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Abstract

Fractal image compression and wavelet transform methods can be com-
bined into a single compression scheme by using an iterated function sys-
tem to generate the wavelet coefficients.

The main advantage of this approach is to significantly reduce the
tiling artifacts: operating in wavelet space allows range blocks to overlap
without introducing redundant coding. Our scheme also permits recon-
struction in a finite number of iterations and lets us relax convergence
criteria. Moreover, wavelet coefficients provide a natural and efficient
way to classify domain blocks in order to shorten compression times.

Conventional fractal compression can be seen as a particular case of
our general algorithm if we choose the Haar wavelet decomposition. On
the other hand, our algorithm gradually reduces to conventional wavelet
compression techniques as more and more range blocks fail to be properly
approximated by rescaled domain blocks.

1 Introduction

The most visible artifact of fractal image compression is the “tiled” aspect of
the compressed images. A possible solution to this “tiling” artifact is to allow
range blocks to overlap. This scheme reduces the compression ratio because
some parts of the image are coded more than once. This multiple coding can be
avoided if, instead of minimizing collage distance for each block independently,
we minimize the global collage distance for all blocks simultaneously at the
expense of solving a large system of equations.! The minimization of collage

I'We can then use the block overlap to obtain a better fit.



distance when using overlapping range blocks was studied by Forte and Vrscay
in [4].

This approach, however, can be easily improved. It is possible to filter
the content of each range block so that the data it contains is orthogonal to
the data of all neighboring overlapping blocks. In this way, neighboring blocks
contain independent information which can be coded independently and without
redundancy. Moreover, the collage distance can be minimized independently for
each block without solving a large system of equations.

The filtering introduced in the previous paragraph is cumbersome to perform
in the conventional pixel representation of the image. However, the use of
an orthogonal wavelet representation (see [6]) makes this filtering completely
natural, and has many other computational advantages. We shall treat the one
dimensional case only, for the sake of clarity, but it can be easily generalized to
two-dimensional data by using bases of separable wavelets.

2 Generalizing the Concept of Block

We can represent a function f(¢) as a partial wavelet decomposition where
all detail levels below some level k are represented by a linear combination of
translates of the scaling function ¢ associated with a wavelet .
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The constants (f,v;;) and (f, ¢;;) are called, respectively, the wavelet coeffi-
cients and the scaling function coeflicients.

We then define the block operator Bg; that clips a function f to a block
covering an interval of the form [27%] 27%(1 4 1)]:
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Figure 1 illustrates which coeflicients are selected by operator Bg;. In this
figure, the wavelet coefficients are represented by rectangles whose horizontal
extent loosely represent the spatial extent of the corresponding wavelet. The
vertical extent is related to the frequency selectivity. The same applies for
scaling function coefficients.

Notice that if we use the Haar wavelet, the block operator By; reduces to
the usual clipping by a block. However, if one uses a smooth wavelet instead
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Figure 1: Action of Block Operators in the Wavelet Representation.
(aij = (f,%iz), bij = (£, bij)-

of the Haar wavelet, the clipping of f by two adjacent blocks Bj; and By 41
overlap but still enjoy the property that

(Brif, Bray1f) =0.

Also note that the DC component of a block in the Haar representation becomes
the scaling function in the case of an arbitrary wavelet decomposition.

3 Fractal Compression in the Wavelet Repre-
sentation

Let us momentarily go back to the case of the Haar wavelet to express conven-
tional fractal compression using the wavelet point of view in order to make the
use of generalized blocks easier. Proofs of the propositions used in this section
can be found in reference [9].

To perform fractal compression, one usually tries to approximate the content
of a given range block B;;f(t) by a rescaled and translated version of a bigger
domain block By f(t) where k < i:

Bij f(t) ~ Bijf*(t) = s; Tij Ty Bu, f(t) + ¢ Ti4(2) -

The “offset” term ¢;T;;¢(¢) is, as usual, constant within a block and zero outside.
For simplicity, we let k and ¢ be constant across the whole image (that is, domain
and range blocks are constant in size). Thus, for each j, we only have to search
the optimal /; by computing the s; and c; that minimizes the RMS distance



between B;; f and By; f*. If the mapping M defined as
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is a contraction in some complete metric space, we can use the contraction

mapping theorem to reconstruct the image from the I;, s; and ¢; by iterating
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Fas1(t) = Mfa(t)= Y 8 TyT By fa(t) + ¢ T5(t) , (1)
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starting with some arbitrary fo(%).

The offset term ¢;T;;¢(¢) can however be treated in a different but equivalent
way. A simple mean square error minimization lets us find the optimal offset
term ¢; for a fixed s;:

Cj = Mij — Sj Mpl ,

where we have dropped the subscript of /; and

2N+ )
mij = 21/2. f(t)dt = 21/2 <f, ¢ij> .
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(In other words, m;; is the mean gray level of B; ; f on its support.) Substitution

of this expression of ¢; in Equation (1) and a few manipulations yields

Proposition 1
Bij (fat1(t) = (£, ¢15) $ii(t)) = ;BT Tiy" (fa(t) = (f, d11) da(2)) - (2)

Essentially, this equation expresses that one can subtract the DC component
of domain and range blocks and still preserve the equality. The problem with
Equation (2) is that we need to know f in order to compute f (because of the
(f, ¢ij) term). Fortunately, by choosing a particular initial condition f, we have
the following consequence.

Proposition 2 If
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then
for alln >0 for any i <1 and for any j.

This result lets us replace all f in Equation (2) by f,
Bij (fas1(t) = (fa, ij) 83 (1)) = ;BT Ty (Fa () = (fa, dra) dra(2)) (3)



We can then define a new block operator

By (f(t) = (f, dra(t)) dra(t))
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that lets us write Equation (3) as
Hijfat1 = 85T Ty Hutf - (4)

Figure 1 illustrates the effect of operator Hy:: on the wavelet coefficients.
This new way of iterating has a very simple interpretation. The operator H;;
extracts all components of block B;; except the scaling function ¢;;. Hence, once
all scaling function coefficients have been set by the particular initial condition
fo we chose, they will remain unchanged as we iterate Equation (4). We store
all the components having a frequency too low to be contained in a block and we
extrapolate the high frequency component by copying and rescaling operations.
This scheme can be completely expressed in term of the wavelet coefficients.
One can easily convert the Equation (4) to an IFS on the wavelet coefficients.

Proposition 3
Hijfat1 = 8Ty Hurfa
s equivalent to
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fori > 0and 0 < j < 2¢ . where Gnij = (fa,%ij). (This relation between
wavelet coefficients is illustrated in Figure 2.)

We can also express the initial condition fy in term of wavelet coefficients
instead of scaling function coefficients:

i'—1 oo
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Since the RMS norm is preserved under unitary transformations such as the
orthogonal wavelet transform, minimizing the RMS distance between wavelet
coeflicients is equivalent to minimizing the RMS distance between the actual
image blocks. We can then perform the whole algorithm in the wavelet rep-
resentation as shown in Figure 2. All wavelet coefficients below some level ¢
are stored without further transformation. Coefficients above level i are then
approximated by copying operations (say, that map region By; to region B;j in
Figure 2).
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Figure 2: Illustration of the Compression Algorithm Using Pyramidal
Ordering of the Wavelet Coefficients. Filled rectangles represent stored
coeflicients, empty rectangles, approximated coefficients. Heavy rect-
angles show a mapping from a domain to a range block (a;; = (f,:;)).

4 Advantages of the Wavelet Representation

4.1 Blockless Transform

Despite its expression in term of wavelets, the algorithm presented above is still
equivalent to the usual fractal transform if we use Haar wavelets. However,
being expressed in this wavelet form, the fractal transform algorithm can now
be easily generalized to the case where range blocks overlap in an orthogonal
way. We merely need to choose a smooth and orthogonal wavelet basis in place
of the Haar wavelet basis. We thus have eliminated the “tiling” artifact without
increasing the order of complexity of the algorithm and without affecting the
compression ratio.

Figure 3 shows the “Lena” image compressed by our algorithm using the
Haar wavelet decomposition while figure 4 shows the effect of using a smooth
wavelet basis. This basis was generated with Adelson and Simoncelli’s 9-tap fil-
ter (see [1]). The RMS distance between the original image and the compressed
one is almost the same for both the Haar and the smooth wavelet decomposi-
tion. Yet, the artifacts are much less objectionable for the algorithm that uses
a smooth wavelet.

The advantages of the use of an IFS on wavelet coeflicients go beyond the
elimination of the “tiling” artifact, as we shall see in the next sections.

4.2 Natural Quadtree Partitioning

The wavelet representation makes quadtree? partitioning of the image very nat-
ural. If one of the blocks of level i (say, B;;f(t)) cannot be approximated

2“binary tree” in our one dimensional example



Figure 3: The 256x256 “Lena” Image Compressed with Wavelet Aided
Fractal Compression. The Haar wavelet was used. Compression ratio:

43:1, RMS error: 14.8.

Figure 4: The 256x256 “Lena” Image Compressed with Wavelet Aided
Fractal Compression. Adelson and Simoncelli’s “9-tap” filter was used.
Compression ratio: 42:1, RMS error: 14.2.

satisfactorily, we store the first layer of wavelet coefficients of this block and
the try to approximate the two blocks B;i1 25 f(¢) and Biy1,2j41f(¢). The split-
ting can be repeated if needed. Once the algorithm is completed, the wavelet
coeflicients are thus separated into two categories: those that are stored and
those that are approximated. In this way, the cutoff between explicit storage
and approximation of the coeflicients varies from place to place, adapting to the
local complexity of the image (as shown in Figure 5).

In the quadtree scheme presented above, it is assumed that it is always more
efficient to store a range block as a copy of a domain block rather than to
store its wavelet coeflicients. If one does not perform any entropy coding, this
assumption generally holds. However, wavelet coefficients can be entropy coded



much more efficiently than the parameters needed to represent a block copy
operation. This being taken into account, we observed that some range blocks
may well be more compactly represented by their wavelet coefficients than by a
copy of a domain block. Qur algorithm could thus be improved by performing
entropy estimates in order to select the most compact representation for each
range block.
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Figure 5: “Quadtree” Partitioning. It is achieved by allowing cutoff
between explicit storage and approximation to adapt locally.

Our quadtree scheme has an interesting property. If the image is such that
very few good matches can be found, more wavelet coefficients need to be stored.
In the limit where no matches can be found we simply obtain the usual wavelet
compression. In fact, we have a perfect interpolation between fractal and trans-
form methods which automatically selects the most appropriate method for each
part of the picture. Generally, at low compression ratio (i.e. high picture qual-
ity), few matches can be found and most wavelet coeflicients have to be stored.
Fractal compression only starts to play a significant role at high compression
ratio. Indeed, in figure 6 we see that, at low compression ratio, our new algo-
rithm tends to wavelet compression while conventional fractal compression does
not perform well. On the other hand, in the range where fractal compression
performs well, our algorithm performs just as well.

The results shown in figure 6 deserve some comments. First, it should be
noted that Fisher’s program does not perform any entropy coding while our
method uses arithmetic coding. At high compression ratio, the difference be-
tween our algorithm and Fisher’s can essentially be explained by this fact alone.
At low compression ratio, however, the difference is genuine: conventional frac-
tal compression is unable to approach perfect reconstruction as the compression
ratio tends to 1. It should also be noted that the rapid degradation of the EPIC
scheme at high compression ratio is most probably due to the use of at most 4
level in the wavelet decomposition.
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Figure 6: Comparison Between the Efficiency of Various Methods. The
256x256 “Lena” image was used. Wavelet compression was performed
using EPIC, Adelson and Simoncelli’s wavelet compression program (see
[2]). Fisher’s quadtree program (see [3]) was used to generate the curve
for conventional fractal compression (the parameters used were -m 3
-M 6 -f -d 2 -D 2).

4.3 Reconstruction in a Finite Number of Steps

If the rescale and copy operations involve domain blocks that are bigger than
range blocks, we can guarantee convergence in a finite number of steps during
the reconstruction process.>

To prove this, let us suppose that all wavelet coefficients below some level 2
are known at some stage of the reconstruction process. Since range blocks are
smaller than domain blocks, all wavelet coefficients of level 7 can be expressed
as the rescaled values of some coefficients located below level 1. Hence, after one
iteration all wavelet coefficients below level :+ 1 are known. Since each iteration
reveals one more layer of wavelet coefficients, the number of step needed is
determined by the resolution level of the lowest non-stored wavelet coefficient.
For example, in Figure 5 we would need at most 4 steps to reconstruct the
signal.

4.4 Less Restrictive Convergence Criterion

The fact that reconstruction is accomplished in a finite number of steps lets
us relax the usual convergence criterion [sj| < 1. We first note that the re-
construction procedure only involves copying coefficients from the bottom of
the pyramid to the top, a procedure which is guaranteed to stop whether each

3 Assuming, of course, a finite-resolution image.



copying operation is contractive or not.

However, to guarantee that the reconstructed image is close to the original
image, we need the Collage Theorem, which relies on the contractivity of our
iterated mapping. Again, we can relax this requirement by rewriting the Collage
Theorem for the case of a finite number of steps.

Theorem 4 Let X be a complete normed space and let F : X — X by a
contractive mapping with contraction factor s and fized point g*. If, for some
n € N, we have

Fon(g):g*’
for any g € X, then
1—35"
—-g°|| < - F
lo—gll < == llg ~ F (o)l

Because of this result, we do not strictly need s to be smaller than 1. Still,
the smaller s is, the tighter the bound provided by the Collage Theorem.

A different way to look at the problem is to construct a norm in which F is
a contraction.

Proposition 5 The IFS on the wavelet coefficients introduced earlier (Propo-
sition 8) is a contraction with respect to the norm

||f||~/ = Sup (2"” |<¢1]7 f>|) )
27]
provided all gray level scaling factors (s) satisfy
|s| < 22i(5-7),

where

Ai is the difference in resolution indices between domain and range blocks;
D is the spatial dimension;
v controls the strength of the norm.
We can always find a v small enough so that this inequality is satisfied. The
only problem is that the resulting norm might not have good properties. In
particular, in the limiting case of an image of infinite resolution, the norm ||||7
can be very weak so that convergence to very ill-behaved functions is allowed.
It is interesting to note that quantizing the wavelet coeflicients (4;;, f) with

a step size proportional to 277 corresponds to performing a vector quantization
minimizing the norm ||-||,.

4.5 Limitations
There are three main drawbacks to using the wavelet representation:

o We are restricted to horizontal scaling ratios that are powers of 2.
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e Usually, domain blocks are not only scaled, but also flipped or rotated.
These operations are straightforward to perform in the wavelet represen-
tation only if we use a symmetric or antisymmetric wavelet.

e Not every block can be used as domain block, but only those that cover
intervals of the form [27%1,27% (I + 1)] with k,! € Z.

The last limitation is a significant one if we want to compress small images
because we are forced to use a small domain pool, which reduces the likelihood of
obtaining a match. For this reason, some 256x256 images can still be compressed
slightly more efficiently using conventional fractal compression.

5 Speeding up the Search for Matching Blocks

The variance of the numerous high frequency wavelet coefficients is much lower
than the variance of the few low frequency coefficients (see [9]). Since low
frequency coeflicients have a higher variance, they have the biggest influence on
the RMS distance between two blocks. We can thus have a good estimate of the
actual RMS distance of two blocks by just comparing their few lowest frequency
coefficients. In this way we can rapidly discard blocks that have no chance of
matching a given range block, saving a lot of computations.

Another way of speeding up fractal image compression is to classify image
blocks into categories and only search domain blocks which are in the same
category as the target range block (see [8]). The data structures used to store
and perform such rapid searches are a fairly standard and well studied subject
in computer science (see [5], for example). We shall therefore concentrate our
efforts in finding good classification criteria.

We can represent the task of matching domain and range blocks as follows.
The range block r is a point in an n-dimensional space where the axes represent
the gray level values of all n pixels of the block (Figure 7 illustrates the case
of n = 2). Let € denote the maximum acceptable RMS collage distance. We
now seek a scaling s that will map a domain block d within the ball of radius*
€ centered on r. This can only be done if

a < arcsin <L> ,
Il

where
B (r,d)
e,y (d, dy
is the angle between vector r and d and ||-|| denotes the RMS norm. (We assume

that € < ||r|| because otherwise, 7 can be approximated by the zero vector with
an error less than e.)

1The radius is measured with the RMS norm and is v/n times less than the Euclidian
radius.
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Figure 7: Geometrical Interpretation of the Process of Matching Do-
main and Range Blocks..

Ideally, we would thus like to convert the n pixel values into generalized
spherical coordinates consisting of (n — 1) angles and one radius. We then use
the angles as indices for a multi-dimensional classification scheme (for example,
a tree structure). We could then only search among domain blocks which have
the good “orientation”. But relating the range of angles through which to search
with the matching tolerance € is not an easy task.

An alternative approach is to use the angles 6;(v) between a vector v and
all axes (the arccosines of the direction cosines). We can then generalize the
two dimensional example very easily, at the expense of using n angles instead
of (n—1). To select all domain blocks d that have a chance of matching a given
range block r with tolerance €, we simply take all domain blocks d such that

|6; (d) — 8i(r)| < Af = arcsin <L||> for all 7 .

lIr
Figure 8 illustrates this scheme for n = 3. In practice, one might want to chose
a smaller Af to accelerate the search, at the risk of lowering the probability of
obtaining a match.

In order to make the classification manageable, we do not want to use all
direction cosines. But which one should be chosen? If the coordinates are the
pixel values, we have no reason to prefer one angle over another. But if we use
wavelet coefficients as the coordinate values, the choice is obvious. We should
choose angles associated with wavelet coefficients @;; having a small index 1,
since they have the highest variances and thus the largest influence on the RMS
distance.

It is interesting to note that a classification scheme introduced by Yuval
Fisher [3] is related to the method presented above. A part of his classification
consists in splitting a block into four quadrants and sorting this block according
to the relative average gray level of each quadrant. In the Haar wavelet represen-
tation, this essentially amounts to a classification based on the lowest frequency

12



Figure 8: Relating the Span of Searched Angles with Matching Toler-

ance €. (Af = arcsin (ﬁ) .)

components. The relation between the gray level of each quadrant (i.e. which
one is the darkest, second darkest, ...) can be interpreted as angular relations
in our n-dimensional space.

Classification according to direction cosines has many advantages over this
simple scheme:

e we are free to choose other wavelet bases which better concentrate the
energy in the low frequency components than the Haar basis;

e we are free to classify the domain blocks in any number of classes;

e we know ezactly in which classes the matching domain blocks are.

The use of “angles” in an n-dimensional space as classification indices is also
very closely related to the feature vectors approach of Dietmar Saupe (see [7] and
[8]). His classification is based on the value of the inner products of each domain
block® with a small number of fixed orthogonal unit vectors. The values of all
these inner products gives the so-called feature vector. The components of this
vector are nothing but the direction cosines in some orthogonal basis. Saupe’s
scheme differs from the one described in this section only by the following facts:

e We have chosen the arccosines of the direction cosines because this makes
the relation between RMS error and classification keys more intuitive and
simple.

e We have chosen the set of orthogonal unit vectors to be a truncated wavelet
basis. In this way, the feature vector captures most of the variance, that is,
the classification keys give us more information about the domain blocks.

5normalized to have a zero mean and unit variance
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6 Conclusion

In this article, we provided ways to address the various weaknesses of fractal im-
age compression. We developed a new wavelet-aided fractal compression scheme
which has some interesting properties.

e Tiling effects can be overcome with little overhead by allowing range blocks
to overlap and by filtering them in a way that preserves the orthogonality
of the contents of different blocks. Such a filtering can be more easily
performed if we express fractal compression as an IFS on the wavelet
coeflicients. This new algorithm essentially amounts to the storage of
all wavelet coefficients below some detail level and the extrapolation of
high frequency coefficients by repeated copying and rescaling of the low
frequency coefficients.

e “Quadtree” partioning of the image is implemented by simply allowing
the threshold between stored and extrapolated coefficient to adapt to the
local complexity of the image.

e Reconstruction is achieved in a finite number of steps.

e Strict contractivity is not essential to guarantee that the fixed point is close
to the original image. (But the error bound is lower if the contractivity
factor is small.)

e Efficient indices for classification of the domain blocks can be easily com-
puted from the low frequency wavelet coefficients.

e Even if relatively few good matches are found between domain and range
blocks, this scheme “degrades gracefully”. As fewer and fewer matches
are found, this algorithm gradually tends to wavelet compression.

e If one uses a Haar wavelet decomposition, this algorithm simply reduces
to conventional fractal compression.
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