl@tuwien.ac.at (L. Koelbl).

general equilibrium (DSGE)models,when the number of shocks 19

is strictly smaller than the number of outputs (see e.g. Komunjer 20

and Ng (2011a,b)), in generalized dynamic factor models, as 21

models for the latent variables or the static factors (see e.g. Forni 22

et al. (2009)), when the dimension of the dynamic factors 23

is strictly smaller than the dimension of the static factors, 24

or simply in the presence of definition equations. Alternative 25

forms of singularity have been discussed in Solo (2008). 26

2. Modeling a ‘‘high frequency’’ system from mixed frequency 27

data. This problem occurs, for instance, in economic applica- 28

tions where, e.g., financial data are observed more frequently 29

than data related to real economy. The AR case has been treated 30

in e.g. Anderson et al. (2015) and here we extend our results to 31

the ARMA case. 32

The emphasis of this paper is on structure theory related to the two 33

issues listed above. Here we use the term structure theory for the 34

analysis of the relation between model (i.e. system and noise) pa- 35

rameters of classes of AR and ARMA systems and the correspond- 36

ing (population) secondmoments of the observations. A particular 37

part of structure theory is concerned with identifiability. Structure 38

theory is important for subsequent estimation. 39

We consider multivariate ARMA systems of the form 40

yt + A1yt−1 + · · · + Apyt−p 41

= B0νt + B1νt−1 + · · · + Bsνt−s, t ∈ Z (1.1) 42

http://dx.doi.org/10.1016/j.jeconom.2016.02.004
0304-4076/© 2016 Published by Elsevier B.V.
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where p and s are specified integers, Ai, Bi ∈ Rn×n and (νt |t ∈ Z) is1

white noise with Σ = E

νtν

T
t


. Let2

a(z) = In + A1z + · · · + Apzp3

b(z) = B0 + B1z + · · · + Bszs,4

where z is used for a complex variable as well as for the backward5

shift on Z.6

Throughout we impose the stability condition7

det a(z) ≠ 0, |z| ≤ 1 (1.2)8

and the miniphase condition9

det b(z) ≠ 0, |z| < 1. (1.3)10

The steady state solution of (1.1) is stationary and given by11

yt = a−1(z)b(z)νt =

∞
j=0

Kjνt−j = k(z)νt , (1.4)12

say, and this is the only solution we consider.13

Let rank (Σ) = q. We say that an ARMA (AR, i.e. s = 0) system14

is regular if q = n holds and singular if q < n. Throughout we15

assume that q is also specified. The spectral density of (yt), which16

is defined on z ∈ C rather than on the frequency band [−π, π ], is17

of the form18

fy(z) =
1
2π

a−1(z)b(z)Σb(z−1)Ta−1(z−1)T . (1.5)19

For given spectral density fy, a transfer function having no poles20

inside or on the unit circle and no zeros inside is obtained by21

spectral factorization (see Rozanov (1967);Hannan (1971)). For the22

regular case such a transfer function is unique if we assume that23

B0 = In. In the singular case we write the system (1.1) as24

yt + A1yt−1 + · · · + Apyt−p = b0εt + · · · + bsεt−s, (1.6)25

where bj ∈ Rn×q and (εt |t ∈ Z) is white noise with E

εtε

T
t


= Iq.26

Let b̃(z) =
s

j=0 bjz
j, then27

b(z)Σb(z−1)T = b̃(z)b̃(z−1)T . (1.7)28

The matrix b̃(z) can be written in Smith McMillan form b̃(z) =29

u(z)Λ(z)v(z) (see e.g. Hannan andDeistler (2012)),whereu(z) and30

v(z) are unimodular polynomial matrices, the top q × q block of31

Λ(z) is diagonal and all other entries are zero. For general rational32

matrices Λ(z) is rational, whereas in our case, because b(z) is33

polynomial, Λ(z) is polynomial too.34

We replace assumption (1.3) by the assumption that b̃(z) has35

no zeros inside the unit circle, i.e. the non-zero entries in Λ(z)36

have no zeros inside the unit circle. The transfer function k̃(z) =37

a−1(z)b̃(z), which is a causal and miniphase spectral factor for38

a given spectral density fy, is unique up to
∧
postmultiplication by39

constant orthogonal matrices.40

The paper
∧
consists of two main parts: In the first part, i.e. in41

Sections 2 and 3,we analyze the structure of singular AR andARMA42

systems respectively. In the second part, i.e. in Section 4, we deal43

with identifiability of the parameters of a high frequency ARMA44

system from mixed frequency data.45

2. Singular AR systems46

In this section we present a structure theory for singular AR47

systems. Many results described here are scattered in recent48

papers by some of the authors and their coauthors of this paper49

(Chen et al. (2011); Deistler et al. (2010, 2011); Anderson et al.50

(2012a)) and in two theses (Filler (2010); Felsenstein (2014)).51

A singular AR system can be written as 52

yt = −A1yt−1 − · · · − Apyt−p + bεt , (2.1) 53

where Aj ∈ Rn×n are such that a(z) fulfills the stability assumption 54

(1.2), b ∈ Rn×q, q < n,E

εtε

T
t


= Iq andΣ = bbT . Then b is unique 55

up to postmultiplication by orthogonal matrices. 56

The parameter space of the AR system (2.1) is the set 57

ΘAR =


A1, . . . , Ap

| det a(z) ≠ 0, |z| ≤ 1


58

× {b | rank (b) = q} . (2.2) 59

The solution of (2.1) is of the form 60

yt = a−1(z)bεt = k̃(z)εt (2.3) 61

and the spectral density of (yt), written as a function of z ∈ C, is of 62

the form 63

fy(z) =
1
2π

a−1(z)bbTa−1(z−1)T . (2.4) 64

Clearly, fy is singular (as a rational matrix), and 65

γ (0) = E

ytyTt


=


[−π,π ]

fy(e−iλ)dλ 66

may be non-singular or singular. The case where γ (0) is singular, 67

say of rank r , q ≤ r < n, may be treated as follows (see e.g. Deistler 68

et al. (2010)): Let 69

γ (0) = LLT , 70

where L ∈ Rn×r is unique up to orthogonal postmultiplication. 71

Then we have 72

yt = Lzt , (2.5) 73

where 74

zt =

LT L
−1

LTyt = L−yt 75

satisfies 76

E

ztzTt


= Ir > 0. 77

Note that, when γ (0) is singular, we can always obtain a process 78

with a non-singular variance matrix after a linear static transfor- 79

mation and, consequently, we restrict ourselves to this case of non- 80

singular γ (0) from now onwards. Finally, if it
∧
was the case that yt 81

are latent variables in a factor model, then zt in (2.5) are minimal 82

static factors. In thisway thedimensionality of the parameter space 83

is reduced. 84

2.1. Identifiability and classes of observational equivalence 85

If we commence from the spectral density (2.4), the transfer 86

function (2.3) is a stable and miniphase spectral factor and is 87

unique up to
∧
postmultiplication by (constant) orthogonal matrices 88

under our assumptions. Note that (2.3) is theWold decomposition: 89

Using the Smith McMillan form 90

k̃(z) = u(z)Λ(z)v(z), 91

we can define a causal left inverse for k̃(z) as 92

k̃(z)− = v(z)−1 Λ(z)TΛ(z)
−1

Λ(z)Tu(z)−1. (2.6) 93

Because k̃(z) has no zeros, k̃(z)− has no poles and therefore k̃(z)− 94

is polynomial. 95

The Yule Walker equations 96

(γ (1), . . . , γ (p)) =

−A1, . . . ,−Ap


Γp (2.7) 97

and 98

bbT = γ (0) +

A1, . . . , Ap


(γ (1), . . . , γ (p))T , (2.8) 99
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where1

Γm =


γ (0) γ (1) · · · γ (m − 1)

γ (−1) γ (0)
...

. . .

γ (−m + 1) γ (0)

 , m = 1, 2, . . .2

describe the relation between the (population) second moments3

of (yt) and the AR parameters

A1, . . . , Ap, b


. Note that every4

solution of (2.7) extends the covariances γ (0), . . . , γ (p) in a5

unique way to the covariance sequence γ (j), j ≥ 0 as6

γ (p + h) =

−A1, . . . ,−Ap

γ (p + h − 1)
...

γ (h)

 , h > 07

holds.8

Also note that in the case of singular AR systems Γp+1 is9

singular andΓp might be singular.WhenΓp is singular, the solution10

set of (2.7) corresponds to an affine subset for every row of11 
−A1, . . . ,−Ap


corresponding to the shifted kernel of Γp. The12

structure of this set and selecting a unique representative of it13

are discussed in Deistler et al. (2010); Chen et al. (2011); Deistler14

et al. (2011). Identifiability analysis for singular AR systems is15

more involved compared to the regular case and resembles more16

the ARMA case than to the regular AR case, because a non-17

trivial common factor problem arises. Note that (a(z), b) is not18

necessarily left coprime. We have the following result:19

Theorem 1. 1. Let k̃(z) = a−1(z)b, where the pair (a(z), b)20

satisfiesdet a(z) ≠ 0, |z| ≤ 1, rank (b) = q and is not necessarily21

left coprime. Then there exists a left coprime pair

ā(z), b̄


22

satisfying the stability and the rank condition rank

b̄


= q, where23

in particular ā(z) has degree at most p, such that k̃(z) = ā−1(z)b̄.24

2. For given left coprime (a(z), b) ∈ ΘAR, such that k̃(z) = a−1(z)b,25

the class of observationally equivalent AR systems in ΘAR is given26

by27

p(z) (a(z), bO) ,28

where O is an arbitrary constant orthogonal q× q matrix and p(z)29

is an arbitrary non-singular n × n polynomial matrix satisfying30

det p(z) ≠ 0, |z| ≤ 1,31
32

p(0) = In,33
34

δ (p(z)a(z)) ≤ p35

and36

δ (p(z)b) = 0,37

where δ(a(z)) denotes the degree of the polynomial matrix a(z).38

3. The following statements are equivalent39

(a) The system parameters

A1, . . . , Ap


are identifiable and the40

noise parameters b are identifiable up to a constant orthogonal41

matrix O, i.e. the parameter set ΘAR contains no observation-42

ally equivalent systems except for (a(z), bO).43

(b) Γp is non-singular.44

(c) (a (z) , b) is left coprime and rank

Ap, b


= n holds.45

Proof. For 1. see Anderson et al. (2012a, Theorem 1).46

The proof of 2. is straightforward: According to Hannan and47

Deistler (2012, Theorem 2.2.1) every pair (ā, b̄) observationally48

equivalent to a left coprime pair (a, b) is related to (a, b) by left49

multiplication of polynomial matrix p(z). Clearly, from the second50

moments of (yt), we are only able to determine bbT and thus51

b is only identifiable up to a constant orthogonal matrix O. The52

condition det p(z) ≠ 0, |z| ≤ 1, has to be fulfilled in order53

to retain the stability of p(z)a(z). The normalization p(0) = I 54

guarantees p(0)a(0) = I . The degree restrictions δ (p(z)a(z)) ≤ p 55

and δ (p(z)b) = 0 have to be made to assure that p(z) (a(z), bO) ∈ 56

ΘAR. 57

Lastly, we prove 3. Obviously, (a)⇔(b) since (2.7) and (2.8) do 58

have a unique solution if and only if Γp > 0. The fact that (a)⇔(c) 59

has already been shown in Hannan (1971). � 60

2.2. A state space representation for AR systems 61

The AR system (2.1) can be written as a state space system of 62

the form 63
yt

yt−1
...

yt−p+1


  

xt+1

=


−A1 · · · −Ap−1 −Ap
In

. . .

In 0


  

A


yt−1
yt−2

...
yt−p


  

xt

64

+


b
0
...
0


  

B

εt (2.9) 65

yt = (−A1 · · · −Ap)  
C

xt + b
D

εt . (2.10) 66

In this particular form, the state consists of past outputs. It is easy to 67

see that the following (discrete time) Lyapunov equation is fulfilled 68

Γp = AΓpA
T

+ BBT , (2.11) 69

where Γp = E

xtxTt


. Because of the stability assumption 70

det a(z) ≠ 0, |z| ≤ 1, the unique solution of (2.11) is 71

Γp =

∞
j=0

AjBBT AjT . 72

Theorem 2. The state space system is minimal if and only if Γp > 0 73

and rank

Ap


= n hold. 74

Proof. Obviously, 75

Γp =

B AB A2B · · ·




BT

BTAT

BT A2T
...

 76

holds and thus using the Cayley–Hamilton Theorem we see that 77

Γp > 0 if and only if (A, B) is controllable. If rank

Ap


= n holds, 78

A is non-singular and a right eigenvector c =

cT1 · · · cTp

T
≠ 0 79

of A, ci ∈ Rn, corresponding to an eigenvalue λ ≠ 0 has to fulfill 80

−

p
i=1

Aici = λc1 81

c1 = λc2 82

... 83

cp−1 = λcp 84

see e.g. Anderson et al. (2012b, Lemma 2). Thus c1 ≠ 0 and 85

obviously c is not in the right kernel of

In 0 · · · 0


A and 86

thus (C, A) is observable. Conversely, if Ap is singular, there exists 87

an eigenvector c =

0 · · · 0 cTp

T
of A corresponding to the 88

eigenvalue λ = 0 which is obviously in the right kernel of C
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and thus (C, A) is not observable. As minimality is equivalent to1

controllability and observability, the theorem holds. �2

Remark 1. It should be noted that in some cases a minimal state3

cannot be constructed from past outputs, with each entry of4

the state vector corresponding to past outputs, as the following5

example shows (see Filler (2010); Deistler et al. (2011)): Let6

yt =


y1,t
y2,t


=


1
4

1
6

1
3

1
5

 yt−1 +


1
8

1
8

1
8

1
8

 yt−2 + νt7

be a regular stable AR(2) process (E

νtν

T
t


= I2) which can be

represented as

xt+1 = Axt + Bεt (2.12)
yt = Cxt + Dεt , (2.13)

where8

A =


1
4

1
6

1
8

1
8

1
3

1
5

1
8

1
8

1 0 0 0
0 1 0 0

 , B =

I2
0
0


,9

C =


1
4

1
6

1
8

1
8

1
3

1
5

1
8

1
8

 , D = I210

and11

xt =


yt−1
yt−2


.12

A minimal system would be13

Ā =


1
4

1
6

1
8

1
3

1
5

1
8

1 0 0

 , B̄ =


I2
0


,14

C̄ =


1
4

1
6

1
8

1
3

1
5

1
8

 , D̄ = I215

and16

x̄t =

 y1,t−1
y2,t−1

y1,t−2 + y2,t−2


.17

This state vector is constructed from past outputs, but does not18

have each entry corresponding to past outputs.19

3. Singular ARMA systems20

3.1. The genericity of singular AR systems21

The parameter space of the ARMA system (1.6) is the set22

ΘARMA =

 
A1, . . . , Ap, b0, . . . , bs


| det a(z) ≠ 0, |z| ≤ 1,23

rank

b̃(z)


= q, |z| < 1


, (3.1)24

where again b̃(z) =
s

j=0 bjz
j is the factorization in (1.7). Assume25

that b̃(z) has rank q < n for all z ∈ C. This is not an unreasonable26

assumption, in fact we show below that it is generically satisfied. 27

Note that a subset of ΘARMA is called generic if it contains an open 28

and dense subset. Let 29

b̃(z) = u(z)Λ(z)v(z) 30

denote the SmithMcMillan form of b̃(z). Since b̃(z) is a polynomial 31

matrix, so is Λ(z) and since b̃(z) has rank q for all z ∈ C, Λ(z) is of 32

the form 33

Λ =


Iq
0


. 34

Now b̃(z) can be extended to a square matrix b(z) as 35

b(z) = u(z)In


v(z) 0
0 In−q


36

which is clearly unimodular. Writing (1.6) as 37

a(z)yt = b(z)


εt
0


, 38

we obtain 39

b−1(z)a(z)yt =


εt
0


=


Iq
0


εt (3.2) 40

and (3.2) is a singular AR system as b−1(z) is unimodular (and thus 41

polynomial). 42

Conversely, if

a(z), b̃(z)


are left coprime and if b̃(z) has zeros, 43

then there is no pseudoinverse of b̃(z) which is polynomial and 44

thus there exists no AR system generating (yt). 45

Wewill identify

a (z) , b̃ (z)


with the corresponding element 46

in ΘARMA. Whereas for regular ARMA systems, for s ≥ 1, systems 47

that can be transformed to AR systems form a small subset, for the 48

singular case we have: 49

Theorem 3. Let q < n. For every s, the polynomial matrix b̃(z) cor- 50

responding to (b0, . . . , bs) ∈

(b0, . . . , bs) |bi ∈ Rn×q


, generically 51

has no zeros. 52

Proof. First consider the top q×q submatrix of b̃(z), b̃q(z) say. We 53

will show that generically the zeros of det b̃q(z) are simple and thus 54

the associated kernels of b̃q (z) are one dimensional. 55

Weuse the result that a non-zero scalar function f : Rq2(s+1)
→ 56

R which is polynomial in vec

bq0, . . . , b

q
s


∈ Rq2(s+1) is generically 57

nonzero, see e.g. Bochnak et al. (1998). We apply this result to the 58

determinant of the Sylvester matrix of det b̃q(z) and its derivative, 59

see Kailath (1980). The entries not restricted to zero of this 60

Sylvester matrix are the coefficients of det b̃q(z) and its derivative 61

and thus the determinant of this Sylvester matrix is a polynomial 62

function in the coefficients of det b̃q(z) and its derivative. Clearly, 63

a zero of det b̃q(z) has multiplicity larger than one if and only if it 64

is also a zero of the derivative of det b̃q(z) and thus is a zero of the 65

determinant of this Sylvester matrix. The proof is completed if we 66

can find one b̃q(z) such that the determinant of the Sylvestermatrix 67

is nonzero. Such an example can easily be found if we consider a 68

diagonal polynomial matrix b̃q(z)with bqs non-singular. In this case 69

det b̃q(z) =
q

i=1 b̃ii(z) andwe can easily find a suitable b̃q(z). Thus 70

we have shown that generically the zeros z1, . . . , zsq of det b̃q(z) 71

are simple and the corresponding kernels are one dimensional. 72

If we consider the (q+1)th row of b̃(zi), we see that generically 73

this row will not be orthogonal to the kernel of b̃q(zi). This will 74

hold for all zi, i = 1, . . . , sq, and since the intersection of a finite 75

number of generic sets is again generic this concludes the proof. 76

This proof is analogous to the proof given in Felsenstein (2014) for 77

state space systems. � 78
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A similar result has been derived in Anderson and Deistler (2008);1

Filler (2010). Let2

ΘARMA, LC3

=


(A1, . . . , bs) ∈ ΘARMA,


a(z), b̃(z)


is left coprime


. (3.3)4

Corollary 1. Generically in ΘARMA, LC , the corresponding process (yt)5

has an (singular) AR representation of the form (3.2).6

Proof. Now, with the same argument as in the proof of Theorem 3,7

an arbitrary

a (z) , b̃ (z)


∈ ΘARMA, not necessarily left coprime,8

can be shown to be generically of full rank n for all z ∈ C.9

This property is equivalent to

a (z) , b̃ (z)


being left coprime,10

see e.g. Hannan and Deistler (2012, Lemma 2.2.1). This proves the11

corollary. �12

3.2. Identifiability13

Analogously to the result derived in Hannan (1971) for the14

regular case we have:15

Theorem 4. The subset of ΘARMA, LC , where rank

Ap, bs


= n holds,16

is identifiable up to postmultiplication of b̃ (z) by arbitrary orthogonal17

matrices.18

From the results above it is clear that the set of all identifiable sys-19

tems (up to postmultiplication by arbitrary orthogonal matrices) is20

generic in ΘARMA.21

3.3. Kernel representation22

By our assumptions, the spectral density fy is singular (as a23

rationalmatrix) of rank q. Consider an arbitrary rational (n − q)×n24

matrix w (z) whose rows form a basis for the left kernel of fy.25

As w (z) is unique only up to premultiplication by non-singular26

rational matrices, w (z) can be chosen as polynomial and even left27

coprime. As is easily seen,28

w(z)fy(z) = 029

is equivalent to30

w(z)yt = 0.31

Since w (z) is left coprime there exists a (n − q) × (n − q)32

submatrix, w1 (z) say, which is non-singular in a neighborhood of33

z = 0 and thus has a causal (but not necessarily stable) inverse.34

After a conformal reordering of variables of yt we write35

yt =


y1,t
y2,t


36

and37

w(z) = (w1(z), w2(z)) .38

Since y1,t is stationary39

y1,t = −w1(z)−1w2(z)y2,t (3.4)40

defines an exact and causal relation between the output y1,t and41

the input y2,t . Note that, in general, such a selection of inputs and42

outputs may not be unique.43

4. g-identifiability of the parameters of a high frequency ARMA44

system frommixed frequency data45

Here we are concerned with a ‘‘high frequency’’ ARMA system46

of the form (1.1), together with the assumption (1.2), (1.3) and

B0 = In. For the sake of simplicity, we restrict ourselves to the 47

regular case, i.e. q = n; however, as will be seen below, the results 48

can easily be extended to the singular case. We call (1.1) the high 49

frequency system because it generates the outputs yt for every 50

t ∈ Z. Note that, under our assumptions, k(z) = a−1(z)b(z) and Σ 51

are uniquely determined from fy by spectral factorization. 52

Unless the contrary is stated explicitly, throughout in this paper 53

we will assume that the MA order s satisfies 54

s ≤ p. (4.1) 55

Clearly, this is a restriction of generality and it excludes, for 56

instance, MA systems (with s ≥ 1). The restriction is triggered 57

by the fact that our main results on identifiability from mixed 58

frequency data require this condition. As it is shown in Example 1, 59

even for a simple MA(1) system, generic identifiability cannot be 60

achieved. 61

The parameter space considered here is of the form 62

Θ =


A1, . . . , Ap, B1, . . . , Bp

| det a(z) ≠ 0, |z| ≤ 1, 63

det b(z) ≠ 0, |z| < 1}

Σ | Σ = ΣT , Σ > 0


. (4.2) 64

As far as identifiability of the parameters from the ‘‘high frequency 65

process’’ (yt | t ∈ Z) (i.e. all outputs can be observed) is concerned 66

(see e.g. Hannan (1971); Hannan and Deistler (2012)) the subset 67

ΘI =


A1, . . . , Bp, Σ


∈ Θ | rank

Ap


= n, 68

(a(z), b(z)) is left coprime} (4.3) 69

is identifiable. For the sake of simplicity we will restrict ourselves 70

to this setting. 71

Generalizations of the results in this paper to the case of 72

prescribed column or row degrees are straightforward. Note that 73

ΘI is an open and dense subset of Θ since rank

Ap


= n as well as 74

left coprimeness are open and dense properties, the latter is proved 75

in the proof of Corollary 1. 76

Identifiability of high frequency parameters in the AR case from 77

mixed frequency data is discussed in detail, both for the regular and 78

the singular case, in Anderson et al. (2015). In this contribution we 79

extend (some of) these results to the ARMA case. 80

As it is well known, (1.1) can be transformed into a state space 81

form and minimal state space systems are unique only up to basis 82

change. The assumption (4.1), rank

Ap


= n and (a(z), b(z)) 83

is left coprime imply that the dimension of a minimal state is 84

equal to np (compare Hannan and Deistler (2012), chapter 2). 85

Here we consider a unique state space representation of the form 86

(compare Kailath (1980); de Jong and Penzer (2004)) 87

xt+1 = Fxt + Gνt (4.4) 88

yt = Hxt + νt , (4.5) 89

where 90

F =


0 In 0 · · · 0
0 0 In · · · 0
...

. . .

0 0 0 0 In
−Ap −Ap−1 · · · −A1

 (4.6) 91

G =

K1
...
Kp

 , H =

In 0 · · · 0


. 92

Note that k(z) = H

Inp − Fz

−1 Gz + In and 93

a(z)k(z) = b(z) (4.7) 94
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implies1 
In 0 · · · 0
A1 In · · · 0
...

. . .

Ap Ap−1 · · · In




In
K1
...
Kp

 =


In
B1
...
Bp

 . (4.8)2

We consider the case where the data are stock variables. Let yt be3

partitioned as4

yt =


yft
yst


, (4.9)5

where the nf -dimensional high frequency vector yft is observed for6

every t ∈ Z and the ns-dimensional low frequency vector yst is7

observed only for t ∈ NZ (N being an integer larger than one).8

Throughout we assume that nf ≥ 1.9

The central problem considered in this section is identifiability,10

i.e. whether, for given ΘI , the parameters Ai, Bi and Σ of the high11

frequency system are uniquely determined by those population12

secondmomentswhich can be directly observed. These population13

second moments are of the form14

γ ff (h) = E

yft+h


yft
T

, h ∈ Z;15

γ sf (h) = E

yst+h


yft
T

, h ∈ Z;16

γ ss(h) = E

yst+h


yst
T

, h ∈ NZ. (4.10)17

As will be shown, generic identifiability can be obtained under our18

assumptions, i.e. on an open and dense subset of ΘI and thus of Θ .19

We call this g-identifiability.20

Example 1. We consider a regular MA(1) system, with n = 2,21

which can be written, using an obvious notation, as22 
yft
yst


=


ν
f
t

νs
t


+ B1


ν
f
t−1

νs
t−1


. (4.11)23

Before understanding the difficulties caused by lack of data, let24

us consider what happens when all covariances are available.25

Observing the MA equation, we see that there are apparently26

7 parameters, 4 for the matrix B1 and 3 for the matrix Σ . To27

understand how these relate to the spectrum, let us observe that28

this spectrum necessarily has the form29

fy(z) = γ (1)z + γ (0) + γ (1)T z−1. (4.12)30

It immediately follows that31

Σ + B1ΣBT
1 = γ (0), B1Σ = γ (1).32

One can regard the task of finding the MA model as one of solving33

these equations for the entries of B1, Σ given γ (0) and γ (1).34

There are in general a finite number of solutions, including one35

with the miniphase property, i.e. det b(z) ≠ 0 for |z| < 1.36

The other solutions have one or more determinantal zeros which37

are reflections through the boundary of the unit circle of the38

determinantal zeros of the minimum phase solution.39

Now in the mixed frequency case, further ambiguities arise.40

The second moments which can be directly obtained from the41

data comprise the following covariances for the case N = 2:42

γ (0), γ ff (1), γ sf (1) and γ fs(1). With the exception of γ ss(1),43

which corresponds to the (2, 2) entry of γ (1) and cannot be44

directly observed, all other covariances are zero because of the45

MA(1) structure. Now, as easily can be shown, γ ss(1) can be46

variedwithout violating the positive definiteness of the covariance47

sequence. The corresponding variation of the MA parameters (all48

satisfying the miniphase condition) shows that we have non-49

identifiability for every observed MA(1) covariance in this case.50

4.1. The relation between parameters and second moments of the 51

outputs. Yule Walker type equations 52

We start with the following lemma: 53

Lemma 1. The covariances γ (h) = E

yhyT0


are of the form 54

γ (h) = HF h−1 FPHT
+ GΣ


, h ≥ 1 (4.13) 55

γ (0) = HPHT
+ Σ, (4.14) 56

where P = E

xtxTt


. They are rational functions of the parameters 57

θ ∈ ΘI . 58

Proof. From (4.4) we obtain 59

P = FPF T
+ GΣGT (4.15) 60

and by columnwise vectorizing this equation we get 61

vec (P) =

I(np)2 − F ⊗ F

−1 vec

GΣGT  , 62

compare Anderson et al. (2015). This shows that P is a rational 63

function of θ . 64

Now, for h ≥ 1, it follows that 65

γ (h) = E

yhyT0


= E


(Hxh + νh) (Hx0 + ν0)

T 
66

= E


H


F hx0 +

h−1
i=0

F h−1−iGνi


(Hx0 + ν0)

T


67

= HF hPHT
+ HF h−1GΣ 68

and γ (0) = HPHT
+ Σ . Thus it is easy to conclude that γ (h) is 69

rational. � 70

We now consider the relation between the ARMA parameters and 71

the population secondmoments of the output process (i.e. not only 72

those second moments which can be observed). Postmultiplying 73

(1.1) by yTt−p−j, j > 0, we obtain the following Yule Walker type 74

equations for the AR parameters 75

(γ (p + 1), γ (p + 2), . . .) 76

=

−A1, . . . ,−Ap


γ (p) γ (p + 1) . . .

γ (p − 1) γ (p) . . .
...

...
γ (1) γ (2) . . .


  

Γp,∞

. (4.16) 77

Now, using the results in Hannan and Deistler (2012, chapter 2), 78

the matrix Γp,∞ can be shown to have rank np for all θ ∈ ΘI : From 79

Theorem 2.4.1 in Hannan and Deistler (2012) the dimension of the 80

minimal state in (4.4), (4.5) which is np is equal to the rank of the 81

infinite dimensional Hankel matrix 82

Hk
∞,∞ =

K1 K2 K3 · · ·

K2 K3 K4 · · ·

...
...

...
. . .

 83

of the transfer function. As is easily shown the rank of Hk
∞,∞ is 84

equal to the rank of 85

Γ∞,∞ =

γ (1) γ (2) . . .
γ (2) γ (3) . . .

...
...

. . .

 . 86

From (4.16) it is immediate that rank

Γp,∞


= npmust hold. From 87

the Hankel structure we have rank

Γp,∞


= rank


Γp,np


, where 88
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Γp,np consists of the first np block columns of Γp,∞. Thus we have1

from (4.16)2 
−A1, . . . ,−Ap


3

= (γ (p + 1) , . . . , γ (p(n + 1))) Γ T
p,np


Γp,npΓ

T
p,np

−1
. (4.17)4

Thus for all θ ∈ ΘI ,

A1, . . . , Ap


is uniquely determined from the5

second moments of the outputs (yt | t ∈ Z). Then

B1, . . . , Bp


, as6

well as Σ are uniquely obtained from the spectral factorization of7

fb(z) = a(z)fy(z)a(z−1)T , (4.18)8

see e.g. Rozanov (1967); Hannan (1970).9

4.2. The relation between the high frequency parameters and the10

second moments of the observed outputs11

Here we commence from the second moments of the observed12

outputs, see (4.10). For the AR case, i.e. when s = 0 holds in (1.1),13

we have (see Chen and Zadrozny (1998), Anderson et al. (2015))14

E

yt

(yft−1)

T , . . . , (yft−np)
T


15

=

−Ap, . . . ,−A1


E


yt−p

...

yt−1

(yft−1)
T , . . . , (yft−np)

T


  
ZAR

, (4.19)16

where ZAR ∈ Rnp×npnf . It is shown in Anderson et al. (2015) that17

ZAR has generically (i.e. on a set containing a subset that is open18

and dense) in the

A1, . . . , Ap, Σ


parameters rank equal to np. In19

the same way the extended Yule Walker equations for our ARMA20

case can be written as21

E

yt

(yft−p−1)

T , (yft−p−2)
T , . . . , (yft−p(n+1))

T


22

=

−Ap, . . . ,−A1


23

× E


yt−p

...

yt−1

(yft−p−1)
T , (yft−p−2)

T , . . . , (yft−p(n+1))
T


  
ZARMA

. (4.20)24

Now, ZARMA is a rational function of θ ∈ ΘI by Lemma 1 and25

thus det

I(np)2 − F ⊗ F


ZARMA is a polynomial function of θ ∈26

ΘI . By the stability assumption det

I(np)2 − F ⊗ F


≠ 0 on ΘI27

and thus the zeros of corresponding subdeterminants of ZARMA28

and of det

I(np)2 − F ⊗ F


ZARMA are the same. As has been shown29

in Anderson et al. (2015), there exists a θ∗
∈ ΘI corresponding to30

the case s = 0 such that Z∗

AR has full rank np. Since Z∗

ARMA = F pZ∗

AR31

and F has full rank np, Z∗

ARMA has also full rank np. Then for a suitable32

chosen np × np submatrix of Z∗

ARMA, its determinant is unequal to33

zero and thus for general ZARMA the corresponding determinant is34

unequal to zero except for a proper variety onΘI (see Bochnak et al.35

(1998), page 23). Therefore, in particular, ZARMA has full row rank36

on a generic subset of ΘI . Thus we have shown:37

Theorem 5. Generically the parameters

A1, . . . , Ap


are uniquely38

obtained from (4.20). They are g-identifiable on ΘI and on Θ .39

Now, for given

A1, . . . , Ap


and γ (N), γ (2N), γ (3N), . . . , we40

have from (4.13)41 
γ (N)
γ (2N)
γ (3N)

...
γ (npN)

 =


HFN−1

HF 2N−1

HF 3N−1

...

HF npN−1



FPHT

+ GΣ


42

= ON FPHT
+ GΣ


, (4.21)43

where F and H are known (F being given from (4.6) and (4.20)). 44

Note that by minimality and thus observability of (4.4), (4.5), for 45

N = 1, thematrixON has full column rank np. It is straightforward 46

to show that the assumption that all eigenvalues of FN are distinct 47

is generic in ΘI (see Felsenstein (2014); Koelbl (2015)). Under 48

this assumption the eigenvectors of F and FN are the same and 49

then rank

ON


= rank

O1

holds, as it can be shown by the 50

PBH test (see Kailath (1980)). Multiplying (4.21) from the left by 51

the pseudoinverse


ON
T

ON
−1 

ON
T we obtain


FPHT

+ GΣ

. 52

Using (4.13) we obtain all secondmoments γ (0) , γ (1) , . . . from 53
A1, . . . , Ap


and γ (N) , γ (N) , . . . , γ (npN), and therefore the 54

MA parameters are unique under our assumptions. Thus we have 55

shown: 56

Theorem 6. For a generic subset of ΘI , the ARMA parameters θ are 57

uniquely determined from the second moments (4.10) of the observed 58

outputs and thus are g-identifiable on ΘI . 59

Note that the same argument can be used also for the singular case, 60

as long as ZARMA has rank np. The only difference then is that we 61

have to replace B0 = In by a more subtle normalization. 62

5. Conclusions 63

This paper deals with the structure of multivariate AR and 64

ARMA systems in twonon-standard cases.We consider singular AR 65

or ARMA systems. We derive identifiability results for the singular 66

case and we show that a process, which is generated by a singular 67

ARMA system, has generically a singular AR representation. 68

The second focus of this paper is on identifiability results for 69

high frequency ARMA systems in the case of mixed frequency 70

observations,where the slowoutput is observed for everyNth time 71

point. The main result is that, under the assumption that the MA 72

order is smaller than or equal to the AR order, identifiability of the 73

system and noise parameters can be achieved for a generic subset 74

of the parameter space. This paper generalizes the results obtained 75

by Anderson et al. (2015) for the AR case to the ARMA case. 76

Furthermore, we give an example for the pure MA case where the 77

system and noise parameters are not even generically identifiable. 78

A detailed analysis of identifiability for singular ARMA systems 79

as well as an analysis for the case of flow data or more general 80

aggregation schemes is left to future research. 81
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