CONSTRUCTING DEPENDENCY TREES FOR RATE-DISTORTION OPTIMIZED
MEDIA STREAMING

Martin Roder*, Jean Cardinal?, Raouf Hamzaoui'

!Department of Computer and Information Science, University of Konstanz, Germany
2Computer Science Department, Université Libre de Bruxelles, Belgium

ABSTRACT

Finding adequate packet transmission strategies for me-
dia streaming systems is a challenging algorithmic task.
Recently, we proposed an efficient dynamic programming
algorithm for streams in which the dependencies between
packets, such as those prescribed between video frames
by video codecs, can be modeled with a tree. In this con-
tribution, we propose a heuristic algorithm for arbitrary
dependency graphs. This algorithm consists of first trans-
forming the dependency graph into a tree by adding de-
pendencies, and then applying the dynamic programming
algorithm on the tree thus obtained. The algorithm is both
simple and efficient, as shown by experimental results on
video sequences.

1. INTRODUCTION

A media streaming system allows the receiver to play back
a compressed media bitstream continuously after only a
short delay. The research on streaming media content over
the Internet has covered various issues, including conges-
tion control, error control, protocols, media synchroniza-
tion, and source compression. This paper focuses on error
control. Specifically, it deals with the problem of finding
efficient transmission strategies for a pre-encoded pack-
etized media bitstream within the framework introduced
by Chou and Miao [1]. This framework models the packet
dependencies with a graph, assigns an expected transmis-
sion cost and an expected reduction in distortion for each
packet, and characterizes an optimal transmission strat-
egy for the group of packets as one that minimizes the ex-
pected overall distortion for a given expected transmission
cost.

In their pioneering work, Chou and Miao [1] gave a
fast heuristic iterative algorithm called Sensitivity Adap-
tation (SA) for solving this optimization problem. Un-
fortunately, the solutions found by the SA algorithm can
be poor [2]. Optimal solutions can be computed with a
branch and bound algorithm [2]. However, the time com-
plexity of this algorithm is too high when the number of
packets is not small. Chakareski, Apostolopoulos, and
Girod [3] proposed an algorithm that is faster than the SA
algorithm, but its solutions are significantly worse. In [4],
we showed that for packets whose dependency graph is
tree reducible, optimal solutions can be computed much
more efficiently than with the branch and bound algorithm
of [2].

(a) (b)
Fig. 1. (a) Slicing in H.264. (b) Dependency graph for (a).

In many situations, however, the dependency graph is
not tree reducible. For example, the H.264 standard al-
lows to partition a frame into a number of slices which
can be decoded independently of each other. One reason
for this partitioning is to create separately decodable pack-
ets that do not exceed a certain size limit prescribed by the
network. An example is shown in Figure 1(a). The first
frame is an I-frame that was partitioned into two slices Iy
and I, to make each slice fit into a network packet. The
second frame, a P-frame, has a smaller encoded size and
contains only one slice P;. Since the P-frame is predic-
tively encoded from the I-frame, that is, from both slices
I, and I, we get the dependency graph of Figure 1(b),
which is not tree reducible.

For dependency graphs that are not tree reducible, we
propose an algorithm that transforms their transitive re-
duction into a tree. Then we apply the fast method of [4]
to compute optimal solutions for the tree. Our experimen-
tal results show that these solutions are almost optimal for
the original dependency graph.

2. PRELIMINARIES

The dependency between the packets that have to be trans-
mitted is modeled with a directed acyclic graph (DAG).
Let G = (V, E) be a DAG, where V is the set of vertices
and E C V x V is the set of edges. For (i/,i) € FE, we
say that i’ is a predecessor of i in G. If there is a path
in G from a vertex i’ to a vertex 7, we write i/ <¢ ¢ and
say that 7’ is an ancestor of i and i is a descendant of 7.
We also use the notation i’ <¢g ¢ if ¢/ <g i or¢ = i.
We denote the set of vertices of a DAG G by V(G) and
the set of its edges by E(G). The in-degree of a vertex
i € V(G) is the number of edges that end in 4. The transi-
tive reduction of a DAG G is the DAG G? with the small-
est number of edges such that (G*)T = GT where GT
is the transitive closure of G [5]. We call an edge (¢', 1)
of a DAG G redundant if there is a path from ¢’ to 4 that

does not contain (¢’,7). Note that the transitive reduction
of a DAG G = (V,E) is the DAG G = (V, E’) where
E' = E\{(,i) € E and (i) is redundant}.

A DAG T where exactly one vertex r € V(T') has an
in-degree of 0 and all other vertices have an in-degree of
1 is called a tree with root r. A DAG whose transitive
reduction is a tree is said to be tree reducible.

The dependency graph of aset V = {1,...,L} of L
interdependent packets is the DAG G = (V, E) where the
set of edges F is given by (i',7) € FE if packet " must
be decoded so that packet 7 can also be decoded. Note
that any dependency graph is equal to its transitive clo-
sure. The transitive reduction of a tree reducible depen-
dency graph G is called the dependency tree of G.

Each single packet in V' can be transmitted at a given
number of transmission opportunities. The transmission
of each single packet is controlled by a policy m. Each
transmission policy 7 has an error €(7), 0 < e(m) < 1,
which is the probability that a packet transmitted with pol-
icy m does not arrive at the receiver on time, and a cost
p(m), p(m) > 0, which is the expected number of trans-
missions of a packet transmitted with policy 7.

The transmission of the set of packets V' = {1,..., L}
is controlled by a policy vector @ = (w1, ..., 7), Where
mi, % = 1,..., L, is the transmission policy for packet
i € V. We denote by B; the size of packet ¢ and by AD;
the expected reduction in reconstruction error if packet ¢
is decoded on time. Let G be a DAG with set of vertices
V. The expected cost of the transmission (the expected
rate) of V' with policy vector 7 is

R(%) =Y _ Bip(m) 1)

eV

and the expected distortion with respect to G is

Dg(®)=Do— Y AD; [[1 —e(mr)) (@

=% i =<gi

where Dy is the distortion for V' if no packet is received.

A policy vector 7* is optimal for a DAG G if there
exists no policy vector 7 such that Dg(7) < Dg(7*)
and R(7) < R(7*). A policy vector ©* is a convex hull
policy vector for a DAG G if there exists A > 0 such
that 7* minimizes the Lagrangian Jg »(7) = Dg(7) +
AR(7). All convex hull policy vectors are optimal, but not
all optimal policy vectors are convex hull policy vectors.

When the dependency graph is tree reducible, we can
compute the set of all optimal policy vectors using dy-
namic programming on subtrees: optimal policy vectors
for packets in subtrees of the dependency tree are iter-
atively combined and pruned to form policy vectors for
bigger subtrees. The complexity of this method is polyno-
mial in the maximum number of policy vectors for a sub-
tree. For a detailed description of the method, the reader
is referred to [4].

3. PROPOSED ALGORITHM

If the dependency graph G is tree reducible, one can show
[4] that its dependency tree T satisfies D (7) = Dg(7)
for all policy vectors 7. Thus, optimal policy vectors for

T are also optimal for G (the expected rate is the same
for 7" and G). Since one can efficiently compute optimal
policy vectors for trees [4], our problem is solved. How-
ever, if the transitive reduction of G is not a tree (i.e., G is
not tree reducible), we usually cannot construct a tree hav-
ing the same nodes as G that satisfies the above equality.
Nevertheless, we will show that it is possible to construct
a tree 7' such that a policy vector that is optimal for T’
does not result in a worse expected distortion when used
for G. Once this tree is available, we apply the dynamic
programming algorithms of [4] to compute optimal policy
vectors for the tree and use these policy vectors as heuris-
tic solutions for the original graph G. In the remaining of
the section, we explain how to construct one such tree.

Szwarcfiter [6] showed that a DAG is tree reducible if
and only if its transitive closure does not contain the graph
shown in Figure 2(a) as an induced subgraph. We call this
graph the forbidden subgraph. Let G be a dependency
graph that is not tree reducible. To eliminate all forbid-
den subgraphs from G, we have to decide for each pair
of independent vertices {a, b} C V(G) having a common
descendant whether we add (a,b) or (b, a) to E(G). The
choices should be compatible with G, thus not creating
any cycle. A natural way of choosing the edges to add is
using the stream order since it usually is compatible with
the dependency graph and it usually places more impor-
tant packets before less important ones. If the stream or-
der is not compatible with the dependency graph, we can
use any other compatible total order, such as one obtained
from a topological sorting of the dependency graph. Let
S be the chosen compatible order and let S(a) denote the
rank of packet a in S. If S(a) < S(b), we add (a, b). Oth-
erwise, we add (b, a). When G is connected, the transitive
reduction of the DAG resulting from these edge additions
is a tree and unique by definition. We denote this tree by
T(G,S).

Instead of eliminating the forbidden subgraphs from
the original dependency graph G, it is more convenient to
eliminate them from the transitive reduction of G. In this
way, we will not add any redundant edges, and we will di-
rectly get the tree that we are interested in. This approach
is justified by the fact that a DAG is tree reducible if and
only if its transitive reduction does not contain the forbid-
den subgraph. Indeed, if the transitive closure of a DAG G
contains the forbidden subgraph as an induced subgraph,
then the transitive reduction of G must contain exactly one
path p; from a to x and exactly one path p; from b to z,
but no path from a to b or from b to a. Since p; and ps
have the same end and different beginnings, the subgraph
that is given by the union of p; and ps and hence the tran-
sitive reduction of G must contain the forbidden subgraph.
Conversely, if the transitive reduction of a DAG contains
the forbidden subgraph, it is clearly not a tree since the
in-degree of z is greater than 1.

After computing the transitive reduction of G, we add
an edge in a forbidden subgraph and transform the re-
sulting DAG into its transitive reduction by removing all
redundant edges from it. Suppose that we add the edge
(a,b) (resp. (b,a)) in the forbidden subgraph of Figure
2(a). Then the edge (a, x) (resp. (b, z)) will be redundant
and the forbidden subgraph becomes a chain in the transi-

(a) (b) (©

Fig. 2. (a) Forbidden subgraph. (b) Transitive reduction
of the forbidden subgraph with (a, b) added. (c) Transitive
reduction of the forbidden subgraph with (b, a) added.

tive reduction of the new DAG (see Figures 2(b) and 2(c)).
This process is repeated until all forbidden subgraphs are
eliminated, at which time we will have a tree 7. Since
we only remove redundant edges, and all added edges are
between vertices that are independent and have a common
descendant, the transitive closure of 7 is the same as the
transitive closure of T'(G, S), hence T' = T'(G, S).

Our algorithm for constructing a tree for an arbitrary
connected dependency graph G and a total order S com-
patible with G can be summarized as follows.

1. Compute the transitive reduction 7' of G, T' = G".

2. Repeat the following steps as long as 7" has a vertex
with an in-degree greater than 1:

(a) Pick a vertex = of V(T') that has an in-degree
greater than 1 and pick two predecessors a and
b of z such that S(a) < S(b).

(b) Add the edge (a,b) to T

(c¢) Remove all edges (z,y) # (a,b) where z < a
and b <X y from T

The tree T that results from this algorithm satisfies
V(T) = V(G) and E(TT) O E(G). Furthermore, (2)
gives

Da(®) <Do— Y. AD; [[(1=e(mir)) = Dr(®),

ieV(T) et

since {(7',1)|i' <¢ i} = E(G) C E(TT) = {(¢,1)]
i’ <7 i} and 0 < e(m) < 1 for all policies .

The properties of 1" are summarized in the following
proposition.

Proposition 1. Let G be a connected dependency graph.
Then there exists a tree T such that V(T) = V(G) and
Sor any policy vector T for G, we have Dp(7) > Dg(7).

The time complexity of the algorithm is O(|V (G)|* +
[V (G)||E(G)]) since the transitive reduction of G’ can be
computed in O(|V(G)||E(G)|) time [7] and the number
of edges that can be added in Step 2b as well as the number
of edges that can be removed in Step 2c is bounded by
V(G

4. EXPERIMENTAL RESULTS

In this section, we compare the proposed approach to the
SA algorithm [1] and to the branch and bound algorithm

Fig. 3. Dependency graph GG; obtained by encoding 10
frames of the Foreman video sequence with H.264. The
vertex labels show the packet numbers in stream order, the
dashed boxes indicate the frames with the frame number
relative to the first encoded frame and the frame type in
parentheses. For clarity, no redundant edges are shown.

of [2]. We used eight transmission opportunities. The time
interval between two transmission opportunities was 50
ms. The delivery deadline was set to 400 ms after the first
transmission opportunity for each packet. The network
was modeled as an independent time-invariant packet era-
sure channel with random delays [1]. The packet loss
probability of the forward and backward channels was set
to 0.2. The channel forward trip time and backward trip
time were modeled as shifted gamma distributed random
variables with rightward shifts kr = kp = 25 ms, and
parameters np = ng = 2, ap = ap = 3¢ [1].

We report results for two dependency graphs that are
not tree reducible. The first one, G; (Figure 3), consists of
17 packets obtained by encoding 10 frames (frame 13 to
frame 22) of the Foreman video sequence in CIF size with
H.264 at 318 kilobits/s with a frame rate of 25 frames/s.
The frame sequence was IBBPBBPBBP. The packet sizes
(in bytes) were (B, ..., B17)=(1382, 1398, 1390, 1396,
1023, 1402, 1271, 774, 547, 1394, 664, 344, 341, 1402,
600, 232, 302). The distortions were computed as in [4],
giving (Dy, ..., ADq7) =(4042.91,97.35, 133.11, 62.06,
71.78, 34.91, 297.09, 106.05, 399.10,400.27, 330.35,
73.56, 404.24, 404.03, 356.14, 46.99, 403.06, 403.28).

The second dependency graph G’z is the subgraph con-
sisting of the first nine packets of 1, which correspond
to the first four frames of the video sequence. The packet
sizes By, ..., Bg were the same as for G1. The distortions
were (Dy, ..., ADg) = (4022.63, 243.37, 332.76, 155.15,
179.46, 87.28, 742.73 ,265.13 ,997.75, 1000.67).

The algorithm of Section 3 computed the tree from G
in 4.3 ms (Figure 4) and the tree from G5 in 2.8 ms.

Figure 5 shows distortion-rate curves for the depen-
dency graph G1. The curve SA corresponds to the SA al-
gorithm [1]. The curve ODP (resp. ODPT) corresponds to
the solutions obtained by applying the dynamic program-
ming of [4] without thinning (resp. with thinning) to the
tree resulting from the algorithm of Section 3. When thin-
ning was used, no more than 256 policy vectors were kept
at each intermediate result. For rates between 0 and 23000
bytes, the SA algorithm found only the policy vector with

Fig. 4. Tree obtained from the dependency graph G .

4500 . .
4000 ODPT -+]

3500 [
3000 [
2500 [
2000 -

1500 |

Expected distortion (MSE)

1000 | Y

500 Y

0 1 L \\;

0 10000 20000 30000
Expected rate (bytes)

40000 50000

Fig. 5. Distortion-rate curves for G; with the SA algo-
rithm (SA) [1] and the proposed method (without thinning
in ODP, with thinning in ODPT).

expected rate 0 because it is restricted to convex-hull pol-
icy vectors. The branch and bound algorithm of [2] was
not able to compute the solutions in reasonable time. The
solutions found with our approach were generally better
than those computed with the SA algorithm. The running
times were 3.54 s for the dynamic programming algorithm
without thinning, 0.08 s for the dynamic programming al-
gorithm with thinning, and 0.02 s for the SA algorithm.

Figure 6 shows the performance of the same algorithms
for the dependency graph Gi2. The curve BB corresponds
to the solutions obtained with the branch and bound al-
gorithm of [2]. For most rates, the difference between the
curve BB and the ODP curves was small. Since the branch
and bound algorithm is exact, this indicates that our solu-
tions were almost optimal. The running times were 3.5
days for the branch and bound algorithm, 0.16 s for the
dynamic programming algorithm without thinning, 0.03
s for the dynamic programming algorithm with thinning,
and 0.002 s for the SA algorithm.

5. CONCLUSION

Rate-distortion optimal policy vectors can be computed
efficiently when the dependency graph of the encoded data
is tree reducible [4]. We presented a fast heuristic method
to compute policy vectors for dependency graphs that are
not tree reducible. Our method is useful when the server
cannot reencode existing packetized media data to make

4500

sA

40001 .
D 3500 |~y BB
n)
2 3000 |
=
Kel
T 2500
2 5,
S 2000 | L
©)
3 |
S 1500 |)
3 4
% 1000 5
w [h

\\
500 | \

0 . . .
0 5000 10000 15000 20000 25000 30000 35000
Expected rate (bytes)

Fig. 6. Distortion-rate curves for Go with the SA algo-
rithm (SA) [1], branch and bound (BB) [2], and the pro-
posed method (without thinning in ODP, with thinning in
ODPT).

their dependency graph tree reducible. This may be the
case when the source encoder is not available, when chang-
ing the dependency graph leads to a drop in reconstruction
quality or when time constraints are imposed. The exper-
iments showed that our method provided high-quality so-
lutions, which were generally better than those of the SA
algorithm [1].

6. REFERENCES

[1] P.A. Chou and Z. Miao, ‘“Rate-distortion optimized
streaming of packetized media”, Microsoft Research
Technical Report MSR-TR-2001-35, Feb. 2001.

[2] M. Roder, J. Cardinal, and R. Hamzaoui, “On the
complexity of rate-distortion optimal streaming of
packetized media”, Proc. DCC’04, pp. 192-201,
Snowbird, UT, April 2004.

[3] J. Chakareski, J. Apostolopoulos, and B. Girod,
“Low-complexity rate-distortion optimized stream-
ing”, Proc. IEEE ICIP-2004, Singapore, Oct. 2004.

[4] M. Roder, J. Cardinal, and R. Hamzaoui, “Effi-
cient rate-distortion optimized media streaming for
tree-reducible packet dependencies”, Proc. SPIE, vol.
6071, MMCN’06, San Jose, Ca., Jan. 2006.

[51 A.V. Aho, M.R. Garey, and J.D. Ullman, “The transi-
tive reduction of a directed graph”, SIAM J. Comput.,
vol. 1, no. 2, June 1972.

[6] J.L. Szwarcfiter, “On digraphs with a rooted tree
structure”, Networks, vol. 15, pp. 49-57, 1984.

[7] A. Goraléikova and V. Koubek, “A reduct and closure
algorithm for graphs”, Proc. Int. Symp. Mathemati-
cal Foundations of Computer Science, LNCS 74, pp.
301-307, 1979.

