
Practical Channel-adaptive Video Streaming
with Fountain Codes

Shakeel Ahmad∗, Raouf Hamzaoui†, Marwan Al-Akaidi†
∗ Department of Computer and Information Science, University of Konstanz, Germany.

Email:shakeel.ahmad@uni-konstanz.de
† School of Engineering and Technology, De Montfort University, Leicester, UK.

Email:{rhamzaoui,mma}@dmu.ac.uk

Abstract— Video streaming is sensitive to packet loss,
which can severely damage the quality of the received video.
Video communication systems that rely on application-layer
forward error correction (FEC) to combat packet loss are
particularly suitable for pervasive computing because they
can be used on top of any existing network architecture.
However, since in heterogeneous environments network con-
ditions are unpredictable, determining the right amount
of redundancy introduced by the channel encoder is not
obvious. This paper presents a practical implementation of
a unicast video streaming system that solves this problem
by using a rateless code and receiver feedback. In real
simulations over the Internet our solution outperformed
a standard approach based on fixed-rate forward error
correction. For an Internet connection Konstanz-Beijing-
Konstanz and the standard Foreman sequence compressed
with the H.264 video coder, the gain in average peak signal
to noise ratio exceeded 3.5 decibels at 90 kilobits per second.

I. INTRODUCTION

An increasing number of video streaming systems
are exploiting application-layer forward error correction
(FEC) to combat packet loss [1], [2], [3], [4]. However,
these work use fixed-rate FEC, where for a given source
block the channel code rate is fixed or updated according
to a prediction based on past observations of the packet
loss rate. Unfortunately, the packet loss rate in the Internet
and packet-based wireless networks is hard to predict
and can rapidly change over time. Thus, the performance
of fixed-rate FEC schemes may be poor because of the
unavoidable mismatch between the actual packet loss rate
and the predicted one.

In [5], we proposed a new approach that addresses
this problem by using rateless codes [6], [7] instead
of fixed-rate codes. With rateless codes, the code rate
does not have to be fixed in advance as the encoder
can generate on the fly a potentially infinite sequence
of encoded symbols. Another advantage is that both
the encoding and decoding times are much lower than
those of standard fixed-rate erasure codes (e.g., Reed-
Solomon codes). The basic idea of our approach is that
for every source block, the sender keeps on sending the
encoded symbols until an acknowledgement is received
from the receiver or the transmission time for the source
block elapses. But as the acknowledgment needs time
to reach the sender, the sender may transmit redundant
encoded symbols. We showed how to construct transmis-
sion strategies that minimize this overhead, while ensuring
successful reconstruction of the video stream subject

to an upper bound on the packet loss rate. However,
our results were given for a hypothetical rateless code
that assumes perfect recovery of the k original source
symbols if and only if at least k(1 + ε) encoded symbols
are received. Here ε is a small real number that gives
the trade-off between the error recovery property of the
code and the amount of redundancy it introduces. This
assumption is only an approximation as rateless codes are
probabilistic. In [5], we also assumed for simplicity that
the feedback channel is reliable and that the transmitted
packets consist of a single symbol. Another limitation
was that the performance of the system was evaluated
analytically only using the expected overhead and an
expected outage rate that corresponds to the expected
number of times the source block cannot be recovered.
Finally, the work in [5] assumed that a probability mass
function of the channel packet loss rates is available
before the transmission begins.

In this paper, we extend the results of [5] by addressing
all these limitations. The goal of the work is to show the
practical relevance of our approach and its actual benefits
for streaming video data. We provide an implementation
using a real Fountain code. We use real packet trans-
missions over an Internet connection. In contrast to [5],
packets have more than one symbol and packet losses
and delays also occur in the backward channel. Also we
show how our system can be used when the packet loss
rate histogram is not available. We compare our system
to two traditional schemes. The first one uses fixed-rate
FEC. The second one also uses fixed-rate FEC, but the
code rate is updated regularly according to the channel
conditions.

The remainder of the paper is organized as follows.
In Section II, we describe the video streaming system
introduced in [5]. In Section III, we derive analytical ex-
pressions for the expected used bandwidth of the studied
schemes and compare them with simulation results that
use an LT code [6]. Section IV compares the perfor-
mance of the studied schemes for streaming H.264 [8]
compressed video over an Internet connection Konstanz-
Beijing-Konstanz.

II. PREVIOUS WORK

A. Video streaming system

Figure 1 shows the system introduced in [5]. The raw
video stream produced by a camera from time t = 0



Fig. 1. Video streaming system.

to t = T is fed into the source encoder to produce
the first source block. For simplicity, we ignore the
video encoding time, which is usually very small and
depends on the particular implementation of the source
encoder. A source block b consists of k symbols of size
s each. At t = T , the k source symbols are encoded by
applying a rateless code to produce a potentially infinite
sequence of encoded symbols, each of size s. These
encoded symbols are transmitted over the channel after
encapsulating them in channel packets. A channel packet
may contain one or more encoded symbols. Some of the
channel packets are lost or arrive at the receiver too late to
be useful. The receiver tries to recover the source block.
If it succeeds, then an acknowledgement is sent to the
transmitter and the source block is fed into the source
decoder at t = 2T . Source decoding can be done with
almost no delay providing the first byte of decoded video
stream for playback at t = 2T , which ensures a maximum
playback latency of 2T . The same process is repeated for
the next source blocks. The source blocks are encoded
independently, which can be achieved, e.g., by starting
each one with an intra (I) frame.

B. Transmission strategy

Since the acknowledgement needs time to reach the
transmitter, the transmission strategy introduces an over-
head equal to the number of unnecessary encoded sym-
bols sent to the receiver (these are the encoded symbols
transmitted after the encoded symbol that allowed the
receiver to recover the source block). The transmission
strategy is also characterized by an outage rate equal to
0 if the source block is successfully decoded and 1, other-
wise. An optimal transmission strategy should minimize
the expected overhead subject to a given expected outage
rate. This problem was addressed in [5]. In the following,

Fig. 2. Probability mass function of observed packet loss rate. A packet
is considered to be lost if it is not available at the receiver within the
transmission interval.

Fig. 3. Proposed transmission strategy. The encoded symbols are
transmitted at rate Ri from si to fi, followed by a waiting time of
wi, i = 1, . . . , j.

we describe the solution proposed there. For simplicity,
the description assumes that a channel packet contains
only one encoded symbol.

We assume that the channel is described by N
packet loss rates l1 < . . . < lN with probabilities
p(l1), . . . , p(lN ) (Figure 2). We also assume that the
rateless code is such that the receiver can recover source
block b correctly if and only if at least k × (1 + ε)
encoded symbols for this block are received on time. For
each j ∈ {1, . . . , N}, we build a class of transmission
strategies as follows.

Let Rmax denote the channel bandwidth [9] (or capac-
ity limit). From t = s1 = 0 to t = f1 we transmit at a rate
R1 such that R1 × (f1 − s1) = c1. Here c1 = (k × (1 +
ε))/(1− l1) is the number of encoded symbols that have
to be transmitted to guarantee successful decoding if the
packet loss rate is l1. If we denote by RTT the round trip
time, an acknowledgement is expected to arrive at time
a1 = f1 + RTT . Since any symbol transmitted from f1
to a1 may contribute to the overhead, we wait some time
w1 until s2 = f1 +w1 before transmitting again at a rate
R2.

Similarly, we transmit at rate R2 from s2 to f2 such
that R2 × (f2 − s2) = c2 = (k × (1 + ε))/(1− l2)− c1.
The same procedure is repeated, giving transmission rates
R1, . . . , Rj (0 < Ri ≤ Rmax, i = 1, . . . , j) and waiting
times w1, . . . , wj (0 ≤ wi ≤ RTT, i = 1, . . . , j), where
each transmission rate Ri, 1 ≤ i ≤ j, starts at si and
finishes at fi (Figure 3) with



ci = (k × (1 + ε))/(1− li)−
i−1∑
m=0

cm (1)

Ri × (fi − si) = ci (2)

si = fi−1 + wi−1 (3)

where c0 = f0 = w0 = 0. Finally, we add the condition

fj ≤ T − FTT, (4)

where FTT is the forward trip time. This condition
states that all encoded symbols are sent within the avail-
able time budget.

Equation (1) ensures successful decoding if the packet
loss rate l is smaller than or equal to lj . It therefore
guarantees that the expected outage rate is equal to
1−

∑j
i=1 p(li). In [5], we provide an algorithm that selects

among each class j a transmission strategy that minimizes
the expected overhead.

III. ANALYTICAL RESULTS

In this section, we derive expressions for the expected
used bandwidth and expected outage rate for two trans-
mission schemes. The first one, which we call Algorithm,
uses the transmission strategy described in the Section
II-B. The second one, which we call Static, follows
a standard approach. It keeps on sending the encoded
symbols at a fixed transmission rate until an acknowl-
edgment is received. The transmission rate is fixed to
Rj = Cj/(T − FTT ), where Cj = k × (1 + ε)/(1− lj)
for j ∈ {1, · · · , N}.

These analytical results extend those of our previous
work [5], which considered only the expected overhead.

We assume again that the channel is described by
N packet loss rates l1 < . . . < lN with probabilities
p(l1), . . . , p(lN ) (Figure 2). We also assume a hypothet-
ical rateless code with parameter ε.

For j ∈ {1, 2, · · · , N}, the expected bandwidth used
by Algorithm is

Bj = Ej + k × (1 + ε)×
j−1∑
i=1

p(li)/(1− li)

+ k × (1 + ε)/(1− lj)×
N∑

i=j

p(li)

(5)

where Ej is the associated expected overhead as obtained
in [5].

On the other hand, the expected bandwidth used by
Static is

Bj = Rj ×
j−1∑
i=1

p(li)×min((T − FTT ), (Ci/Rj +RTT ))

+ Cj ×
N∑

i=j

p(li)

(6)

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

Packet loss rate

P
ro

ba
bi

lit
y

Fig. 4. Packet loss rate histogram.

0 0.2 0.4 0.6 0.8 1
1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

Outage rate

A
ve

ra
ge

 u
se

d 
ba

nd
w

id
th

 

 

Static (Simulated)
Static (Expected)
Algorithm (Simulated)
Algorithm (Expected)

Fig. 5. Used bandwidth vs. outage rate for Algorithm and Static. For
the simulations, a real LT code was used.

For both Algorithm and Static, the expected outage rate
is 1−

∑j
i=1 p(li).

To validate these analytical results, we run simulations
with ML designer [10] using the following channel model.
The packet loss histogram consisted of N = 21 packet
loss rates (Figure 4). Both FTT and BTT were set to
0.05 seconds. There were no packet losses in the feedback
channel. The maximum transmission rate Rmax was equal
to 20, 000 symbols/second. Each source block consisted
of k = 10000 source symbols and was transmitted 500
times. The length of the transmission interval T was set
to 1 s. A real LT code was used in the simulations. The
parameter ε was set to 0.1.

Figure 5 shows that the expected performance closely
matches the performance obtained with simulations using
a real LT code. It also confirms the superiority of the pro-
posed transmission scheme over the standard approach.

IV. EXPERIMENTAL RESULTS

The results provided in [5] and in the previous section
were for general data. We now test the performance of
our system for H.264 compressed video data.

We used a server in Konstanz to send ICMP [11]
packets of size 200 symbols (one byte per symbol)
to a machine in Beijing, which sent back the packets
to the server in Konstanz. This set-up allowed us to



0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Packet loss rate

P
ro

ba
bi

lit
y

Fig. 6. Packet loss rate histogram for the link Konstanz-Beijing-
Konstanz.

measure the channel characteristics without requiring any
deployment on the machine in Beijing. The maximum
available channel bandwidth Rmax was estimated as the
maximum sending rate at which the average forward
trip time (FTT ) did not increase. This gave Rmax =
30000 symbols per second and FTT = 270 ms. More
sophisticated techniques can also be used (see [12] for an
overview and [13] for a very fast method).

To measure the packet loss rates, we set T to 2 s and
sent ICMP packets of size 200 symbols from time t = 0
to t = T − FTT . The sending rate was set according to
the estimated value of Rmax. The packet loss rates were
obtained by observing the number of transmitted packets
that were received by the client before t = T . We repeated
the same procedure continuously for a period of 40 mn.
Figure 6 shows the resulting packet loss rate histogram.
Alternatively, one can start with an arbitrary packet loss
rate histogram and update it progressively.

We continued the measurement for another 40 mn and
recorded the FTT for all packets. If a packet was not
received, its FTT was set to a negative value, indicating
that it was lost. We also collected the trace of the
backward trip time BTT by sending ICMP packets at
a much lower rate because the feedback traffic from the
client to the server is very small. The average observed
value of BTT , which we denote by BTT , was 256 ms.
By using the collected traces of FTT and BTT , we were
able to simulate a real channel.

The test sequence was the 400 frames Foreman se-
quence in QCIF format of 16 s playback length at a rate
of 25 frames per second. The sequence was partitioned
into eight source blocks such that each source block had
50 frames to be played back in 2 s. We encoded each
source block separately at 64 kbps using the Nokia H.264
encoder. Each group of pictures (GOP) consisted of one
I frame followed by 49 P frames.

The encoded symbols were generated on the fly from
the source symbols using an LT code. We sent 200
encoded symbols per UDP/IP packet. The first two bytes
of the UDP packet payload corresponded to the source
block number. The next four bytes indicated the sequence

number of the first encoded symbol contained in this
packet. Knowing the sequence number of the first encoded
symbol is enough to determine the sequence number of
all encoded symbols in the same packet.

We transmitted the whole sequence of 400 frames 200
times. This corresponds to the transmission of a 53-
minute movie clip. At the client side, freeze-frame error
concealment was used to recover missing frames. Fig. 7
shows the average peak signal to noise ratio (PSNR) as
a function of the average used bit rate for the following
schemes.

1) Algorithm. This is the transmission strategy in-
troduced in [5] and described in Section II. The
algorithm was run with ε = 0.1. Each point on the
curve corresponds to the output of the algorithm for
a different j ∈ {1, · · · , 6}. We provide results for
the packet loss rate histogram of Fig. 6 (Algorithm-
1) and for an adaptive histogram initialized with a
packet loss rate of 0 with probability 1 (Algorithm-
2) and updated during the transmission.

2) Static. This scheme sends packets with a fixed
transmission rate until an acknowledgment is re-
ceived. The transmission rate is fixed to Rj =
Cj/(T − FTT ), where Cj = k× (1 + ε)/(1− lj).
Each point on the curve corresponds to a different
j ∈ {1, · · · , 6}. Here ε = 0.1.

3) Adaptive. This scheme keeps on sending the packets
at a fixed transmission rate until an acknowledg-
ment is received. However, the code rate is chosen
according to the packet loss rate measured during
the last transmission interval. For example, if the
packet loss rate observed during the transmission
of source block b is li, then the transmission rate
for source block b + 1 is Ri = Ci/(T − FTT ),
where Ci = k × (1 + ε)/(1− li). Again ε = 0.1.

4) Without FEC. This scheme does not use FEC. The
used bitrate was increased by increasing the source
rate.

Both Algorithm-1 and Algorithm-2 significantly outper-
formed the standard schemes. For example, at 89.86 kilo-
bits per second (kbs), Algorithm-1 provided an average
PSNR of 32.02 dB, while Static reached an average PSNR
of 28.36 dB at 90.04 kbs. Algorithm-2 had a slightly worse
performance than Algorithm-1 because it did not exploit
prior information about the channel.

Adaptive performed worse than Static. This is because
the packet loss rate was rapidly changing, making it hard
to predict from the packet loss rate observed during the
transmission of the previous source block.

The very poor performance of the scheme that does
not use FEC is mainly due to the fact that H.264 is
highly syntax oriented, and any loss of syntax or control
information seriously damages the reconstruction of the
bitstream.

V. CONCLUSION

The goal of the paper was to address the limitations
of the system introduced in [5] and to show its practical



70 80 90 100 110
16

18

20

22

24

26

28

30

32

34

Average used bitrate (kbps)

A
ve

ra
ge

 P
S

N
R

 

 

Algorithm−1
Algorithm−2
Static
Adaptive
Without FEC

Fig. 7. Average PSNR vs. average used bandwidth for streaming
the H.264 encoded Foreman sequence over the link Konstanz-Beijing-
Konstanz. Algorithm-1 uses the algorithm of [5] to compute the trans-
mission strategy. Algorithm-2 uses the same approach, but the packet
loss rate histogram is computed in real-time. Static uses a static fixed
transmission rate. Adaptive uses a fixed transmission rate that is updated
according to the packet loss rate observed during the transmission of
the previous source block. Without FEC does not use FEC.

relevance for streaming video data. Instead of hypothetical
rateless codes, we used a real LT code. Instead of expected
overhead and expected analytical outage rates (expected
rate of source blocks that cannot be recovered), we
provided average bandwidth usage and average PSNR
values obtained by decoding H.264 compressed video data
after real transmissions.

In [5], the packet loss rate histogram used to optimize
the transmission strategy was determined over a long
period of time before the transmission of the requested
data starts. This implies that the client is known to the
server in advance. We removed this constraint by showing
that our approach is also successful when there is no a
priori knowledge about the channel packet loss rates. The
idea is to start with an arbitrary histogram that is updated
in real-time.

Finally, we compared our system not only to a scheme
based on static fixed-rate forward error correction, but
also to an adaptive scheme that updates the code rate of
the channel code based on observed loss rates. The results
showed that our method can significantly outperform both
approaches for a wide range of bit rates.

ACKNOWLEDGEMENT

Shakeel Ahmad was supported by the DFG Research
Training Group GK-1042.

REFERENCES

[1] U. Horn, K. Stuhlmuller, M. Link, and B. Girod, “Robust internet
video transmission based on scalable coding and unequal error
protection,” Signal Processing: Image Commun., vol. 15, pp. 77–
94, 1999.

[2] R. Puri, K.-W. Lee, K. Ramchandran, and V. Bharghavan, “An
integrated source transcoding and congestion control paradigm for
video streaming in the Internet,” IEEE Trans. Multimedia, vol. 3,
pp. 18–32, March 2001.

[3] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha,
“Streaming video over the Internet: Approaches and directions”,
IEEE Trans. Circuits Syst. Video Technol. vol. 11, pp. 282–300,
March 2001.

[4] M. Hayasaka, L. Loyola, and T. Miki, “Packet/cell loss recovery
using variable FEC matrix for real time transport services over
best effort networks,” in Proc. 9th Asia-Pacific Conference on
Communications, vol. 3, pp. 1119–1123, Sept. 2003.

[5] S. Ahmad, R. Hamzaoui, and M. Al-Akaidi, “Robust live unicast
video streaming with rateless codes”, in Proc. 16th Int. Packet
Video Workshop, Lausanne, Nov. 2007.

[6] M. Luby, “LT codes”, in Proc. 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002.

[7] A. Shokrollahi, “Raptor codes”, IEEE Trans. Inf. Theory, vol. 52,
pp. 2551–2567, June 2006.

[8] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard”, IEEE Trans.
Circuits Syst. Video Technol. vol. 13, pp. 560–576, July 2007.

[9] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy, “Bandwidth
estimation: Metrics, measurement techniques, and tools,” IEEE
Network, vol. 17, pp. 27–35, Nov.-Dec. 2003.

[10] G. Schorcht et al., “System-level simulation modeling with MLDe-
signer”, 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer Telecommunications Sys-
tems, 2003.

[11] J. Postel, “Internet Control Message Protocol”, Request for Com-
ments, Internet Engineering Task Force, no. 792, Sep. 1981.

[12] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study
of available bandwidth estimation tools”, in Proc. 3rd ACM
SIGCOMM conference on Internet measurement, pp. 39–44, 2003.

[13] N. Hu and P. Steenkiste, “Evaluation and characterization of avail-
able bandwidth probing techniques”, IEEE Journal on Selected
Areas in Communications, vol. 21, pp. 879–894, Aug. 2003.


