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A Review of the Fractal Image Coding Literature

Brendt Wohlberg and Gerhard de Jager

Abstract— Fractal image compression is a relatively recen-
t technique based on the representation of an image by a
contractive transform, on the space of images, for which the
fixed point is close to the original image. This broad prin-
ciple encompasses a very wide variety of coding schemes,
many of which have been explored in the rapidly growing
body of published research. While certain theoretical as-
pects of this representation are well established, relatively
little attention has been given to the construction of a co-
herent underlying image model which would justify its use.
Most purely fractal-based schemes are not competitive with
the current state of the art, but hybrid schemes incorpo-
rating fractal compression and alternative techniques have
achieved considerably greater success. This review repre-
sents a survey of the most significant advances, both practi-
cal and theoretical, since the publication in 1990 of Jacquin’s
original fractal coding scheme.

I. INTRODUCTION

The fundamental principle of fractal coding consists of
the representation of an image by a contractive transform of
which the fixed point is close to that image. Banach’s fixed
point theorem guarantees that, within a complete metric
space, the fixed point of such a transform may be recov-
ered by iterated application thereof to an arbitrary initial
element of that space [1]. Images are represented within
this framework by viewing them as vectors [2] [3, ch. 7]
within a Hilbert space, the metric being derived from the
inner product via the norm [1, pg. 129]. Encoding is not
as simple, since there is no known algorithm for construct-
ing the transform with the smallest possible distance, given
the constraints on the transform, between the correspond-
ing fixed point and the image to be encoded. The usual
approach is based on the collage theorem (see Section V-
A) which provides a bound on the distance between the
image to be encoded and the fixed point of a transform,
in terms of the distance between the transform of the im-
age and the image itself. A suitable, although suboptimal,
transform may therefore be constructed as a “collage” or
union of mappings from the image to itself, a sufficient-
ly small “collage error” (the distance between the collage
and the image) guaranteeing that the fixed point of that
transform is close to the original image.

In the original approach, devised by Barnsley, this trans-
form was composed of the union of a number of affine map-
pings on the entire image - an Iterated Function System
(IFS) [3, ch. 2] [4]. While a few impressive examples of im-
age modelling were generated by this method (Barnsley’s
fern [4] [5, pg. 256], for example), no automated encod-
ing algorithm was found. Fractal compression became a
practical reality with the introduction by Jacquin® of the
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Partitioned IFS (PIFS) [3, ch. 2], which differs from an
IFS in that each of the individual mappings operates on a
subset of the image, rather than the entire image. Since
the image support is tiled by “range blocks”, each of which
is mapped from one of the “domain? blocks” as depicted in
Figure 1, the combined mappings constitute a transform
on the image as a whole. The transform minimising the
collage error within this framework is constructed by indi-
vidually minimising the collage error for each range block,
which requires locating the domain block which may be
made closest to it under an admissible block mapping. This
transform is then represented by specifying, for each range
block, the identity of the matching domain block together
with the block mapping parameters minimising the collage
error for that block. Distances are usually measured by
the MSE (Mean-Squared Error), equivalent to the distance
derived from the /? inner product [1, pg. 133], since opti-
misation® of the standard block mappings is simple under
this measure [3, pp. 20-21].
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Fig. 1. One of the block mappings in a PIFS representation.

The fundamental principle of fractal coding clearly leaves
considerable latitude in the design of a particular imple-
mentation. Within this broad framework, the differences
between the majority of existing fractal coding schemes
may be classified into the following categories:

o The partition imposed on the image support by the range
blocks.

o The composition of the pool of domain blocks.

¢ The class of transforms applied to the domain blocks.

o The type of search used in locating suitable domain
blocks.

[6, pp. 207-208] in Jacquin’s early work.

2The names of these blocks are derived from their roles in the map-
pings. Note, though, that these labels are reversed by Barnsley [7,
pg. 181].

3Optimisation with respect to the sup norm has also been consid-
ered [8].



¢ The representation and quantisation of the transform pa-
rameters.

There are unfortunately very few theoretical results on
which design decisions in any of these aspects may be
based, and choices are often made on a rather ad hoc basis.
In addition, these categories are not independent, in the
sense that any comparative analysis of coding performance
between different options in one of these categories is usu-
ally contingent on the corresponding choices in the other
categories; a meaningful comparison between the relative
merits of particular choices in each category is consequently
very difficult. This review is therefore intended primarily
as an overview of the variety of schemes that have been
investigated, although brief comparisons are made where
possible. Details of the more theoretical aspects of fractal
compression, such as the collage theorem and convergence
conditions, are presented where appropriate, and the re-
view is concluded with a wavelet based analysis of fractal
compression, and a comparison of the performance of the
most effective fractal coding based compression algorithms
in the literature.

While fractal coding of colour images [9] [10] and video
[11] [12] [13] have been investigated, space limitations ne-
cessitate the restriction of the scope of this review to the
coding of greyscale images (all of which may be assumed to
have 8 bits/pixel). Since publications responsible for intro-
ducing new concepts are usually cited in derived work, we
have in some cases referenced the more recent or easily ac-
cessible work. In addition to the proceedings [14] [15] of the
1995 NATO conference on the subject, of which many of
the papers are referenced in this review, there are current-
ly three books devoted entirely to this subject. The book
by Barnsley and Hurd [7], the first on the subject, reveals
relatively little practical detail. The book edited by Fisher
[3] contains two introductory chapters and a collection of
significant work by a number of authors, while the recent
book by Lu [16] combines introductory material with an
in-depth discussion of many aspects of fractal coding.

II. PARTITION SCHEMES

The first decision to be made when designing a fractal
coding scheme is in the choice of the type of image parti-
tion used for the range blocks. Since domain blocks must
be transformed to cover range blocks, this decision, togeth-
er with the choice of block transformation described later,
restricts the possible sizes and shapes of the domain block-
s. A wide variety of partitions have been investigated, the
majority being composed of rectangular blocks.

A. Fized size square blocks

The simplest possible range partition consists of the fixed
size square blocks [17] [18] [19] depicted in Figure 2a. This
type of block partition is successful in transform coding
of individual image blocks? since an adaptive quantisation
mechanism is able to compensate for the varying “activity”

4Such as implemented in the JPEG standard [20].

levels of different blocks, allocating few bits to blocks with
little detail and many to detailed blocks.

Fractal coding based on the standard block transform,
in contrast, is not capable of such adaptation, representing
a significant disadvantage of this type of block partition
for fractal coding. This deficiency may be addressed by
introducing adaptivity to the available block transforms as
described in Section III-B, but the usual solution is to intro-
duce an adaptive partition with large blocks in low detail
regions and small blocks where there is significant detail.
There is, of course, a trade-off between the lower distortion
expected by adapting the partition to the image content,
and the additional bits required to specify the partition
details.
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Fig. 2. Right-angled range partition schemes.

B. Quadtree

The quadtree partition (see Figure 2b) employs the well-
known image processing technique based on a recursive s-
plitting of selected image quadrants, enabling the resulting
partition to be represented by a tree structure in which
each non-terminal node has four descendents. The usual
top-down construction starts by selecting an initial level in
the tree, corresponding to some maximum range block size,
and recursively partitioning any block for which a match
better than some preselected threshold is not found [3, ch.
3] [16, pp. 93-105] [21] (or more efficiently, by deciding
whether to split a block by examining the variance of its
pixels [16, pp. 105-106] [22]). The alternative bottom-up
construction begins with a uniform partition using the s-
mallest block size, and then proceeds to merge those neigh-
bouring blocks for which a more efficient representation
is provided by the resulting larger block one level up the
quadtree [16, pp. 93-105] [23]. Compact coding of partition
details is possible by taking advantage of the tree structure
of the partition.

Jacquin’s original scheme [24] [25] [26] used a variant



of the quadtree partition in which the block splitting was
restricted to two levels. Instead of automatically discarding
the larger block prior to splitting it into four subblocks if an
error threshold was exceeded, it was retained if additional
transforms on up to two subblocks were sufficient to reduce
the error below the threshold.

C. Horizontal-vertical

The Horizontal-Vertical (HV) partition [3, ch. 6] [5, app.
A] [27] [28] (see Figure 2c), like the quadtree, produces a
tree-structured partition of the image. Instead of recursive-
ly splitting quadrants, however, each image block is split
into two by a horizontal or vertical line. Splitting posi-
tions may be constructed so that boundaries tend to fall
along prominent edges [3, pg. 120], or based on the accu-
racy of approximation by constant pixel values in each of
the new blocks created by a particular split [28]. Compact
coding of the partition details, similar to that utilised for
the quadtree partition, is possible.

D. Irregular regions

A tiling of the image by right-angled irregular-shaped
ranges may be constructed by a variety of merging strate-
gies on an initial fixed square block [29] [30] [31] [32] (see
Figure 2d) or quadtree [33] partition; chain codes allow the
range shapes to be coded efficiently.

E. Polygonal blocks

A number of different constructions of triangular parti-
tions (see Figures 3a-3c) have been investigated. Starting
by splitting the image into two main triangles by the inser-
tion of a suitable diagonal, progressively smaller triangles
may be placed where necessary by a 3-side split [5, app. A]
in which a new vertex is created on each of the sides of an
existing triangle, or by a 1-side split [34] [35] in which an
existing triangle is split into two by inserting a line from
a vertex of the triangle to a point on the opposite side.
An alternative triangular partition is based on a Delaunay
triangulation [36] of the image, which is constructed on an
initial set of “seed points”, and is adapted to the image by
adding extra seed points in regions of high image variance
[37] [38] [39]-

Polygonal partitions have been constructed by recursive
subdivision of an initial coarse grid by the insertion of line
segments at various angles [40] (see Figure 3d), as well as
by merging triangles, in a Delaunay triangulation, to form
quadrilaterals [41].

F. OQwverlapped blocks

Overlapping range blocks have been used to reduce
blocking artifacts, without a corresponding improvement
in MSE, within a quadtree partition [42], and with multi-
ple domain transforms (such as those described in Section
ITI-B.4) in a fixed block size partition [43]. A more complex
form of block overlapping, but with a fixed block size range
partition, provided improved MSE and subjective quality
[44]. These techniques, while promising, have been over-
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Fig. 3. Triangular and polygonal range partition schemes.
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taken to a large extent by developments in wavelet domain
fractal coding, reviewed in Section IX.

G. Comparison

The simplest partition (quadtree) was found to provide
the best rate distortion results in a comparison of polyg-
onal, HV, and quadtree partitions [40]. An independent
comparison between the quadtree and HV partitions, in
contrast, found the HV partition to be superior [45], while
irregular partitions have been found to outperform a fixed
square block partition [29] [31] as well as a quadtree parti-
tion [30] [33]. A disadvantage of partitions which are not
right-angled is the interpolation required in performing the
block transforms when there is no simple pixel-to-pixel cor-
respondence between domain and range blocks.

I1I. BLoCK TRANSFORMS

The type of block transform selected is a critical ele-
ment of a fractal coding scheme since it determines the
convergence properties on decoding, and its quantised pa-
rameters comprise the majority of the information in the
compressed representation. A distinction is made here be-
tween transforms operating on the block support (“geomet-
ric” transforms in Jacquin’s terminology® [26]) and those
operating on the pixel values (termed “massic” transforms
by Jacquin).

A. Block support

The permissible transforms on the block support are re-
stricted by the block partition scheme, since domain block
supports are required to be mapped onto range block sup-
ports.

5The block isometries are considered to be block support transforms
here, in contrast to Jacquin’s usage.



A.1 Rectangular blocks

The block support transform for rectangular blocks may
be separated into an initial spatial contraction followed, for
square blocks, by one of the square isometry operations.

The spatial contraction of domains as introduced by
Jacquin [25] is almost universally applied, despite being i-
nessential for the contractivity of the image map as a whole
[6] [16, pp- 127-129] [27]. While contraction by a factor of
two in width and height is standard, smaller factors have
also been considered [46], and increasing® this to a factor of
three has been found to improve decoder convergence [48].
Contraction is usually achieved by the averaging of neigh-
bouring pixels, which may be improved by the addition of
an anti-aliasing filter [49]. The alternative of decimating by
discarding pixels [3, pg. 141] is slightly faster, but results
are inferior to those obtained by averaging [27].

The symmetry operations utilised by Jacquin are widely
used as a means of enlarging the domain pool. While some
authors have reported similar frequency of usage for all
of the isometry operations [50] [51], others have presented
evidence to the contrary [16, pp. 123-125] [52]. These con-
flicting results are possibly due to the sensitivity to design
choices in each of the categories listed in the introduction.
Despite their widespread usage, there is evidence that their
application is counter-productive in a rate distortion sense
[51] [53] [54] [55]. Affine transforms other than the isome-
tries have also been considered [16, pp. 129-131], and gen-
eralised square isometries constructed by conformal map-
ping from a square to a disk are reported to be capable of
improved performance over the true square isometries [56].

A.2 Non-rectangular blocks

An affine mapping on the image support is sufficiently
general to transform domain triangles to range triangles
in a triangular partition. These affine transforms are de-
termined by requiring that the transformed vertices of the
domain blocks match those of the range blocks. Depending
on their structure, polygonal blocks may require transforms
more general than affine in transforming domain to range
blocks [41].

B. Block intensity

The simplest intensity transform in common use is that
introduced by Jacquin

Mu = su+ol, (1)

where s and o are variable scaling and offset coefficients, u
is a suitable vector representation [2] of the domain block
after application of any block support operations such as
spatial contraction, and 1 is a vector of unit components.

61t is also possible, by an appropriate choice of spatial contractivity,
to achieve decoding by a single iteration of the transform [3, pp. 171-
172] [47, pp. 56-60].

B.1 Orthogonal projection

The subtraction of the DC component of the domain
block prior to scaling [3, ch. 8] [57]

1
Mu=s (u— <|rl’“2>1> +ol, (2)
(where (-,-) and || - || are the inner product and derived

norm of an appropriate inner product space - usually 2)
creates transformed domains which are orthogonal to the
fixed block 1, with the desirable effect of decorrelating the
s and o coefficients. In addition, convergence at the de-
coder within a fixed number of iterations may be guaran-
teed by imposing the additional restrictions of a quadtree
range partition, a domain pool constructed so that every
domain block contains an integer number of range blocks,
and spatial contraction by pixel averaging [3, pg. 160].

B.2 Frequency domain

Selective manipulation of the block spectral contents is
allowed by the transform [49] [58] [59]

a 0 0 ... bo

. 0 a4 0 ... by
Mu=C 0 0 a

where C' is the Discrete Cosine Transform (DCT) matrix.
Adaptivity to block activity levels may be achieved by vary-
ing the number of a; and b; that are individually specified,
the remainder being set to zero. This hybrid scheme con-
stitutes a transition between conventional fractal coding
and transform coding, being equivalent to the former when
all of the a; are equal, and only by is non-zero, and to the
latter when a full set of b; values is utilised, and all of the
a; are zero.

Alternative hybrids between fractal and transform cod-
ing have been constructed by DCT coding of the error im-
age resulting from fractal coding [19] [60].

B.3 Multiple fixed blocks

Instead of the usual single fixed block 1, multiple fixed
blocks v; may be employed in the transform

Mu=au—|—2b,~vi. (4)

Orthogonalisation of the domain block term with respect
to the fixed block terms may be achieved by projecting the
domain block perpendicular to the subspace spanned by
the fixed domain blocks [3, ch. 8].

Transform (1) may be extended by including fixed blocks
with constant gradient in the vertical and horizontal direc-
tions respectively [61] [62]. Further extensions [18] [51] [63]
to “order 2 polynomials” by including blocks with quadrat-
ic form, and to “order 3” with the addition of cubic form
blocks have also been considered. The “order 2” trans-
form was found to be best, in a rate distortion sense, in
experiments with limited domain searching [64].



If all of the a; in the frequency domain transform (3) are
equal, it becomes equivalent to transform (4) with DCT
basis vectors as the fixed blocks (such a transform, with
orthogonalisation with respect to the subspace spanned by
the first few DCT basis vectors, has been examined [65]
[66]). Although no explicit comparison has been made be-
tween the use of polynomial or DCT basis fixed blocks, in
the absence of experimental evidence the DCT basis blocks
are likely to be superior, since they are known to form an
efficient basis for image blocks and, unlike the polynomial
bases, are mutually orthogonal.

B.4 Multiple domains

A transform constructed by adding independently scaled
domain blocks has also been considered [3, ch. 10]. Com-
putational tractability was achieved by creating an orthog-
onal basis of the domain block set, representing each range
by a scaling of as few basis vectors as possible. A variety
of mappings using multiple fixed blocks as well as multi-
ple domain blocks, including domain blocks with no spa-
tial contractivity, have also been investigated [67] [68] [69],
a linear combination of these blocks being selected via a
technique known as matching pursuit.

IV. DoMAIN POOL SELECTION

The domain pool used in fractal compression is often
referred to as a virtual codebook [52], in comparison with
the codebook of Vector Quantisation (VQ) [70]. It should
be clear from this comparison that a suitable domain pool is
crucial to efficient representation since, although increased
fidelity may be obtained by allowing searching over a larger
set of domains, there is a corresponding increase in the
number of bits required to specify the selected domain.

A bound |s| € Smax is usually placed on the block in-
tensity transform scaling coeflicients in order to guarantee
contractivity (see Section V-B), in which case a scaling co-
efficient exceeding this bound is set equal to it prior to
calculating the distance between the transformed domain
and the range.

A. Global domain pool

The simplest domain pool design provides a fixed domain
pool for all range blocks in the image, or for a particular
class of range blocks distributed throughout the image (eg.
range blocks of one size in a quadtree partition). This
design choice is motivated by experiments indicating that
the best domain for a particular range is not expected to be
spatially close” to that range to any significant degree [3,
pp- 69-71] [27, pp. 56-57] [50] (it is clear from the following
section, however, that there is some disagreement over this
issue).

In the fixed square block or quadtree partitions, domain
blocks may be placed at intervals as small as one pixel.
Since this results in an enormous domain pool which is slow

"Note that this is the distance (measured in pixels) in the image
support between the range and domain block centres, and not the dis-
tortion resulting from representing the range block by that particular
domain block (the collage error for that range block).

to search, larger domain increments are usually selected,
typically equal to the domain block width [3, ch. 3] [17] [27]
or half the domain block width [3, ch. 3, 4] [24]. Improved
convergence is also obtained with either of these increments
[3, ch. 8], while the larger of the two corresponding domain
pools was found to be superior in fidelity and compression
ratio [27].

In adaptive partitions the domain pool usually consists
of the larger blocks in the range pool [27], or larger blocks
created by the same partitioning mechanism [29] [41].

B. Local domain pool

A number of researchers have noticed a tendency for a
range block to be spatially close to the matching domain
block [48] [49], based on the observed tendency for distri-
butions of spatial distances between range and matching
domain blocks to be highly peaked at zero [52] [64] [71].
Motivated by this observation, the domain pool for each
range block may be restricted to a region about the range
block [24], or a spiral search path may be followed outwards
from the range block position [48] [49]. More complicated
alternatives include using a domain position mask, centred
at each range block, with positions in the mask dense near
the centre and progressively less dense further away, and
using widely spaced domain blocks together with a fine lat-
tice in the vicinity of the best match in the coarse lattice
[71].

The domain search may also be dispensed with entirely,
either by selecting each domain in a fixed position relative
to the range [61] [62], or by placing the domain so that it
contains the range, and the dominant edge is in the same
relative position in both blocks [65]. The search may also
be restricted to a very small set about the range block [18].
There is some evidence that local codebooks outperform
global ones [16, pg. 122], and that any domain searching
is counter-productive in a rate distortion sense [64] for the
“order 2” polynomial transform described in Section III-
B.3.

C. Synthetic codebook

In a significant variation® from standard fractal coding,
the domain pool may be extracted from a low resolution im-
age approximation (which is coded independently), rather
than from the image itself [72] [73] [74]. Decoding does not
require iteration, and the collage error minimised at the
encoder is also the true distortion.

D. Hybrid codebooks

A coding scheme allowing range blocks to be represent-
ed either as mappings from domain blocks or a fixed VQ
codebook was found to perform significantly better® than
when the VQ option was excluded, and slightly better than
when the fractal option was excluded [75].

8This technique does not, strictly speaking, fall within the scope of
fractal coding, since the representation is not in any sense a fractal.
9Encoder and decoder speeds were also improved.



E. Comparison

The question of domain locality (the tendency for a range
and matching domain to be spatially close) plays an impor-
tant role in the design of an efficient domain pool. While
the degree to which this effect is present may be dependent
on the particular fractal coding scheme for which it is eval-
uated, this does not adequately explain the extent of the
disagreement in the literature (see reference [76, pp. 46-47,
75-77] for further discussion of this issue).

V. ENCODING

Fractal coding is achieved by representing a signal x by
a quantised representation of a contractive transform T
which is chosen such that the fixed point x7 of T is close
to x. Although xp may be recovered from T by the itera-
tive process described previously, there is usually no simple
expression for x7 in terms of its quantised coefficients. As
a result, and given the constraints on 7' imposed by its
dependence on its constituent coefficients, it is not usual-
ly possible to optimise those coeflicients to make the fixed
point as close as possible to a given signal x.

A. The collage theorem

Since the the distortion |ler|| (where er = x — x7) in-
troduced by the fractal approximation can usually not be
directly optimised for these reasons, the standard approach
is to optimise 7' to minimise the collage error ||ec|| (where
ec = x — T'x), which is usually computationally tractable.
The collage theorem guarantees that ||er|| may be made
small by finding T such that [lec|| is sufficiently small®.

The most common form of the collage theorem is

ezl < (1 =)™ lecll,

where T is a contractive transform with Lipschitz factor
(i.e. ||Tx—Ty| < af|x —y||). In image coding terms this
implies that a transform T, for which the fixed point x7
is close to an original image x, may be found by designing
the transform 7" such that the “collage” T'x is close to x,
achieved by minimising the collage error individually for
each range block. A similar bound is possible for eventual
contractivity [3, ch. 2], while a tighter collage bound is pos-
sible by imposing certain restrictions, consisting primarily
of requiring DC subtraction in the block transform and set-
ting the domain increment to be equal to the range block
size [3, ch. 8] [57]. Despite the considerable improvement
over the usual collage theorem bound, this bound is still
rather loose [57].

The majority of existing fractal coding schemes restrict
T to be an affine transform Tx = Ax + b, where A is a
linear transform (encapsulating the combined effects of the
spatial contractions, isometry operations, and scalings of
the individual domain to range mappings) and b is an offset
vector (composed of the offsets in each of the individual

107t is important to note that the collage error ||ec|| is usually
smaller than the actual distortion ||er|| [76, pp. 87-88] [77], whereas
the various forms of the collage theorem provide an upper bound in
terms of the collage error.

domain to range mappings) [3, ch. 7]. In this case ec =
(I — A)er, and bounds'?

@ +[1AD " ecll < ller|l < 1 = [ AN lec|

may be derived, in terms of an operator norm ||A|| con-
sistent with the vector norm [78], by noting that that
Hhall =1Ivll | < [fa = vl < [[ul] + [[v]| for arbitrary vec-
tors u and v.

B. Conwvergence

It is clearly desirable that the encoding process produce
a transform for which the decoding sequence is guaranteed
to converge; while necessary and sufficient conditions for
convergence are known, their computation during coding
is generally not feasible, posing a significant problem for
a practical encoder implementation. Contractivity under
the sup norm may be guaranteed'? by setting smax < 1 for
each of the block transforms of which the image transform
T is composed [3, ch. 2] [6, pp. 207-210]. This restriction
is sufficient but not necessary for convergence, and empir-
ical evidence indicates that convergence is often achieved
for larger values of spax, for which reduced distortion is
obtained in reconstruction [27], although smaller values of
Smax Provide more rapid convergence on decoding [3, pg.
62]. A disadvantage of increasing Smax is a corresponding
increase in the cost or distortion in quantising the scaling
coefficients.

B.1 Orthogonalisation

The introduction of an orthogonalisation operator to
each domain block, making it orthogonal to the constant
blocks, results in a transform which (given a few addition-
al constraints) may be shown to converge exactly within a
fixed number of iterations [3, ch. §].

B.2 Mapping cycles

The interdependence between ranges at one iteration of
decoding and domains at the next may be analysed in terms
of “mapping cycles”, each of which consists of an indepen-
dent set of domain to range mappings [79] [80] [81]. The
full image transform is convergent if each of its independent
cycles is convergent.

B.3 Transform eigenvalues

When the transform is affine, a necessary and sufficient
condition for convergence of the transform sequence on de-
coding is that the spectral radius'® of the linear part be less
than unity (equivalent to eventual contractivity) [78] [79]
[82] [83]. It is possible, in simple cases, to determine the
spectral radius in terms of the transform parameters, allow-
ing analytic determination of convergence requirements on

!1Note that the upper bound is only valid when ||A4]| < 1.

12Note however, that, since it is not additive, the sup norm is not
appropriate for independent blockwise collage minimisation, which is
usually performed under the [? norm.

13The spectral radius r(A) of linear transform A is the maximum
absolute value of the eigenvalues of A.



the transform coefficients. While computation of the spec-
tral radius is difficult for the general case, the probability
of contractivity may be estimated by considering a statis-
tical distribution for the eigenvalues, based on probability
distributions for the transform parameters [79].

C. Optimal encoding

Although the collage theorem currently forms the basis
of virtually all fractal coders, it does not result in an opti-
mal image representation given the constraints imposed on
the transform. Suboptimality is, amongst others, a result
of optimisation of individual block transforms with respect
to the domains in the original image, whereas only the fixed
point domains are available during decoding. It has been
shown that optimal encoding is NP-hard [84], and that
collage based coding may produce a solution of arbitrary
distance from the optimal solution. Collage based encod-
ing may, however, be shown to be optimal under certain
restrictions [3, ch. 8] [47].

Updating the scaling and offset coefficients after coding,
by re-optimising them with respect to domains extracted
from the decoded image, was found to result in reduced dis-
tortion on reconstruction [49], as was a scheme involving
multiple compression stages during each of which domain-
s were extracted from the decoded image of the previous
stage [16, pp. 81-82]. Improvements due to more compu-
tationally intensive optimisation techniques have also been
reported [85] [86].

VI. SEARCH STRATEGIES

The significant computational requirements of the do-
main search resulted in lengthy coding times for early frac-
tal compression algorithms. The design of efficient domain
search techniques has consequently been one the most ac-
tive areas of research in fractal coding, resulting in a wide
variety of solutions. The survey presented here is rather
brief due to space restrictions; the reader is referred to a
comprehensive review [87] of these techniques for further
details.

A. Invariant representation

The search for the best domain block for a particular
range block is complicated by the requirement that the
range matches a transformed version of a domain block;
the problem is in fact to find for each range block, the do-
main block that can be made the closest by an admissible
transform. Given a set of domain blocks d; and the ad-
missible transforms My parameterised by p, the optimum
domain block for range block r results in a collage error of
ming ; ||r — Mpd,]|.

The problem may be simplified by constructing an ap-
propriate invariant representation for each image block.
Transforming range and contracted domain blocks to this
representation allows direct distance comparisons between
them to determine the best possible match [88].

The standard invariant representation for the block in-

tensity transform'* is constructed by applying the orthogo-

nal projection onto the orthogonal complement of the space
spanned by the fixed block terms, followed by normalisa-
tion. Alternative representations'® for the single constant
block transform utilise the DCT (or another orthogonal
transform) of the vector followed by zeroing of the DC ter-
m and normalisation. This representation can decrease the
time required for an efficient domain search [48] [91] [92],
and allows the utilisation of a distance measure adapted to
the properties of the human visual system [16, pp. 190-193]
[48] [58].

B. Domain pool reduction

One of the simplest ways of decreasing coding time is to
decrease the size of the domain pool in order to decrease the
number of domains to be searched, which is often achieved
by a spatial constraint on the domain pool for each range,
as described in Section IV-B. Noting that a contractive
mapping requires a domain with a higher variance than
the range to which it is mapped, domains with low vari-
ance may be excluded from the domain pool [93]. Alterna-
tively, the domain pool may be pruned in order to exclude
domains which have similar invariant representations [94]
to other domains in the pool.

C. Classification

Classification based search techniques often do not ex-
plicitly utilise an invariant representation as formalised
above, but rely instead on features which are at least ap-
proximately invariant to the transforms applied. Domain
and range blocks may either be classified into a fixed num-
ber of classes according to these features 3, ch. 3] [24] [25]
[71], a matching domain for each range only being sought
within the same class, or inspection of domains may be re-
stricted to those with feature values close to those of the
range [34] [50].

D. Distance bounds

Instead of locating likely matches, impossible matches
may be excluded by utilising features in terms of which
distance inequalities are available. Examples include inner
products with a fixed set of vectors [6] which provide lower
bounds on distances between domain and range blocks, al-
lowing many of the domains to be excluded from the actual
distance calculation, and features based on the distribution
of energy within image blocks [95].

E. Multiresolution search

A tree search has been applied to a pyramid of progres-
sively coarser resolution domains, the search at each level
progressing in the region of the best match in the previous
level [96] [97]. A similar technique, using collage errors at
coarse resolutions as lower bounds for those at finer reso-
lutions, has also been implemented [15, ch. 7] [98].

14 An appropriate invariant representation with respect to the block
isometries is not possible, although invariant features are [89] [90].

15These alternatives are equivalent to the standard representation
in a different basis.



F. Clustering

Clustering of the domain blocks, under a distance mea-
sure invariant to the block transforms, allows a fast search
by locating the optimum cluster centre and then the opti-
mum domain within that cluster. The Generalised Lloyd
Algorithm [3, ch. 9] [37] [47], the Pairwise Nearest Neigh-
bour algorithm [99] and Self-Organising Maps [100] have
been utilised in the construction of these clusters. The
computational cost of clustering during encoding may be
avoided by designing the clusters on an initial training set
rather than determining them adaptively for each image [3,
ch. 4] [100].

G. Efficient distance computation

Since a significant fraction of the computational cost of
the domain search lies in the actual calculation of distances
between domain and range blocks, the time required for the
search may be reduced by improving the efficiency of these
calculations.

A simple technique for decreasing search time is the par-
tial distance [70, pp. 479-480] method used in VQ. The effi-
ciency of this search is improved by constructing an invari-
ant representation from Hadamard transform coefficients
in zig-zag scan order [48], since the energy packing proper-
ty of this transform shifts most of the variance to the initial
elements of the vector. A similar approach based on the
Haar transform has also been investigated [95].

Efficient computation of the inner products between do-
main and range blocks can result in a significant improve-
ment, since these calculations dominate the computational
cost of the distance computations. These calculations may
be efficiently performed in the frequency domain by con-
sidering the calculation of the inner products between a
particular range block and all domain blocks as a convolu-
tion of the image with that range block [101].

H. Nearest neighbour search

Efficient nearest neighbour search techniques utilise a
preprocessing stage to arrange the set to be searched in an
appropriate data structure, usually a tree representing a
hyperplane induced partition of the search space, allowing
the vector in the search set closest (the invariant represen-
tation of range and domain blocks is used) to the specified
vector to be located without actually examining every point
in the set. Existing techniques [102, ch. 2, 3] [103] have
been applied to domain searching [16, pp. 179-200] [88]
[92] [104] [105], as have algorithms specifically designed for
this purpose [95] [106] [107].

VII. TRANSFORM REPRESENTATION

Domain positions, and any additional partition infor-
mation required in an adaptive partition, are represent-
ed by discrete values and are not subjected to quantisa-
tion. There are usually compact methods of representing
the range partition details in adaptive partitions such as
quadtree or HV [3, ch. 3, 6]. Efficient representation of
the domain positions [16, pp. 114-121, 132-133] may be

achieved by indexing in decreasing order of probability of
a match, as in the spiral search [49] described in Section
IV-B, a Finite State approach based on the correspond-
ing VQ technique [70, ch. 14] also having been considered
[108].

A. Quantisation

Although the distributions for the scaling and offset coef-
ficients have been observed to be non-uniform, quantisation
is usually uniform [3, ch. 3] [17], but with the possibility of
compensation for inefficiency by subsequent entropy cod-
ing. Bit allocations!® for the scaling and offset coefficients
have been respectively 2 and 6 [52], 5 and 8 [109], and
between 2 and 4 for the scaling and between 3 and 8 for
the offset [9]. An allocation of 5 and 7 bits to the scaling
and offset coefficients respectively provided the best per-
formance in a comparison over a number of bit allocations
[3, pp. 61-65].

Logarithmic [3, pg. 63] and pdf optimised [109] quan-
tisation of the scaling coefficients have been investigated,
the former not resulting in an improvement over unifor-
m quantisation, with which the latter was not compared.
Since the scaling coefficients are often rather coarsely quan-
tised, there is a significant advantage in calculating collage
errors for each domain block using quantised transform co-
efficients [27, pg. 45] [109], although this may be difficult
to achieve for some of the fast domain search methods [92].

It has been observed that the standard block transfor-
m (without DC subtraction!”) results in correlated scaling
and offset coefficients [9] [110]. Alternative responses to
this observation have been VQ of combined scaling and
offset coefficients [110] [111], and linear prediction of the
offset from the scaling [9]. Since there is usually also some
correlation between the offset coefficients for neighbouring
blocks, some form of predictive coding is indicated [16, pp.
140-144], but presents practical difficulties for some range
partitions [109].

Quantisation optimisation has also been investigated for
polynomial fixed block transforms [51] [63], and VQ of the
transform coefficients has been considered [49] for the fre-
quency domain transform.

B. Rate-distortion optimisation

An adaptive block coding technique may provide a num-
ber of options (eg. either splitting the block into small-
er blocks or adding additional fixed blocks into the block
transform), each associated with a different cost in bits, for
reducing the distortion in representing a particular block.
In this case the appropriate choice is not the option pro-
viding the lowest distortion, but the option for which the
ratio between the decrease in distortion and the associated
bit cost is the greatest.

16Constant scaling coefficients fixed at 0.50 [53] and 0.75 [16, pp.
156-159] have also been used, and the scaling coefficients have been
restricted to the set {0.0,0.5,1.0} in a hybrid scheme [19].

17The same transform with DC subtraction does not result in a
significant correlation between these coefficients [109].



Such rate-distortion optimisation has been applied in the
selection between adaptive block transforms [58] [66], in
the construction of an optimum range partition [16, pp.
93-105] [28] [66], in the selection of local domain search
regions [16, pp. 114-123], in the selection of an optimum
linear combination of basis blocks [69], and in the decision
whether a mapping from a domain block is beneficial in
a hybrid coding scheme [65]. As a result of the encoding
difficulties (described in Section V) necessitating the use
of the collage theorem, complete rate-distortion optimisa-
tion over all components of the representation is, however,
usually impractical.

VIII. DECODING

Reconstruction of the encoded image is achieved by com-
puting the fixed point of the image transform 7' from its
encoded coefficients. Since the encoded representation of a
transform may be independent of the size of the encoded
image, a form of interpolation is possible by reconstruct-
ing the fixed point at a higher resolution than the encoded
image [3, pg. 59].

A. Standard decoding

Reconstruction of the fractal coded approximation of a
signal is theoretically based on Banach’s fixed point the-
orem which guarantees that the sequence constructed by
the iterative application of a contractive transform 7' to
an arbitrary initial element xg of a complete metric space
converges to the fixed point x7 = lim,,_,, T™xg of that
transform.

When the transform T is affine, with Tx = Ax + b, the
fixed point may, in principle, be expressed as xr = (I —
A)~'bif [I—A| # 0 (equivalent to the condition that A has
no eigenvalues equal to 1). If the spectral radius r(4) < 1,
a Taylor series expansion of the term (I — A)~! provides
an alternative derivation of the reconstruction series xp =
b + Ab + A%b + ... resulting from iterated application of
the transform 7" to an initial zero vector.

B. Successive correction decoding

Improved decoding speed has been achieved by a succes-
sive correction scheme (such as Gauss-Seidel [112]), updat-
ing each range block in place as soon as the corresponding
domain is mapped to it, rather than mapping the domains
into a temporary image on each iteration [53] [113] [114].
This technique was found to provide a further improvement
when decoding of range blocks was ordered so that region-
s containing the most highly utilised domain blocks were
decoded first on each iteration [113] [115].

C. Hierarchical decoding

If the domain increment is equal to the range block size,
a PIFS may be iteratively decoded to a minimum-length
vector in which each range block consists of a single pix-
el. Given a few additional restrictions [3, pg. 95], one may
consider the domain to range mappings as providing a rela-
tionship between consecutive resolution approximations in

the Haar wavelet basis. This relationship provides an algo-
rithm in which the range block dimensions are doubled at
each step, until the desired size is reached [3, ch. 5] [116]
[117]; a considerable computational saving is obtained over
applying the standard iterative method to full-sized blocks.

D. Pizel chaining

If spatial contraction is achieved by subsampling, each
pixel (considered as part of a range block) has a single asso-
ciated reference pixel (in the corresponding domain block)
from which it is mapped by the image transform 7'. Since
the reference pixel itself has an associated reference pixel,
a chain of associated pixels may be constructed in this way.
These chains may be utilised in decoding by either tracing
back the path of influence of a pixel until a known pixel
value is encountered, or by utilising a segment of the chain
long enough to provide an acceptable approximation of the
desired pixel value [3, pp. 305-307] [16, pp. 207-210].

E. Postprocessing

Postprocessing in the form of smoothing along block
boundaries has been found to be beneficial in reducing
blocking artifacts [3, pg. 59] [16, pp. 222-224].

F. Resolution independence

While “resolution independence” has been cited in the
popular technical press as one of the main advantages of
fractal compression [118], there is little evidence for the
efficacy of this technique. Subsampling an image to a re-
duced size, fractal encoding it, and decoding at a larger
size has been reported to produce results comparable to
fractal coding of the original image [21], although there is
no indication that replacing the fractal interpolation stage
by another form of interpolation would not produce com-
parable results. Comparisons with classical interpolation
techniques indicate that, while fractal techniques results in
more visually acceptable straight edges than linear interpo-
lators, they are inferior in terms of the MSE measure [119)].
An alternative study [120] found slightly better results for
the fractal technique in isolated cases, but a general supe-
riority for the classical techniques.

IX. WAVELET ANALYSIS

The most significant recent development in fractal cod-
ing theory is the independent discovery by a number of
researchers of a multiresolution analysis description of cer-
tain classes of fractal coding [77] [121] [122] [123]. This
discovery has not only resulted in improved fractal coders,
but a better understanding of the mechanism underlying
standard fractal coding.

A. Mappings between wavelet subtrees

If the domain increment is equal to the domain block
size, and subject to a few additional restrictions [3, pg. 95],
there is a direct correspondence between the domain and
range blocks (without DC component) in a signal, and sub-
trees rooted at consecutive resolutions in the Haar wavelet
transform of that signal (essentially in an extension of the



analysis described in Section VIII-C). The domain to range
mappings may be expressed as mappings between subtrees
if the block transform (2) with DC subtraction is used, a
domain subtree being mapped to a range subtree by scaling
the detail coefficients, shifting the entire subtree one reso-
lution higher, and discarding the highest resolution detail
coefficients.

The same analysis may be extended to images by consid-
ering the non-standard [124, pp. 313-316] extension of the
Haar basis to two-dimensions, in which subtrees in each of
the directional subbands are combined to form a composite
subtree (see Figure 4). The square isometries may also be
applied within this framework [77].
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Fig. 4. Detail coefficient extrapolation by mappings between sub-
trees.

Encoding is achieved by locating the best matching do-
main subtree for each range subtree, in the sense that the
MSE distance between the range subtree and appropriately
scaled domain subtree is minimised. Decoding within this
framework is achieved within a fixed number of iterations,
since the corresponding linear operator is strictly lower tri-
angular below a few initial rows - convergence problems for
small domain increments may be seen as a result of depen-
dency loops from high to low resolution detail coefficients
[125] [126].

B. General wavelet bases

This interpretation of fractal coding naturally suggests
the substitution of a smooth wavelet basis for the Haar ba-
sis. Note, of course, that strict correspondence with stan-
dard fractal coding breaks down under this extension, par-
ticularly for biorthogonal bases, where spatial and trans-
form domain energies are not equal. Such an extension was
found to reduce blocking artifacts and improve the recon-
struction MSE [77] [121] [127].

A number of hybrid coders have been implemented, com-
bining the subtree mapping of fractal coding with scalar
quantisation techniques of varying complexity [123] [125]
[128] [129].

C. Alternative schemes

In contrast to the generalisation of the usual subtree pre-
diction described above, a subband prediction scheme in the
non-standard image decomposition has also been proposed
[130] [131]. Each image subband is covered by range block-
s which are mapped from domain blocks of the same size
from the next lower resolution subband (see Figure 5). S-
ince each subband is predicted from the coded version of
the previous subband, contractivity is not required'®, and
the coding error may be evaluated at coding time. Low res-
olution subbands and residual errors after block prediction
were coded by Laplacian scalar quantisers [131], or by a
sophisticated Lattice Vector Quantisation technique [130].

Standard fractal coding of individual subbands (i.e. do-
main and range blocks are extracted from the same sub-
band) has also been considered [132]. Block shapes with-
in each subband were designed to reflect the correlation
structure within that subband, the blocks in the horizon-
tal directional subbands being horizontally elongated, for
example.
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Fig. 5. Mappings between subbands (note that these are not con-
strained by the tree structure as in Figure 4) in the subband
prediction algorithm [131].

X. PERFORMANCE COMPARISONS

The greatest difficulty in comparing results of different
lossy coding algorithms is the absence of an objective dis-
tortion measure which accurately reflects perceived distor-
tion. A further complication in the comparison of fractal
coding algorithms is the scarcity of theoretical results to
support design choices; as a result, most stages of coder
design are based on empirical studies, and the lack of con-
sensus on important issues is probably largely a result of
the dependence between different aspects of fractal coder
design referred to in the introduction. Coder design by a
“greedy algorithm” which optimises each stage separately
is therefore bound to fail.

18 As a result, it is not, strictly speaking, fractal coding, despite the
considerable similarities.



Since the most widely used test image is the 8 bits/pixel
512 x 512 Lena image, PSNR (Peak Signal-to-Noise Ra-
tio) results published for coding of this image may be used
as a basis for comparison!?, as displayed in Figures 6 and
7, between a variety of coding schemes. The wide range
in performance is striking, a number of the more effec-
tive algorithms offering performance comparable to that
of Shapiro’s EZW algorithm [133], which is often used as
a benchmark in the recent literature. While it is difficult
to identify the primary factors responsible for the superior
performance of the better algorithms, a few general ten-
dencies may be observed:

Partition The best algorithms tend to utilise quadtree par-
titions or their wavelet domain equivalents, although one of
the irregular partition algorithms also offers superior per-
formance. None of the non-right-angled partitions offer
competitive performance.

Transform The majority2° of the best algorithms either op-
erate in the wavelet transform domain, or utilise frequency
domain block transforms.

Transform Representation As might be expected, atten-
tion to quantisation of transform parameters, and rate-
distortion optimisation strategies appear to play a signifi-
cant role in improving performance.

Hybrids Many of the best algorithms are constructed as
hybrids of fractal coding and alternative techniques. In
many of these cases, and in particular, for the coder in
Figure 7a, the role of the fractal part in these hybrids is
relatively small.

XI. CONCLUSIONS

Despite the considerable attention received by the tech-
nical aspects of constructing a fractal representation of an
image, it is certainly not clear why a contractive transform
should be expected to provide an efficient representation
for natural images [134]; most authors assume, without di-
rect evidence, that natural images exhibit significant “self-
affinity”. Nevertheless, an understanding of the statisti-
cal image model?! underlying fractal compression, together
with associated flaws, has recently begun to emerge.

Motivation for the representation has been proposed in
terms of comparisons with alternative techniques such as
predictive coding [135], classified transform coding [136],
and VQ [47, ch. 5]. More direct statistical examination
[76] [128, ch. 4] has revealed the role played by the second
order statistics of the image model, a decaying power spec-
trum and the statistical self-similarity of fractional Brow-
nian motion models being most significant [126]. There

19Caution should be exercised in evaluating this comparison. First,
there are, unfortunately, different versions of the same image in com-
mon use, one of which is significantly easier to code than the other.
Second, PSNR is an unreliable measure of perceived image quality,
and while its definition involves the dynamic range of an image, this
value is usually taken as 255, despite images such as Lena not utilis-
ing the full 8 bits available. Finally, the exclusion of algorithms for
which published results for this image were not available makes a fair
comparison across all schemes impossible.

20The notable exception of Figure 6a was probably tested on the
more easily coded Lena image.

21Representing a coherent description of the image statistics re-
quired for fractal coding to be effective.
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a) Irregular partition coder [33].

b) Multiple domain transform [69].

¢) Quadtree partition coder with VQ of transform parameters [111].
d) Irregular partition coder [32].

e) HV partition coder [3, ch. 6].

f) Quadtree partition coder [3, ch. 3].

g) Triangular partition coder [41].

h) Irregular partition coder [29]

i) Quadtree partition coder [21].

j) Fixed square block partition coder [17].
k) Original Jacquin® 2-level coder [24].

) Triangular partition coder [35].

EZW EZW coder results [133].

%In a later publication [52] Jacquin reports on a similar coder for
which a PSNR of 31.4dB is achieved at a rate of 0.06 b/p; since the
coder described is very similar to the earlier one [24], it is likely that
a typographical error transformed 0.6 b/p into 0.06 b/p.

Fig. 6. Comparison of the performance of fractal coding (pure fractal
coders) and EZW for the 8 b/p 512 x 512 Lena image.

is evidence, however, that the underlying model does not
represent a particularly accurate characterisation of nat-
ural images [137]. An optimised VQ codebook generally
outperforms the domain pool of a fractal representation,
and domain pools extracted from different images are gen-
erally no less effective than those extracted from the same
image as the range blocks [47, ch. 5] [76] [138]. Further-
more, fractal coding is less effective than transform coding
for the underlying models of transform coding, even when
these models are statistically self-similar [76] [139], and it
appears as if the simpler zerotree recently introduced in
wavelet scalar quantisation [133] is able to account for sim-
ilar higher-order dependencies to those represented by the
underlying fractal coding model [126] [128, ch. 4].

While the performance comparisons presented here im-
ply that the better fractal coders offer rate distortion per-
formance at least comparable with the current state of the
art, it should be noted that the majority of these algorithms
are not classical fractal coders relying purely on image self-
affinity, but incorporate the ability to exploit alternative
forms of redundancy for which there is better evidence. It
remains to be seen whether fractal compression captures
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a) Hybrid wavelet significance map/fractal coder [129].

b) DCT domain block transform coder [49].

¢) Subband block prediction with PVQ [130].

d) Subband block prediction with scalar quantisation [131].
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EZW EZW coder results [133].

Fig. 7.

Comparison of the performance of fractal coding (hybrid

coders) and EZW for the 8 b/p 512 x 512 Lena image.

any statistical property of natural images which can not
be exploited as effectively by alternative techniques.
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