On the reduction of fractal image compression encoding time
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Abstract — Lossy image coding by Parti-
tioned Iterated Function Systems, popularly
known as Fractal Image Compression, has re-
cently become an active area of research. An
image is coded as a set of contractive trans-
formations in a complete metric space. As a
result of a well known theorem in metric space
theory, the set of contractive transformations
(subject to a few constraints) is guaranteed
to produce an approximation to the original
image, when iteratively applied to any initial
image. While rapid decompression algorithms
exist, the compression process is extremely
time consuming; an exhaustive search for the
optimum mappings is O(n*) for an n x n im-
age. The most common solution involves clas-
sification of domain and range blocks accord-
ing to features such as the presence of edges,
after which matches across class boundaries
are excluded. We propose a geometric con-
struction, allowing clustering, as well as pro-
viding upper and lower bounds for the best
match between domain and range blocks, al-
lowing blocks to be excluded from the compu-
tationally costly matching process.

I Introduction

A Partitioned ITterated Function System (PIFS) encod-
ing of an image consists of a set of transforms on regions
of the image. The set of regions from which the trans-
form domains are chosen (the domain blocks) overlap,
while the regions forming the ranges of the transforma-
tions are tiled (the range blocks)!.

The simplest implementation has all tiled b x b blocks
in the image as the set of range blocks, and all (over-
lapping) 2b x 2b blocks in the image as the set of do-
main blocks [1, pg. 912]. The set of transformations
consists of a spatial contraction (eg. averaging each 4
neighbouring blocks to construct a b x b block from a
2b x 2b block), followed by one of the 8 square symme-
try operations (4 rotations and 4 reflections), followed
by a contractive affine transformation on the greyscale
values (for a block with pixel values (p1,p2,...,pn)):

(Ts,o)i =sp;i+o
where —1 < s < 1 guarantees contractivity.

'The range/domain labels are occasionally reversed in
the literature, where the terminology is instead based on
the transformations used in image reconstruction.

If such mappings are found for each range block, their
union defines a mapping on the image as a whole. This
mapping will be a contraction mapping in the metric
space (with RMS distance measure) of greyscale im-
ages. This metric space is complete (ignoring the sam-
pling and quantisation, which fix limits as to how close
the sequence may approach the limit); Banach’s fixed
point theorem [2, pg 84] therefore implies that iterative
application thereof to any initial image will generate a
sequence converging to the unique fixed point of the
transformation.

The image is thus encoded as a set of transformations,
which have as their fixed point an image close to it
in the sense of the distance metric used. The trans-
formation co-efficients are then quantised and entropy
coded. In order to minimise the distance between the
image to be encoded and the fixed point of the transfor-
mation (ie. the lossiness of the encoding), a matching
domain block must be found for every range block, with
as small a distance as possible between them under the
set of transformations discussed above.

A more effective scheme utilises a quadtree partition of
range blocks, where a range block is subdivided into
four smaller blocks if no domain can be found to match
within an acceptable tolerance [1] [3]. A triangular
range partition is also reported to be effective [4].

II Computational Complexity

Consider an n x n image and b x b range blocks. The
number of tiled range blocks is n2 /b2, while the number
of domain blocks is (n — 2b + 1)?. The computation of
best match between a range block and a domain block is
O(b?). Considering b to be constant, the computational
complexity of an exhaustive search is O(n?).

The computational requirements for an exhaustive
search are prohibitive (in the region of 30 hours on
a SUN sparcl0 workstation for a 256 x 256 image).
The most common approach to reducing computational
demand is to classify the image blocks into a num-
ber of classes, and to avoid attempting matches across
class boundaries [5] (eg. a smooth domain block is un-
likely to match a range block containing an edge, under
any affine transformation), thereby avoiding the costly
matching process for these blocks. Saupe [6] has re-
cently proposed utilising an invariant (under the set of
transformations applied to domain blocks) representa-
tion of image blocks, followed by a fast nearest neigh-
bour search in the space of these representations. Ex-
pected encoding complexity based on this algorithm is

O(n?logn).



We propose a geometric view of the minimisation prob-
lem, which allows us to derive upper and lower bounds
of distances between blocks in terms of distances al-
ready computed. Computational load for this scheme
(for block to block matching, not for the the minimi-
sation algorithm as a whole) is independent of block
size, unlike direct computation, which is O(b?) for b x b

blocks.

III Minimisation problem

Consider an image I, together with the set of bxb range
blocks, and 2b x 2b domain blocks. Construct the set
of range vectors R C R" (where n = b?), by taking
the pixel values in each range block in scan-line order.
The set of domain vectors D C R" is constructed by
subsampling the domain blocks by averaging, followed
by the procedure applied to the range vectors.

Define S; : R" — R", 1 < i < 8 as the symmetry op-
erations on the square, and 7,5 : R” — R", a,b€ R
where (T, 3u); = au; + b. If we utilise the Euclidean
distance measure, the metric space (R",dg) is also an
inner product space, with the norm and distance de-
fined in the usual way:

l[ull = vu - u

dg(u,v) = [[u— v

The minimisation problem is then to find the u € D
such that ming 3 .||T4 5S.4 —v|| is a minimum, for each
v € R. Ignoring symmetry operations, which we have
yet to properly address within this framework (one may
view S; as generating an expanded domain set), we
consider finding ming 3||T, s — v|].

IV  Geometric construction

In this section we shall introduce a geometric view lead-
ing to our proposed solution to the previously described
minimisation problem. If the angle between vectors u
and v is ¢

cosgp= Y _
[l [l
We show later that the minimisation problem may be
restated in terms of angular distances between vec-
tors, and provide rapidly computable upper and lower
bounds on unknown angles as a function of known an-
gles.

Define 1, = (1,1,...,1) € R", where we shall re-
fer to 1 where n is obvious from context. Note that
1,]> = n. The transformations 7, may then be
written as T, yu = au 4 b1, and the minimum distance
between a range vector v and a domain vector u as
ming p |7, 34 — v||. Each domain vector, under the set
of transformations 7} 5, generates a plane in R", con-
taining span{1} (see figure 2).

Geometrically, if we define p to be the closest vector in
the plane span{u, 1} to v (see figure 1), and n = v — p,
the required minimum distance is ||n||. From a geo-
metric perspective, the minimisation requirement is to
find the closest domain “plane” to each range vector.

u

Figure 1: Geometry of perpendicular from span{u,1}
towv

We shall show that knowledge of the angles between
the planes, and the angle between a range vector and
one of the planes provides information regarding the
range vector angles with the other planes, making di-
rect computation of angular distances unnecessary for
certain vectors.
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Figure 2: Geometry of planes generated by domains
under operator T ;

Since p (as defined above) lies in span{u, 1}, we have
that p = a*u+5*1 for some a*,b*, and n = v—p. Since
n is orthogonal to span{u,1}, we have that n-u = 0
and n -1 = 0. Solving for a*, b*, we obtain

_ 1P v~ (u 1w 1)
(L[| = (u - 1)2

pe_ ulPv - 1— (- 1w w)
(L[] = (u - 1)2

n=v—a‘u—>5'1

*

where ||n|| is the required minimum distance.

V Projection operator

Since the planes generated by the domain vectors are
embedded in R" where n > 3, the planes do not have



a unique normal. In order to define an angle between
planes, we find for each plane a vector in that plane and
perpendicular to 1, and define angles between planes
in terms of angles between these vectors. In addi-
tion, we would like inequalities involving the angles be-
tween a range vector and two range “planes”. Since
the range vector, the two domain vectors, and 1 span a
4-dimensional subspace of R", we would like to project
these vectors into the 3-dimensional subspace perpen-
dicular to 1 (and containing the origin), thereby allow-
ing the application of results from solid geometry.

The following projection operator? satisfies both re-
quirements.

Definition 1

u-n
Pnu:u—(w)n

P,u projects u parallel to n into the space perpendicu-
lar to n, and containing the origin (see figure 3).

h u |l Paull 7 7

Figure 3: Projection operator

Since Piu = u—(ﬁ)l, we have that Pyu € span{u,1},
and Pju 1 1. Therefore we may define the angle be-
tween the planes span{u,1} and span{v,1} as the angle

between Piu and Piv.

The following results are required:

3
Lemma 1 If vi,v5,v3 € R°, and the angles between
vy, Uy and vo, v3 and v1,V3 are «qs, Qa3 and a1z Te-
spectively, then

la1a — ans| < anz < 12 + aos

Proof: a13 < a9+ as3 and its cyclic permutations are
a standard result of solid geometry (see [7, pg. 106] and
figure 4). This implies as3 — @12 < @13 and a1z —agz <
a13. The result follows immediately.

2It is interesting to note that Saupe [6] utilises an iden-
tical operator (apart from normalisation) for his divergent
approach.

v

Figure 4: Angular inequalities in R?

For brevity we introduce the notation v’ = Pyv for any
vector v.

Theorem 1 Given range vector v and domain vectors
u1,ug, and defining oy = L(v',u)) and oy = L(v',u)),
if 0 < ay,as < 7/2, then oy < @y = the minimum
distance fromv to span{ui,1} is less than the minimum
distance to span{uy,1}

Proof: Since span{u;,1} = span{u},1} we may write
the minimum distance vector n; in terms of u} and 1
rather than u; and 1, resulting in considerable simpli-
fication, as u} -1 = 0.

n;, =v—au — bl

where
. uv -~ vl
a= - b= 5
[l | [I1]]
giving
||m||2 =n; n; = ||v||2 — (uj -v)*  (v-1)°

lll> L[

If o € [0, 7/2] we have that cos « is positive and strictly
decreasing®.

Lo u)) < L(v' ub)

- uf v ul v’
(Y INICH (AR el
L (i v) (ug o)
[[a[[? [ [?
since v’ - u; = v - u} and we are considering positive

quantities only. Result follows by inspection of ||n;||%.

In the following section we shall show how these results
may be applied to the optimisation problem.

?Since we admit negative values of a*, the maximum pos-
sible angular distance is 7/2, and this condition is therefore
not problematic



VI Distance bounds

Consider the set of domain vectors u; ...u, and range
vectors vy .. .0,,. Define the angle between span{u;, 1}
and span{u;,1} by

Cos avj; = 71‘; u$
el [l )

Once ap; have been computed for some k& and all j,
lemma 1 gives bounds

loir — arj| < a5 < oy + ag;

on a;; since span{u;, u;, ug, 1} € R*, embedded in R,
and is projected into R? by operator P.

We propose clustering the u} according to angles a,
utilising lemma 1 to speed up the process. Choose an
initial vector, ) for example, and compute «y; Vi. De-
fine all u} such that aj; is less than a predetermined
threshold to be within a cluster centred at w}. Pick
a u; a large angular distance from ) and repeat the
process, utilising lemma 1 to exclude unnecessary com-
putation where possible. The process should terminate
with a set of k clusters®, within each of which the an-
gular distances from one vector to another are small.

Define the angle between v; and u; by

5 v; - uj
cos fij = ——

R AN

Theorem 1 guarantees that we may find the best match-
ing domain vector for range v} by minimising §;; over
all j. Compute the B;; to all k cluster centres. Since
angles are small within the clusters, lemma 1 may be
expected to give useful bounds on the angular distance
between v} and the cluster members. In addition, all
members of a cluster may be excluded if the angular dis-
tance to the cluster centre is large enough. In addition,
many important quantities may be rapidly computed
from these angles, eg.

o o
]

allowing the contractivity condition to be checked.

(ON] ﬁij

VII Conclusions

The proposed process reduces computational require-
ments in two separate ways. First, the clustering made
possible by theorem 1 makes distance computation un-
necessary for members of all clusters with sufficiently
large angular distance from the cluster centre to the
range vector in question. Second, lemma 1 allows ex-
clusion from direct computation of distances to cluster
members, by utilising the angular distances from cluster
centres to cluster members, and from the range vector
in question to cluster centres, which are already known
at this stage in the process.

*Assuming that only the most promising cluster is
searched the optimum number of clusters is k¥ & 1/ where
n is the number of domain vectors

While these results have yet to be tested empirically,
we expect a considerable reduction in computational re-
quirements. Many aspects remain unexplored, such as
the possibility of exploiting the continuity property of
images, which results in spatially neighbouring blocks
in an image having small mutual angular distances
where edges are not present. In addition, the design
of an optimal clustering algorithm for this application
requires attention.
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