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Abstract
Fractal image coding technique has attracted a degree of interest for its low bit

rate. But the reconstructed image is of medium quality. This problem has prevented

fractal technique from being practically used. In order to improve the compression

fidelity, a new affine transformation is proposed in the paper. Meanwhile, its

contractivity requirement is analyzed and the optimal parameters is derived using the

least square method. The new affine transformation has been practically used in image

coding. Experiments show that the PSNR can reach 28.7dB at the compression

ratio(CR) of 16.4 for 256
 

256
 

8 "Lena" image. Comparison with other fractal

coding schemes shows that the new affine transformation can improve the

reconstructed image quality efficiently.

1. Introduction

It is in the recent few years that fractal theory was applied in the field of image

coding. In 1988, M. F. Barnsley and A.D.Sloan proposed using fractals generated by

iterated function system(IFS) to encode or compress images[1]. But the first automatic

robust block-based fractal image coding scheme which can compress any digital

monochrome image was proposed by A.E.Jacquin in 1990[2]. After that, some other

papers which are related to fractal image coding were published[3-9]. But most of

them are based on Jacquin's scheme.

However, experiments show that the fractal reconstructed image is of medium

quality. The best result reported in [2] is that the PSNR=27.7 dB and the bit rate=0.68

bpp for 256
 

256
 

6 "Lena" image. In [2], some measures such as two-level

partitioning technique have been used to improve the fidelity. If only one-level

partitioning is used, the PSNR will be even lower. The problem has attracted a degree

of attention.
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In this paper, a new affine transformation is proposed to improve the image

quality. Its contractivity requirement is also analyzed and the optimal parameters is

derived . At last, some experimental results and comparison with other fractal coding

schemes are presented.

2. The mathematical principle of fractal coding

Let ( , )Ω λ  denote a complete metric space. The elements of the space are digital
images. λ  is a given metric. The original image X orig is one element of the space. The

fractal coding procedure of X orig is to construct a transformation T:Ω Ω→ , which

satisfies the following conditions:

(i)  For any      where p p T p T p s p p s1 2 1 2 1 2 0 1, , ( ( ), ( )) ( , ), ;∈ ≤ ⋅ ≤ <Ω λ λ
(ii) T X Xorig orig( ) ≈ A
From condition (i), we know that T is a contractive transformation. The

Contractive Mapping Fixed Point Theorem ensures that T has a unique fixed point
and the fixed point can be found by iteration of T. Condition (ii) tells us that X orig is

an approximate fixed point of T. So X orig can be reconstructed by applying T on any

initial image X0 iteratively. If  T can be stored compactly, then it is called the
compressed data of X orig . Therefore, X orig is compressed.

In practical use, it is difficult to construct such T directly. It is usually constructed

by the union of a series of contractive affine transformations.
T T

i N
i= ∪

≤ <0
( 1)

where Ti  is the ith contractive affine transformation, N is the total number of the

affine transformations. and
T X T Dorig

i N
i i( ) ( )=

≤ <
∪

0

( 2)

where D Xi orig⊂  .

The performance of fractal image coding mainly depends on the affine

transformations. In the next section, we will propose a new  affine transformation.

3. The new affine transformation

 The new affine transformation we proposed  is:
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(x,y) denotes the coordinates of a pixel to be transformed. z denotes the pixel

intensity of (x,y). (X,Y)  denotes the coordinates of the pixel transformed. Z denotes

the intensity of (X,Y). a, b, c, d,  e, f are parameters of the affine transformation.

The affine transformation used in Jacquin's scheme is only a special case of (3)

that g z tz o( ) = + [9]. Obviously, it is a linear one containing only a scaling and an

offset. Its approximation ability is quite limited. The new affine transformation

generalizes the pixel intensity approximation. So it can provide better approximation .

For convenience of the following discussion, we rewritten (3) as (4).
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where B
a b

c d
=











3.1 The contractivity condition of the new affine transformation

In order to make the decoding procedure converge, the affine transformation must

be contractive. So we must discuss the contractivity condition of the new affine

transformation. First we introduce the definition of contractivity.

Definition 3.1.1. A transformation w is said to be contractive if for any two

points bx1 and bx2 , the distance   λ λ( ( ), ( )) ( , )w x w x s x x sb b b b1 2 1 2 0 1≤ ⋅ ≤ <    where   .

In this paper, for any vector  b cx x x xn
T= ( , , , )1 2 ,  the vector norm used is:

     bx xi2

2 1
2= ∑( )

and the distance measure is:
     λ ( , )b b b bx x x x1 2 1 2 2

= − ,     for any two vectors b bx x1 2,  .

Next, we put forward a theorem about the contractivity of the new affine

transformation.

Theorem 3.1.1. Suppose we already know B is a contractive transformation(in

practical coding procedure, B maps a large block onto a small one, so the condition is
usually satisfied), if g t s s' ( ) ,≤ ≤ <  0 1, then transformation (4) is a contractive

transformation. where g z' ( )  is the derivative of  g z( ) . g z' ( )  is the absolute value of

g z' ( )

proof. For any two vectors bx x y z T
1 1 1 1= ( , , ) , bx x y z T

2 2 2 2= ( , , ) , the transformed

vectors are b bX X Y Z X X Y ZT T
1 1 1 1 2 2 2 2= =( , , ) , ( , , ) , then
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For B is a contractive transformation, according to the definition of contractivity,
there exists a s s1 10 1, ≤ < , which satisfies

( ( ( (X X Y Y s x x y y1 2
2

1 2
2

1 1 2
2

1 2
2− + − ≤ ⋅ − + −) ) ) )

In terms of Lagrange Mean-value Theorem

Z Z g z g z g z z1 2 1 2 1 2− = − = ⋅ −( ) ( ) '( ) ( )ξ  ,where   ξ ∈ ( , )z z1 2

So    ( ) ( ) ( ) ( )'Z Z g z z s z z1 2
2

1 2
2

1 2
2− = ⋅ − ≤ ⋅ −ξ

Let   { }s max s ,s2 1= ,

so   ( ( ( ( (zX X Y Y Z Z s x x y y z1 2
2

1 2
2

1 2
2

2 1 2
2

1 2
2

1 2
2− + − + − ≤ ⋅ − + − + −) ) ( ) ) ) )

So the transformation is contractive.�

4. Application of the new affine transformation to image coding

4.1 The coding scheme

Let X orig be the original image . We assume that the size of X orig is 256 � 256 � 8.

Before compressing, we subtract 128 from all pixels of the image.This ensures that the
sum total of the pixels is approximately zero. X orig is first partitioned into 8 � 8 range

blocks and 16 � 16 domain blocks which are denoted as R R1 2,  ...Ri ,...,RM � � �
D D D Dj N1 2,  ,  , , ,� � respectively. This is similar to [2], but only one-level

partitioning is used in our experiments.
For any range block Ri , we search for a suitable affine transformation Ti and a

domain block D j to satisfy the following equation as well as possible.

R T Di i j= ( ) � � �
That is to say, we must find suitable Ti and D j to make T Di j( )and Ri to be

similar to each other.
The affine transformation Ti maps a 16 � 16 domain block onto a 8 � 8 block,

rotates or reflects the block and processes the pixel intensity. All the above functions
are determined by the coefficients of the affine transformationTi , but the coefficients

are difficult to determine, quantize and store. Usually we replace Ti with a equivalent

compound transformation
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T Gi = ¯ ¯τ ϕ ° ± ²
So (5) changes to
R G Di j= ¯ ¯τ ϕ( ) ° ³ ²
Where ϕ is x-y plane contractivity transformation which maps D j onto a 8 ´ 8

block, µ  is one of the eight rotation and flip operation proposed in[2]. G is the pixel
intensity processor. Let zi be the ith pixel intensity of τ ϕ¯ ( )D j . then the ith pixel

intensity of G D j¯ ¯τ ϕ( ) is g zi( ) . Let Zi denote the ith pixel intensity of Ri , then the

coding procedure of Ri is to select suitable G D j, ,τ  to minimize the following

distortion

Error Z g z
i

K

i i= −
=
∑ ( ( ))

1

2 ° ¶ ²

where K is the total number of the pixels in the range block.
When G, µ and D j are found, we store the parameters. then the range block is

encoded. When every range block is encoded in turn, the original image X orig is

encoded. Next we will discuss some problems about the determination and storation

of the parameters.

4.2. The optimal parameters
         

In transformation (3), g(z) can be any form. In our experiments,

g z z z o( ) = + +α α1 2
2 . So the distortion (8) changes to

Error Z z z o
i

K

i i i= − − −
=
∑ ( )

1
1 2

2 2α α ° · ²
The parameters α α1 2, ,  o  should minimize the distortion. Next we use the least

square method to determine the parameters.

According to the least square method, we get the following equation group.
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Solve Equ. (10), we can get the optimal parameters.
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After α α1 2, ,  o are calculated, we must verify if the parameters satisfy the

contractivity condition mentioned in Theorem 3.1.1. Sometimes, the parameters do

not satisfy the contractivity condition.

According to Theorem 3.1.1, α α1 2, ,  o should satisfy the following equation

g z zi i' ( ) = + <α α1 22 1 (12)

Therefore,

− < + <1 2 11 2α α zi

Ú Û Ý Ü
where zi is the pixel intensity of the block τ ϕÞ ( )D j . Every pixel of the block

τ ϕÞ ( )D j must satisfy Equ. (13). If we examine every pixel, the computing is too

complex. Analyzing Equ. (13), we find that Equ. (13) is equivalent to the following

two equations .

− < + <1 2 11 2α α zmax (14)

− < + <1 2 11 2α α zmin (15)

where zmax ß à á zmin are the maximum pixel and the minimum pixel of the block
τ ϕÞ ( )D j respectively â

If α α1 2, ,  odo not satisfy Equ. (14) and Equ. (15), the group of parameters can

not be used, we will compute the next optimal parameters and examine their

contractivity.

When the parameters are calculated and examined, we will quantize and store

them.

4.3 The quantization of the parameters

When D Gj ,  ,  τ which satisfy equation (7) are found, we must quantize and store

the parameters. The parameters needed to be stored are: The position information of
D j , the rotation and flip operation τ , α α1 2, ,  o

The bit allocations are:
(i) The position information of D j
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The size of the original image is 256
�

256 and the neighboring domain blocks

separate 4 pixels, so it needs 6+6=12 bits to store the coordinates of the domain
blocks D j .

(ii) The rotation and flip operation τ
There are eight kinds of rotation and flip operations. so it needs 3 bits to store it.

α α1 2, ,  o are difficult to quantize .Next, we discuss their quantization �
The distribution curves of α α1 2, ,  o obtained from the compression of "Lena"

image are shown in Fig. 1 (a), (b) and (c).
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Fig. 3 (a) The distribution curve of α1.

         (b) The distribution curve of α 2

       (c) The distribution curve of o

(iii)From Fig.1(a), we find that most of α1 varies between -1.5 to 1.5. so we

quantize it in the following way.
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. where QUAN[] is a

function which takes the integer nearest to its variable. Obviously it needs 5 bits to

store it.
If α1 155≥ .  or α1 155≤ − . , then let p SIGN ABSα α α1 1 1 15= ⋅ − . .where
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, ABS α1  takes the absolute value of α1.Then, as

for p α1 , its distribution property is similar to α1. So we can use the above way to

quantize it, but this time the flag code ( )1111 2 should be placed forward.

(iv) From Fig. 1(b), we find that most α 2 satisfy

− < <−155
10

1552
3. .

α
(16)

So, we can use the similar way to quantize and store α 2 .

(v)From Fig.1(c), we find that most o distribute between -128 to 127. So if

− < <1285 1265. .o  then
0 128 254≤ + <QUAN o (17)

It needs 8 bits to store it. If o ≤ −1285.  or o ≥ 1265. , we can use a way similar to

(iii). but the flag code ( )111111112 should be placed forward.

5. Experimental Results

Experiment 1.

The first experiment is used to test if the new affine transformation can improve

the image quality. The original image used is the 256×256×8 standard image "Lena"

which is shown in Fig. 2. We have compressed the original image using both the

traditional method[2] and the method proposed in the paper. In this experiment, only

one-level partitioning technique is used in both schemes. The size of the range block

is 8 8× , and the domain block size is 16 16× ,  we divide the range blocks into four

kinds to process them differently as in[2]. Compression ratio (CR) and peak-to-peak

signal-to-noise ratio (PSNR) are chosen as criterion of comparison. The result is :

When using the traditional method, the compression ratio CR=17.8, the

PSNR=24.9 dB.

When using the method proposed in the paper, the compression ratio CR=16.4,

the PSNR=28.7 dB.

The decoded image are shown in Fig. 3 and Fig. 4.

Comparing Fig. 3 with Fig. 4, we can easily find that the fidelity of Fig. 4 is better

than that of  Fig. 3, especially in the edge of the column in the image. Comparing the

PSNR and CR indicates that PSNR can increase nearly 4 dB while CR decreases a

little. So the new affine transformation can improve the image quality.
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One important point must be mentioned in the decoding procedure. For the case

where the affine transformation is linear, the contractivity condition does not depend

on the gray level of the domain pixels, therefore any initial image can be used as the

starting point of the decoding process. The new affine transformation discussed in this

paper has the second order term, therefore the contractivity of each transformation

does depend on the gray level of the pixels in the domain blocks, as shown in Equ. (14)

and Equ. (15). Therefore the convergence of the decoding scheme depends on the

initial image used as the starting point of the decoding process. In this experiment,

when a black image whose gray is near zero is chosen as the initial image,  the

decoding can converge, but when the gray is near 127 or -128 (because in the

encoding procedure, the original image has been subtracted 128 from all pixels),  the

decoding does not. The unconverged reconstruction sequence is shown in Fig. 5. We

find that there are a lot of white and black points in the iteration image and as the

transformations iterate, the number of white and black points increases quickly, the

decoding image becomes disorderly. This problem affects the practical usage of the

new affine transform.

But we found that when a limitation is applied after each iteration, the decoding

can be made to converge. The limitation used was:

After each iteration, the gray of the iteration image is limited within -128 and 127.

That is:

If zi >127, let zi =127;

If zi < −128, let zi = −128;

If − ≤ ≤128 127zi , zi  remains unchanged.

Where zi  is the gray level of the iteration image.

Though this limitation was sufficient for the converge for the image tested, a

more rigorous limitation would be to determine zmax and zmin from Equ. (14) and Equ.

(15) for each transformation, and limit the gray values in the domains of each

transformation accordingly.

Experiment 2.

The experiment is also used to test the performance of the new affine transform.

This time we use 256 E 256 E 6  "Lena" as the original image. We also compress the

original image using both the traditional method and the method proposed in the paper.

But in this experiment, we use two-level partitioning technique which was proposed

in[2].  The range block sizes are 8 8×  and 4 4× , and the domain block sizes are

16 16×  and 8 8× . The results are:

When using Jacquin's method, the compression ratio CR=8.5, the PSNR=28.3 dB.
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When using the method proposed in the paper, the compression ratio CR=8.4, the

PSNR=31.7 dB.

The decoding images are shown in Fig. 6 and Fig. 7.

Experiment 3.

 The third experiment is done to verify the contractivity condition theorem

Theorem 3.1.1. In the coding of the original image, for any range block, we must

search for the most similar domain block and calculate the optimal parameters. As

mentioned in Section 4.2, some parameters do not satisfy the contractivity condition.

We have to examine the parameters and process them. So in order to test the

efficiency of the Theorem 3.1.1, we compress the original image in two different ways.

First we examine the parameters and process them to make every parameter satisfy the

contractivity condition, the decoding procedure can converge to a good image; Then if

we omit the examination and processing procedure, the decoding procedure does not

converge, whether use the limitation in Experiment 1 or not, the decoded image is

disorderly,  it is shown in Fig. 8.

Fig 2. The 256 256 8× ×  original image "Lena" Fig. 3. The decoded image using the traditional method

(one-level partitioning)
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Fig. 4. The decoded image using the method presented

in the paper(one-level  partitioning)

Fig. 5. The unconverged  reconstructed image sequence

Fig. 6. The decoded image using the traditional method

(two-level partitioning)

Fig. 7. The decoded image using the method presented

in the paper(two-level  partitioning)
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Fig 8. The decoded image when the contractivity

condition is not applied
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