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Abstract

The action of an affine Fractal Transform or (Local) Iterated Function System with Grey Level
Maps (IFSM) on a function f(z) induces a simple mapping on its expansion coefficients ¢;; in the
Haar wavelet basis. This is the basis of the discrete fractal-wavelet transform where subtrees of the
wavelet coeflicient tree are scaled and copied to lower subtrees. Such transforms, which we shall
also refer to as IFS on wavelet coefficients (IFSW) were introduced into image processing with other
(compactly supported) wavelet basis sets in an attempt to remove the blocking artifacts that plague
standard IFS block-encoding algorithms.

In this paper a set of generalized 2D fractal-wavelet transforms is introduced. Their primary dif-
ference from usual IFSW transforms lies in treating “horizontal”, “vertical” and “diagonal” quadtrees
independently. This may seem expensive in terms of coding. However, the added flexibility provided
by this method, resulting in a marked improvement in accuracy and low degradation with respect
to quantization, makes it quite tractable for image compression.

As in the one-dimensional case, the IFSW transforms are equivalent to recurrent IFSM with con-
densation functions. The net result of an affine IFSW is an extrapolation of high frequency wavelet
coeflicients which grow or decay geometrically, according to the magnitudes of fractal scaling pa-
rameters «;;. This provides a connection between the «;; and the regularity/irregularity properties
of regions of the image. IFSW extrapolation also makes possible “fractal zooming.” The results of

computations, including some simple compression methods, are also presented.
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1 Introduction

The purpose of this paper is to introduce and analyze a general class of affine two-dimensional
discrete fractal-wavelet transforms primarily for use in fractal image compression. The
standard fractal-wavelet transforms discovered independently by a number of workers (for
example, [8, 9, 15, 19, 33, 34]) involve a scaling/copying of wavelet coefficient subtrees to
lower subtrees, quite analogous to the geometrical action of Iterated Function Systems (IFS)
[2, 1, 17] on sets or the action of Fractal Transforms [4] and Iterated Function Systems with
Grey-Level Maps (IFSM) [14] on functions.

In the case of Haar wavelets, there is an obvious connection between the scaling/copying
of wavelet subtrees and the contraction and translation of the function (or a portion of it)
by an IFSM. Indeed, this inspired people to define the same types of block transformations
on coefficients of generalized (non-Haar) wavelets with compact support. A detailed study
of the one-dimensional case [26] has shown, however, that the relation to IFSM is not
straightforward. In general, fractal-wavelet transforms are equivalent to recurrent, local
IFSM with condensation functions. Herein lies one advantage of fractal-wavelet methods
over the standard fractal (IFSM) transform applied to image functions: The action of
local geometrical IFSM maps on subsets of the image function in pixel space ([0,1]?) is
translated into IFSM-type operations over orthogonal components of the image function
which may or may not be mixed together. With fractal-wavelet transforms, the convenience
of orthogonality is automatically available, which is not the case when standard fractal
transforms are used [30, 35].

The relationship between fractal-wavelet transforms, which we shall also refer to as IFS
on wavelet coefficients (IFSW), and IFSM is even more complicated in the two-dimensional
case due to the existence of more than one principal set of wavelet coefficient quadtrees. In
this paper, 2D fractal-wavelet transforms are applied to the standard tensor-product wavelet
basis composed of “horizontal”, “vertical” and “diagonal” subspaces. These transforms op-
erate on the three subspaces independently, a deviation from the normal fractal-wavelet
transform /IFSM case. Such an IFSW allows a fractal-based method to be applied to or-
thogonal subspaces of a function, either independently or dependently. At first glance, such
a generalization may seem expensive in terms of image compression (for example, more
scaling factors and possibly parent block codes). However, the flexibility afforded by the
method is an advantage. The marked improvement in accuracy as well as good tolerance
with respect to the quantization of the scaling factors compensate for this expense.

The strength of the fractal-wavelet transform in image representation and compression
lies in its ability (and hitherto unexplored possibilities) to combine the best of two worlds:
(1) fractal transforms with their inherent properties of scaling and (local) self-similarity and
(2) wavelets with the power of multiresolution analysis and the fast wavelet transform. The
use of wavelet methods may also permit the incorporation of known properties of vision
[13, 40] into coding schemes.

The structure of this paper is as follows. For the benefit of the general reader, the
remainder of this section is devoted to the basic ideas of Iterated Function Systems and
IFSM. Some illustrative examples are presented in Appendix A. In Section 2, the fractal-
wavelet transform for one-dimension (functions on X C R) is introduced along with some
examples. Two-dimensional fractal-wavelet transforms are introduced in Section 3 with
some examples. The inverse problem of image approximation using the 2D fractal-wavelet
transforms is discussed in Section 4 along with an outline of its mathematical setting. In
Section 5 the generalized 2D fractal-wavelet transform is applied to images. Some rather



elementary compression methods using simple quantization are explored in order to give an
idea of the effectiveness of the method. In Section 6 we explore the fact that the fractal-
wavelet transform uses high frequency information to extrapolate low frequency parent
block wavelet coefficients. From the known behaviour of wavelet transforms at regular and
irregular points of an image, the behaviour of the affine IFSW coefficients «;; can be used
to characterize edges or smooth regions. The extrapolation can also be exploited to perform
a “fractal zooming” of the image. Some concluding remarks are made in Section 7.

1.1 Iterated Function Systems on Function Spaces

“Iterated Function Systems” (IFS) is the name introduced by Barnsley and Demko [2] to
denote a system of contraction mappings on a complete metric space. The idea was inde-
pendently developed earlier by Hutchinson [17] who showed how typically self-similar fractal
sets and measures could be generated by a parallel action of such systems of contraction
mappings. The IFS maps plus a set of associated probabilities (IFSP) define operators
which act on probability measures. As a result, early IFS research work focussed on the
representation of images by measures and their approximation by IFSP invariant measures.
However, since it is more convenient to represent images and signals by functions, the goal
of IFS-type methods became the approximation of images and signals by functions which
are generated by the iteration of an IFS-type operator.

Iterated Function Systems with Grey Level Maps (IFSM) are an example of an IFS or
fractal transform method over an appropriate space of functions F(X) which represent our
images or signals. (A more detailed mathematical treatment of IFSM is given in [14, 15].)
Here (X, d) denotes a compact metric space, the “base space” or “pixel space” of support
for the signals and images, typically [0, 1] or [0,1]? with Euclidean metric. In this study,
without loss of generality, the space of functions F(X) will be £?(X), the set of functions
f:X > Rsuchthat || |3 = [xl|f(2)|*dz < co.

An N-map IFSM is defined by:

1. The IFS component: w = {w;,ws,...,wy} where each w; : X — X is a contrac-
tion, i.e. there exists a ¢; € [0, 1) such that d(w;(z), w;(y)) < cid(z,y) for all 2,y € X.
For convenience, affine IFS maps are primarily used in applications.

2. The grey level component: ® = {¢1,¢s,...,dn} where each ¢; : R — R is
Lipschitz, i.e. there exists a K; > 0 such that |@;(t1) — ¢i(t2)| < K;|t1 — ta| for all
t1,t2 € R. Affine grey-level maps of the form ¢;(t) = a;t + 8, a;, B; € R are typically
employed.

Associated with an IFSM (w, ®) is a fractal transform operator T : F(X) — F(X) with
the following action. For each z € X define its N fractal components f; as:

fi(e) = { b)), = € wlX), M

(One can also an additional condition that for each # € X there exists at least one “preim-
age” w;'(z), but this is not necessary.) Now, given a u € F(X), its image Tu will be
defined as follows:

N
(Tu)(2) = Z fi()- (2)



Geometrically, the action of the operator T' may be viewed in terms of its action on the
graph of u. Each term u(w] '(z)) represents a shrunken copy of the graph of u which is
supported on the set w;(X). The grey level map ¢; then distorts this shrunken copy in the
grey level direction to produce the fractal component f;. The fractal transform adds up
these fractal components to produce (T'u)(z).

Example: The two-map IFSM on X = [0, 1]:

wy(z) = 0.6z, é1(t) = 0.5t + 0.2,
wy(z) = 0.6z+0.4, ¢o(t)=0.5t+0.5. (3)

The action of the associated fractal transform operator T' on the function u(z) = 4z(1 — z)
is shown in Figure 1(a). There are two fractal component functions, f;(z) and fa(z), which
are supported on the subsets w;(X) = [0, 0.6] and w4(X) = [0.4, 1], respectively. All points
z € wi(X) Nwy(X) = [0.4,0.6], have both fractal components which must be then added
to produce (T'u)(z). For points € [0,0.4) and = € (0.6, 1], the function value (Tu)(z) is
determined by only one fractal component, namely, f;(z) for the former and fy(z) for the
latter.
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Figure 1: (a) Graph of (Tw)(z) where u(z) = 4z(1 — z) and T is the contractive operator for the
two-map IFSM given in Eq. (3). (b) The fixed point attractor function u(z) = Tu(z).

Under suitable conditions on the w; and the ¢; involving their Lipschitz factors, the
IFSM operator T is contractive in F(X). From Banach’s Fixed Point Theorem, there
exists a unique fixed point & = T'z (see [14]). The IFSM operator in the above example is
contractive in £2([0, 1]). A histogram approximation of its fixed point function # is shown in
Figure 1(b). (This approximation was obtained by repeated application of T on a function,
as begun in Figure 1(a), until satisfactory convergence was achieved.) From the property
2 = T'u, the graph of @ is a union of two shrunken and modified copies of itself. In most
applications in the literature the sets w;(X) have minimal overlap, i.e. at a finite number
of points on X. (In fact, such overlap is ignorable in the £? sense.)

The IFSM method may be generalized to “place-dependent” IFSM (PDIFSM) with grey
level maps ¢ : R x X — R. In other words, the ¢, depend on both the grey level value
at a preimage as well as the location of the preimage itself. (This is analogous to IFS with
place-dependent probabilities [3].) This is the basis of the “Bath Fractal Transform” (BFT)
[27, 28] which has been quite effective in coding images. An example of this transform
is given in Appendix A. The action of the BFT resembles that of certain fractal-wavelet
transforms that will be defined below.

It is extremely advantageous to consider a further generalization, namely the local IFSM
[4] with IFS maps w;; that map subsets I; C X to smaller subsets J;, C X. This is the
basis of fractal block encoding first described by Jacquin [18]. The associated local IFSM



operator maps modified copies of the signal/image on the I; onto the Ji. It would seem
more reasonable to expect that signals and images may be approximated as unions of local
copies of themselves, as opposed to copies of the entire signal. In fact, most fractal image
compression methods are still based on this type of block encoding. An example is given in
Appendix A.

An IFSM operator of special significance is the following:

T(f)(2) = 0(z) +>_ oi f(w; ' (2)). (4)

Here, the function f(z) acts as a “condensation” function for the IFSM. These operators
will be relevant in our study of fractal-wavelet transforms.

The essence of fractal image compression - indeed, [FS-type methods in general, includ-
ing the fractal-wavelet transforms in this paper - is the following:

Given a “target” image v € F(X) which we seek to approximate or “compress”
to a desirable accuracy € > 0, find an IFSM (w, &) with associated (contractive)
fractal transform operator T such that | v — @ ||3< ¢, where & = T is the fixed
point of T'.

The theoretical aspects of this inverse problem are discussed in [15]. Practical aspects of
fractal image compression are dealt with in [11, 12]. The recent book by Lu [21] is an
excellent and comprehensive treatment of the subject.

Finally, the basis of the fractal-wavelet transform lies in the following property. Let
{gi(2z)} be an orthonormal basis of £L2(X). Then for each f € £2(X) there exists a unique
sequence ¢ € [*(N) of expansion coefficients ¢; = (f,¢;). Given an IFSM operator T :
L2(X) — L%(X) there exists a corresponding operator M : I*(N) — [%(N). The following
figure illustrates this feature:

L*(X) - . PN
T M
Lz()‘(') = . BN

If the IFSM operator T is affine or linear, then the operator M will also be affine or linear. If
T is contractive in £?(X), then M is contractive in {?(N). (See [15] for further discussion.)
When the orthonormal basis is the Haar wavelet basis {¢;;}, then the operator M becomes a
mapping of wavelet coefficient subtrees to lower subtrees. Such mappings will be introduced
in the next section.

2 Fractal-Wavelet Transforms in One Dimension

2.1 The Wavelet Expansions Considered

We briefly review the one-dimensional case in order to (a) establish the notation and (b)
show both the similarities as well as the differences between the one- and two-dimensional



cases. First assume a standard dyadic multiresolution approximation of £%(R) as follows
[10, 22, 39]:

1. A sequence of nested subspaces V}, € EZ(R), k € Z, where Vi, C Vig1. (Vi contains
the set of all approximations of functions f € L£%(R) at resolution 2*.) Moreover

NV = {0} and lim,,_,, UV,, = L%(R).

2. The sequence of orthogonal complements Wy L V}, such that Wy @& Vi, = Vi1, k € Z.
This implies that for any m € Z and n > 0,

Vm @ Wm @ Wm+1 b...0 Wm+n = Vm4n+t1- (5)

3. A scaling function ¢ € L*(R) such that the functions
bij(e) =222 - j),  jeZ, (6)
form an orthonormal basis for V.
4. The orthogonal (mother) wavelet ) € L?(R) such that the functions
¥ij(z) =222 - §),  jeZ, (7

form an orthonormal basis for W;. It follows that the set {¢;;}, ¢,j € Z, forms a
complete orthonormal basis for £?(R).

In the case of the Haar wavelet system,

poo(z) =1, z€[0,1), gol(z) = { 1_’1, z E Fi, 3, ®)

We shall be concerned with the case m = 0 in Eq. (5), in particular, functions f € L2(R)
which admit wavelet expansions of the form (in the £2(R) sense)

0o 261

f(2) = boodoo(z) + cootoo(z) + Z E cijii(z), 9)

=1 7=0

where bog = (f, ¢oo) and ¢;; = (f, ¢i;). It is also assumed that the scaling function ¢ (hence
1) has compact support on R. This implies that f has compact support. (In the special
case of the Haar wavelets, the support of f is [0,1].) The wavelet expansion coefficients are
conveniently displayed in the form of an infinite tree as shown below.

bOO

Coo

€10 C11

Bso ‘ Bs1 | Bs2 ‘ Bss | Bss ‘ Bss | Bss ‘ B3z

Note that each entry B;; represents a binary tree of infinite length. Such a tree with root
c;; will also be referred to as the block B;;.



2.2 Some 1D Fractal-Wavelet Transforms

We now consider some simple [FS-type operations on the wavelet tree shown above. These
are examples of discrete fractal wavelet transforms which shall also be referred to as IFS on
wavelet coefficients or simply IFSW. Without loss of generality, we set bgg = 0. These and
other examples are discussed in more detail in [26].

Example 1: Using the above notation, consider the following transformation:

Coo 1

y o ag| < ﬁ (10)
The blocks a; By represent the binary trees obtained by multiplying every element c;; of By
by the constants «;, The restrictions on the «; follow from the condition that the wavelet
coefficient sequence c;; belongs to {?(IN). Iteration of this operator is straightforward:

M : By —

a1 Bgo ‘ a2 Boo

Coo
2

M (Boo) = a1CoQ Qa9CoQ y etc. . (11)
2 2

alBoo ‘ ajasBgg | asa; By ‘ azBoo

The dilatation/translation relations between wavelet basis functions allow us to construct
the IFSM operator T (cf. Eq. (4)) that corresponds to the IFSW operator M. If By
represents the wavelet expansion of f then, from Eq. (7),

(TF)(2) = coo(2) + V2ar f (wi(2)) + V20 f (w7 (2)), (12)

a two-map IFSM with condensation function coot)(z), where

1 1 1
wi(z) = 2 wy(z) = 2® + 7 (13)
Note that the IFSM operator depends on the particular wavelet basis chosen.
In the special case of Haar wavelets, the mother wavelet 9 (z) decomposes into nonover-

lapping components:
YP(z) = I[0,1/2)(‘B) - I[1/2,1)(‘E)' (14)

As a result the IFSM operator T can also be expressed as a simple two-map IFSM with
affine grey-level maps

$1(t) = V2ot +1,  ¢s(t) = V20t — 1. (15)

If T' is contractive, then its fixed point attractor function @ has [0,1] as support.

However, in the case of other compactly supported wavelets, no such simple spatial de-
composition into separate grey-level maps is possible. As well, the support of the attractor
function @ is necessarily larger than [0,1]. To illustrate, consider the particular IFSW in
which a; = 0.4 and ay = 0.6. The IFSM operator T in Eq. (12) is contractive. Figures
2(a) and 2(b) show the IFSM attractor functions for, respectively, the Haar wavelet and
“Coifman-6” cases. In both cases, we have chosen bgg = 0 and cgp = 1.

Example 2: Consider the fractal wavelet transform with four block maps as follows:

W1 : BlO — B20, W2 : B11 — B2]_, W3 : BlO — ng, W4 : Bll — Bg3, (16)
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Figure 2. Attractor functions @ for Example 1: (a) Haar wavelet basis, (b) (nonperiodic)

Coifman-6 wavelet basis.

with associated multipliers «;, 1 < ¢ < 4. Diagramatically,

Coo
M BOO — C10 C11 . (17)
a1 Big ‘ azBy; | azBio ‘ 4B

Now iterate this process, assuming it converges to a limit Byg which represents the wavelet
expansion of a function #. Then
u= Coo¢00 —|— v. (18)

We need only focus on the function v which admits the wavelet expansion

€10 ‘11
_ _ _ _ . 19
a1 Big ‘ azB;; | azBio ‘ 4By ( )

Since (10, %11) = 0, etc., we may write
1 = U + Vg, (20)
where the orthogonal components v; satisfy the relations

vi(z) = cioto(z) + a1\/§171(2ac) + az\/§52(250)
172(23) = C11’¢11(§I}) + a3\/§171(2m — ]_) + a4\/§172(2:r: — ]_) (21)
This “vector IFSM” is, in fact, a recurrent IFSM (with condensation functions) on Bgy =

Byo @ Bi1; which “mixes” the orthogonal components B;g and Bjj.
The above equations may be written in the more compact form

vi(z) = bi(z) + Z:%(’ﬁj(w{jl(w))), i=1,2, (22)
where 1 1 1
wii(z) = wie(z) = 2% war(z) = wee(z) = 2® + 2 (23)
bl(l') = 610¢10(fﬂ), bz(iﬂ) = 011¢11($) ) (24)
and

¢11(t) = a1\/§t, ¢12(t) = az\/it, ¢21(t) = a3\/§t, ¢22(t) = a4\/§t . (25)

Note that the contractive IFS maps w;; are mappings from the entire base space X into
itself. Even though the IFSW operator M had the appearance of a “local” transform in the



wavelet coefficient space, the equivalent IFSM is not, in general, a “local” IFSM. (In the
special case of nonoverlapping Haar wavelets, the IFSM may be written as a local IFSM.)
The “locality” of the block transform has been passed on to the orthogonal components v,
and vs of the function v.

Fractal-wavelet transforms of the above form may also be applied to coefficient trees in
the basis of periodized wavelets. However, the connection to IFSM is even more complicated
[26] and will not be discussed here. For the benefit of the general reader, the important
properties of periodized wavelets are outlined in Appendix B along with some examples.
The IFSW method is applicable to biorthogonal wavelets and other schemes employed in
image analysis.

3 Fractal-Wavelet Transforms in Two Dimensions

The following subsection is primarily concerned with the notation employed for the standard
tensor-product wavelet basis in R?.

3.1 The Wavelet Expansions Considered

We consider the standard construction of orthonormal wavelet bases in £2(R?) using suit-
able tensor products of subspaces V; and W; in £2(R) as discussed in [10, 22]. Define the
sequence of nested subspaces V}, € L2(R?), k € Z, where V}, C V4 so that N, V,, = {0}
and lim,,_,,, UV, = Ez(R2). For each V, define its orthogonal complement W}, so that
Vit1 =V @ Wy. For any m € Z and n > 0,

V., dW,, Wm—|—1 D...0 Wm-l—n - Vm—l—n—l—l- (26)
Then

Vk - Vk ® Vk7
Wi = (Vi@Wr)® (Wr @ Vi) ® (Wi ® Wy). (27)

Of particular interest is the case m = 0 and a subset of functions belonging to the subspaces
VY C Vi and W) C Wy, k > 0, defined as follows:

Viee = VidWp,
W, = W.oWLo WY k>0, (28)
where
Vi = span{dp;(z,y) = dri(z)dr;(y), 0 < 4,5 <2F -1}
WZ = Span{¢£ij(may) = ¢ri(2)¥ri(y), 0 <d,j <2F -1}
p = span{yy.(2,y) = Yri(z)dr;(y), 0<4,j <2~ -1}
Wi = span{9f;(2,9) = V(@) (y), 0< 4,5 < 2" — 13 (20)

The superscripts h, v and d stand for horizontal, vertical and diagonal, respectively [10].
The wavelet expansions will then have the form:

oo 2k_12k_1

f(z,y) = booodooo(z,y) + Z Z Z [aZijTﬁl}cLij(ma y)+ aZijTﬁzij(iEa y)+ agij¢gij(ma y)]. (30)

k=0 i=0 ;=0



The set of all functions admitting the above wavelet expansions will be denoted as £3(R?) C
L%(R?). The space L£2(R?) is complete with respect to the usual £?(R?) metric. The
wavelet expansion coefficients may be conveniently arranged in a standard fashion [10, 22].
The arrangement of the first three blocks is shown in Figure 3(a). The blocks AZ, . Ag,
kE > 0, each contain 22* coefficients aZij,a};ij,agij, respectively. The three collections of
blocks

Ah:UAZa AUZUAZH Ad:UAga (31)
k k k

comprise the fundamental horizontal, vertical and diagonal quadtrees of the coeflicient tree.

By | A} | A}
Ay | Ad Al

Ay | Af
Ay Ad

Figure 3(a). Matrix arrangement of two-dimensional wavelet coefficient blocks.

By_; | Al
BN — ! N-1

v d
N-1 AN—l

Figure 3(b). Wavelet decomposition algorithm.

Now consider any wavelet coeflicient a,)c‘ij, A € {h,v,d} in this matrix and the unique

(infinite) quadtree with this element as its root. We shall denote this (sub)quadtree as Al)c\ij-

In the Haar case, for a fixed set of indices {k,,j} the three quadtrees AZij7 %i; and Agij
correspond to the same spatial portion of the function or image. This feature was illustrated
nicely by Davis [9].

As is well known, the wavelet decomposition algorithm [22, 10] begins with an “image”
matrix of coefficients By for some N > 0 (e.g. N =9 for a 512 x 512 pixel array). From By
one computes By_1, A}J(,_l, A% _; and A‘Jiv_l. The latter three blocks are stored and By _;
is then decomposed into A}](,-_z, A% _,and A‘Jiv_z. The procedure, depicted schematically in
Figure 3(b) above, is continued until one arrives at the single entry blocks By, Al AY AL
From the matrix in Figure 3(a), B may be reconstructed in reverse fashion. Once a wavelet
basis is chosen, these algorithms employ the filters associated with that basis.

Note in closing that the tensorial nature of the basis functions in the A3 leads to the
following simple scaling relations:
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¢k)\ij(a:a y) = 2k¢8\00(2k£ - ia 2ky - ])a A€ {h1 v, d} (32)

3.2 2D Fractal-Wavelet Transforms

Two-dimensional fractal-wavelet transforms involve mappings of “parent” quadtrees of
wavelet expansions to lower “child” quadtrees in the same way as was done for binary
trees in the 1D case. For simplicity in presentation and notation, we consider a particular
case in which the roots of all parent quadtrees appear in a given block and the roots of all
child quadtrees appear in another given block.

Select two integers, the parent and child levels, k] and k3, respectively, with 0 < k} < k3.
Then for each possible index 0 < 7,5 < 2¥2 —1 define the three sets of affine block transforms:

h . h h h _ _h zh

Wi Ak;,ih(i,j),jh(i,j) —+ A x4, Ak;,i,j = aijAkf,ih(i,j),jh(i,jy
2 . (% (% v U A

Wi 0 Al iigygeig) = Akg g Ky g = QAR i (ig) v (i.d) (33)
d . d d d _.d sd

Wi Ak; 44(6,9),396.5) A X 4,50 Ak;‘ 43 = aijAk;‘,id(i,j),jd(i,j)'

These block transforms will comprise a unique IFSW operator M. The use of the indices
i* jh, etc. emphasizes that the parent quadtrees corresponding to a given set of child
quadtrees AZ; i AZ; ;.; and Ag; ;; need not be the same. As well, the scaling coeflicients

a?j, aj; and afj are independent. In the usual fractal-wavelet transforms corresponding to

(local) IFSM, e.g. [9],
M(,5) = (,4) = (i,5), §"(5,5) = 5"(5,4) = 7(5,5), (common parent blocks) (34)

and

a?j =oj; = afj, (common scaling factors). (35)
In other words, the h, v and d quadtrees are not treated independently.

The “fractal code” associated with an IFSW operator M consists of the following:
1. The parent-child index pair (k7, k3).

2. The wavelet coefficients in blocks By (i.e. bogo) and A7, A € {h,v,d}for1 < k < kj—1.
4%: coefficients.

3. The scaling factors af‘j and parent block indices (i*(7,5), (4, 7)) (the 4 and 7 indices
could, of course, be replaced by a single index) for all elements af‘j in each of the three
blocks A)‘;. Total number of parameters: (i) 3-4%2 scaling factors, (ii) 2-3-4% indices.

(At this stage, we are not concerned with questions regarding the practical computer storage
of these parameters.)

From the definition of M in Eq. (33), its application to a wavelet coefficient tree leaves
the entries in the blocks By, A,)c‘, A € {h,v,d} for 0 < k < k; — 1 unchanged. The first
application of M modifies the blocks Ai‘;. In general, the nth application of M modifies the
blocks A,)c‘; +n—1 Which then remain unchanged in future iterations (as in the one-dimensional
case, cf. Example 1). In practical applications, it suffices to apply the IFSW operator M
to the matrix whose entries in blocks A,)c‘, with k > k5 are zeroes. Each application of M
will produce an additional level of (generally) nonzero blocks, in other words, an additional
degree of refinement of the function in terms of its wavelet expansion.

11



It remains to establish the conditions for contractivity of the IFSW operator M on
a suitable complete metric space of wavelet coefficients. Let @ denote the set of all real
square-summable quadtrees c, i.e.

c:{ckijER,kZO,0§i,j§2k—1|i|ckij|2<oo} (36)
kij
Let dg denote the natural /2 metric on this space, i.e.
dg(c,d) = [f:(ckij — dpi;) 1M, Ve, deQ. (37)
kij
Denote the inner product of two quadtrees as follows:
(c,d)g = ickijdkij, c,d € Q. (38)

We now define a particular subset of @) for which the wavelet blocks By and A,)c‘ for A €
{h,v,d},0 < k < ka—1 are fixed. Since the goal will be to approximate functions in £3(R?)
via their wavelet expansions, we assume that these fixed blocks correspond to the wavelet
coefficients bggp and a,)c‘ij of a given function u € LZ(R?). Let Q(u, k3) denote the set of all
such quadtrees ¢ € Q with blocks in levels 0 < & < k5 — 1 fixed. Now define the following
metric on this space:

do(iz)(c,d) = max do(Ciijy Digi) € d € Q(u, k3), (39)

A,g
where Cli\;ij and Dl)c\;ij denote the (infinite) quadtrees with roots cﬁ;ij and d,)c‘;ij, respectively.

Proposition 1 The metric space (Q(u, k3), dQ(k;)) s complete.

Proposition 2 For a given u € Li(R?) and k5 > 1, the IFSW operator defined in Eq.
(33) maps Q(u, k3) into itself. Moreover,

dQ(k;)(Mc, Md) < chQ(k;)(c, d), cg= ok =k 1}‘1?);|af‘j ) (40)

where X € {h,v,d} and 0 < 14,j < 2k — 1.
The following result is a simple consequence of the Banach Contraction Mapping Theorem.
Corollary 1 Ifcg < 1 then there exists a unique ¢ € Q(u, k3) such that Mc = c.

Note how the “spirit of IFS” lives in this transform: The fized point wavelet tree ¢ is,
in effect, a union of scaled copies of its subtrees.

12



3.3 Simple Examples

The simplest case arises when (k7, k3) = (0,1). Schematically we have the block transfor-
mation

h h Al h gh

booo Q00 004000 | 014000
h v d h AR h 4h

Booo | Agoo ap00 Q000 704000 | 2114000

M — (41)

v d v v v v d d d d

Aboo | Aboo agoAboo | 614600 | 2604500 | 014000
v v v v d d d d

al0Ab00 | @114%800 | @104600 | 2114000

The condition |a£‘j| < 1/2 guarantees the contractivity of M. The fixed point of this
operator will have the entry Bggo as well as the component quadtrees 4}, A € {k,v, d}.
It will represent the wavelet expansion of the function # where

4 = U+ v, = booodooo, (42)
5 = ool (43)
1
P = Yo, Ae{hv,d. (44)
2,7=0

FEach component 7* satisfies the relations

(2, y) = 0 (2, y) + Y 20350 (wj; (2, y)) (45)

i,j=0
where 0*(2,y) = agoo¥3y, and
wiley) = (5+5.8+3), 0<ig<u (46)

The three equations in (45) comprise a recurrent IFSM with condensation functions. Note
that there is no mixing between the orthogonal h, v and d subspaces. (One could consider
generalizations of the IFSW in (33) which would permit such mixing.)

Case 1: In the special case that af‘j = a;j, A € {h,v,d}, then the three equations in (45)
can be added together to give

i(z,y) = 0(z,y) + Y 20459(w;' (,9)), (47)

2,§=0

corresponding to an IFSM with condensation function § = 6" + 6v + 9.
In the Haar wavelet case, the above equation could be rewritten as a simple four-map
IFSM with affine grey-level maps (i.e. without a condensation function):

1

o(z,y) = Y [20i50(wi;' (2,9)) + Bij]- (48)

2,7=0

Here, the support of the fixed point function % is [0, 1]2. This demonstrates the connection
between the usual IFSM and fractal-wavelet transforms in the Haar basis.

13



Case 2: Now consider the more general case in which the af‘j are not necessarily equal for
each %, j pair. As in the first case, add the three equations in (45) and write the result as

o(z,y) = 0(z,9) +2 ) [oqj0(wj; (2, 9)) + 80" (w33 (2, ) + 7i7" (w' (2,9))],  (49)

2,§=0

where

d h d d
This may be considered as a perturbation of the recurrent IFSM with condensation func-
tion in Eq. (47). It is convenient to consider the “offdiagonal” components 4" and %° as

perturbations since they produce horizontal and vertical gradations in the shading, as we

show in the examples below.

Figure 4. Attractor functlons for IFSW of Eq w1th a = a = (] aloo = adyo = 0 and
adoo = 1 in the Haar wavelet basis: (a) af; = 0.15, (b) al; = 0 25, (¢ ) aj; = 0.35. Beneath each
attractor is plotted a sample cross section of the function values.

Even in the simple case (k{, k5) = (0, 1), the number of “degrees of freedom” in the transfor-
mations in Eq. (41) is large. It is instructive to examine the simple cases in which only one
of the three principal quadtrees, h, v or d, is nonzero. In this way, we obtain an idea of how
these fundamental components operate. As well, we may examine the role of the wavelet
basis used. In the following examples, the range of values assumed by the attractor function
was scaled to the interval [0, 255] and plotted as a 512 x 512 pixel image with 256 shades
(8 bits/pixel) of grey. Figures 4(a)-(c) show plots of attractors for which ¢y, = ¢ = 0,
cooo = 1, the h and d scaling factors are zero and of; = 0.15,0.25 and 0.35, respectively.
In all three cases, the attractor shows a gradation of shading in the horizontal direction.
Below each of the three attractors is shown a cross-sectional plot of their pixel values. The
horizontal gradation is due to the behaviour of the “root wavelet” ¥3,,(z,y) = ¥(z)d(y)
whose qualitative property is shown in Figure 5(b). The degree of shading is dependent
upon the scaling factors. The cross-sectional plots are attractor functions of appropriate
one-dimensional IFSM/IFSW in the Haar basis (cf. Figure 1(a)).

Identical vertical gradations of the image are produced when the v and d scaling factors
are set to zero and the afj factors are allowed to assume the above values. The resulting
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Figure 5. Qualitative properties of the principal Haar wavelet basis functions.

images are simply rotations of Figures 4(a)-(c) by w/2. This is expected from the qualitative
behaviour of the wavelet ¥{(z,y) = #(z)®(y) shown in Figure 5(a).

The horizontal and vertical gradations observed above are quite similar to the “ramping”
that is produced by the multiplication of grey-level values by an z or y coordinate in the
place-dependent IFSM or Bath Fractal Transform - see Appendix A.

Figure 6. Attractor functions for IFSW of Eq. (41) with af‘j =aj; =0, aloo = adyo = 0 and
adoo = 1 in the Haar wavelet basis: (a) afj =0.15, (b) afj = 0.25, (c) afj = 0.35. Beneath each
attractor is plotted a sample cross section of the function values.

A quite different pattern is produced when the v and h components are set to zero
and only the d components are operating. Figures 6(a)-(c) show the attractor functions
for the cases afj = 0.15,0.25 and 0.35, respectively. Figures 7(a)-(c) show the attractor
functions which correspond to the parameter values in Figures 4(a)-(c) in the Coifman-6
wavelet basis.

4 Fractal-Wavelet Transforms and the Inverse Problem

Fractal-based approximation methods are based on the following strategy. Let (Y,dy)
denote a complete metric space whose elements represent the “images” we wish to approx-
imate. (For example, Y could be composed of sets, measures, functions or distributions.)
Also let Con(Y') denote the set of contraction mappings on Y, that is,

Con(Y)={f:Y =Y | dv(f(y), f(y2)) < crdy(y1,92),
Vy1,y2 € Y for some ¢y € [0,1)}. (51)

15



(8
VW

Figure 7. Attractor functions for IFSW of Eq. (41) with a = a =0, alyo = aooo =0 and
adoo = 1 in the periodized Coifman-6 (6 tap) wavelet basis: (a) aj; = 0.15, (b) af; = 0.25, (c)
aj; = 0.35. Beneath each attractor is plotted a sample cross section of the function values. These
plots should be compared with their Haar wavelet counterparts in Figure 4.

Now suppose that y € Y is a “target” image. Given an acceptable error ¢ > 0 one seeks
to find (if possible!) a contraction map f. € Con(Y) whose fixed point . approximates y
with €, i.e. dy (Je,y) < €.

In fractal image compression, it is the contraction mapping f. that is stored in the
computer. Reconstruction of the approximation g, to y is achieved by the iteration sequence
Yn+1 = feyn. Banach’s Contraction Mapping Theorem guarantees that d(y,,7.) — 0 as
n — oo for any yo € Y. (For example, let yo be a blank or black screen, i.e. yo = 0.)

Most fractal-based methods of approximation are based on the “Collage Theorem” [1],
a simple corollary of Banach’s Theorem:

Theorem 1 Let (Y,dy) be a complete metric space. For anyy € Y and f € Con(Y),

dy (y,79) < dy(f(:'/), y) (52)

Sz
where § = f(7) is the unique fized point of f and cy is its contraction factor.

If y is the target image, then making the collage distance dy (f(y),y) small (by looking
for “good” f’s) forces dy (y,y) to be small (to within a multiplicative factor). The inverse
problem for fractal approximation may then be rephrased as follows:

Given a y € Y and a 6 > 0, find a contraction mapping f € Con(Y) such that
dy (f(y),y) <.

This study is concerned with an indirect inverse problem [15, 36]: Instead of directly
constructing approximations to an image function, we construct approximations to a faithful
representation of the function, namely its wavelet expansion. (Inverse problems employing
Fourier transforms of functions or moments of probability measures may also be formulated
[15, 36].) Here, the space (Y,dy) will be a suitable subset of @ the set of all square-
summable 2D wavelet coefficients. The relevant contraction maps in Con(Y) will be the
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IFSW operators defined in Eq. (33). In what follows we let v € £3(R?) denote the target
image function and a € Q its wavelet expansion (cf. Eq. (36)). We seek to approximate
a by the fixed point a of a contractive IFSW operator. It remains to specify the parent
and child indices ki and k3, respectively. Then (Y,dy) = (Q(v,kg),dQ(k;)). Note that
acQv,k;).

From the Collage Theorem, the approximation problem involves the minimization of the
following collage distances between subtrees:

A

dory)(a, Ma)
= maxA} (53)

179
Xig Y
where

A A
A = doy) (A

SR ag\jAzfiA(iJ)jA(i,j))’ A€ {hava d}a 0 g Za] § 2k; - 1a (54)

In order for M to be contractive, the scaling parameters must satisfy the constraint
|af‘j| < Qmax = 28 7% In Eqs. (53) and (54), the minimization of the collage distance has
been performed with respect to a fixed set of parent indices (i*(3, 5), (4, j)). Clearly, the
optimal result is achieved when the minimization is done with respect to all possible parent
indices 0 < i*(3,7), 74, §) < 2% — 1, referred to as a full search of parent blocks.

In practical computations, e.g. images, one necessarily works with truncated wavelet
trees, typically the matrix Bg for a 512 x 512 pixel image. As in the case of normal
fractal-based compression methods, a variety of strategies for parent block searching may
be employed, including;:

1. full searching of all possible parent blocks,

2. restricted searching, either in a specified neighbourhood of the child block or among
a subset of parent blocks belonging to a prescribed class,

3. no searching - usually the block containing the child block is chosen as the parent.

Clearly, travelling down this list represents a decrease in computational (and coding) cost
but at the expense of decreased accuracy.

The minimization of the squared collage distances (A7;)? in Eq. (53) is a quadratic
programming problem with constraints. There is no guarantee that an optimal scaling
factor af‘j exists in the interval (—oumax, ®max). As such, an upper “cutoff” 0 < o, < @max
must be introduced in practice so that the feasible set of scaling parameters is the closed
interval [—a., a.]. Most, if not all, practical applications avoid such a computationally
expensive procedure and settle for a minimization of the squared collage distance (omitting

the A index)
A} = (Argij — @Ay i, Argis — QA i)q (55)

by “least-squares”. The optimal scaling factor is

<Ak;ija Aki‘i'j' )Q

Q5 = (56)
: <Ak;‘i'j' ’ Ak;i’j’>Q
and the minimum squared collage distance is
A = (Arzij, Arzij)Q — Qi (Argijy Akiﬂi'j’>Q- (57)
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In this case, it is not guaranteed that |&;;| < omax. This fact is usually overlooked in
practical applications where computations are performed only to a finite resolution, e.g. to
By. (In fact, as will be shown below, irregular regions of an image, e.g. edges, will almost
surely imply the existence of scaling factors with large magnitudes. This is a complicated
issue involving the approximation of images and edges at finite resolution and will be dealt
with only partially here.)

We conclude this section with an important property that provides the basis of fractal-
based approximation methods, namely, the continuity of fixed points with respect to con-
traction maps [5]. Given a compact metric space (Y, dy), define the following metric on the
space Con(Y):

doon(v)(f,9) = sup d(f(y),9(y)), f,g€ Con(Y). (58)

(Note that the metric space (Con(Y'), dgon(y)) is not necessarily complete.)

Theorem 2 Let (Y, dy) be a compact metric space and f,g € Con(Y) with fized points
and y,, respectively. Then

o 1
dy (¥4,9,) < mdc(m(m(ﬁg), (59)

where cg, ¢, denote the contractivity factors of f and g, respectively.

In other words, the “closer” f and g are to each other, the closer are their respective fixed
points §; and 7. This result, the proof of which involves a simple application of the triangle
inequality, is a generalization of Barnsley’s “continuity with respect to a parameter” [1].
It was used to derive continuity properties of IFS attractors and IFSP invariant measures
[5]. Although never stated ezplicitly, fractal compression algorithms depend on this property.
Minimization of the collage distance involves a variation of fractal transform parameters.

Following Proposition 2 of Section 3.2, consider the subset of IFSW operators which
share a fixed set of indices i*(4,7),(4,7), A € {R,v,d}. In other words, only the scaling
coefficients af‘j are allowed to vary. Let M; and M, be two IFSW operators from this set
with scaling factors af‘j(l) and ag\j(Z), respectively. From [5], a natural distance between
these operators is given by

A A
dcon(Q(k;)) = Ij\lfl;( |aij(2) - aij(1)|' (60)
In addition to establishing the continuity of fixed points of such operators with respect to
the scaling parameters, this metric could be considered to obtain estimates of quantization

€ITOTIS.

5 Some Applications to Images

Some results of fractal-wavelet approximation and compression will now be presented. We
emphasize that the primary purpose of this preliminary study is to show the relative accu-
racy of the various approximations. The actual exercises employed for image compression
in this study are quite rudimentary. For example, no special effort has been taken to en-
sure optimal allocation of bits of storage. As well, we restrict our attention to a fixed
parent/child block structure, i.e. no adaptive partitioning has been employed.
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Figure 8. “Standard” fractal-wavelet approximations to the 512 x 512 pixel Lena image with
(k3,k3) = (5,6), in which a?j =af; = oz;-ij, same parents. Left: Haar basis (corresponds to usual

IFSM with 16 x 16 parent blocks — 8 x 8 child blocks); d2 = 8.2, PSNR= 29.8. Right:
(periodized) Coifman-6 basis; dy = 7.9, PSNR= 30.2.

Obviously, compression and accuracy are competing features. Fractal-wavelet approxi-
mations to arbitary accuracy may be obtained by letting the parent block index k} become
arbitrarily large. However, this is suicidal from the viewpoint of compression. One may try
to achieve the maximum compression for a given allowable accuracy or vice versa. In this
study, we examine the interplay of compression and accuracy for various forms of generalized
2D IFSW operators.

The computations reported here involve the approxmation of the standard “Lena” im-
age, 512 x 512 pixels, 8 bits per pixel. Two measures of the accuracy of approximation
will be used: (a) an £? distance between images and (b) the “peak signal-to-noise ratio”
(PSNR) in decibel (dB) units, a standard measure in image compression. For two image
functions u, v with pixel values 0 < w;;,v;; < 255, 1 < 4,7 < 512, the £? distance will be
defined as follows:

1/2
da(u, v) = 51—2 lz[uj - vij]2] _ (61)

If we consider u to be an approximation to the target image v then the PSNR is given by

255
PSNR (dB) = 201 — . 62
(4B) = 20logy, | -] (62)
In order to facilitate a translation between the two measures, a small table of values is given
below.

d, | 60 70 80 9.0 100 120 140
PSNR | 32.57 31.23 30.10 29.05 28.13 26.55 25.21

Simple Fractal-Wavelet Calculations. We begin with a look at “standard” IFSW
approximations to the Lena image used in the literature to date, in which the h, v and d
quadtrees share the same scaling factor a;; and parent block indices. (This is achieved by
“collaging” the three blocks simultaneously with respect to the same parent index.) The
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approximations in Figure 8 correspond to the parent-child root blocks (k},k35) = (5,6).
Figure 8(a) corresponds to the nonoverlapping Haar case, which is identical to the usual
“local” IFSM or Jacquin block encoding scheme where 16 x 16 pixel parent blocks are
mapped onto 8 x 8 pixel child blocks. (Recall that a partitioning into 8 x 8 pixel blocks
is the JPEG-DCT standard.) Figure 8(b) is the result achieved in the Coifman-6 basis. It
provides a better approximation with less blockiness, one of the original motivations for the
use of the IFSW with generalized wavelet bases. In both cases, a full search of all possible
parent quadtrees was made.

The approximation yielded by the standard fractal block encoding scheme in Figure 8(a)
at the (5, 6) parent-child block level may seem acceptable, and Figure 8(b) even more so, but
the compression ratios are rather moderate. Roughly, a child block requiring 64 pixels x 8
bits/pixel is replaced by a parent index pair (56 + 5 = 10 bits at most) and the scaling
coefficient o (possibly 4 bits). This, along with the storage of the parent wavelet coefficients,
implies a compression ratio of about 25 : 1. Some improvement in quantization as well as
more effective coding techniques (e.g Huffman, arithmetic) may be able to push this ratio
to 30 or 40:1. (The Bath Fractal Transform employs three scaling parameters in each grey-
level map with apparently no loss in compression. Some of the storage originally allocated
for parent indices may be sacrificed for the extra scaling parameters since a lesser search of
parent blocks is required for comparable accuracy.)

Calculations at lesser refinement. In an attempt to (1) increase the compression ratio
and (2) examine the relative effectiveness of various fractal-wavelet schemes, we now examine
the approximation of Lena at a less refined parent-child block pairing, namely, (k7, k3) =
(4,5). (For the usual nonoverlapping Haar-based IFSM, this would correspond to 32 x 32
pixel blocks being mapped to 16 x 16 blocks.) Some results are shown in Figure 9. Figures
9(a) and 9(b) (top) are the less-refined counterparts of Figures 8(a) and 8(b), respectively,
i.e. same scaling factors and parent blocks for h, v and d quadtrees, Haar and Coifman-6
basis. Figures 9(c) and 9(d) (bottom) are generalized IFSW approximations in which the
h, v and d quadtrees have independent scaling factors and parents. The improvement in
the approximations is quite obvious, but at the expense of more fractal code parameters.

The storage requirements for independent scaling factors and parent indices in the gen-
eralized IFSW method greatly diminish the compression ratio. A suitable compromise
that increases the compression at some expense of accuracy is achieved if we employ the
same parent block but three independent scaling factors. Figures 10(a), 10(b) (top entries)
and 10(c) (bottom left) show the results of this approach using the Haar, Coifman-6, and
Daubechies-10 wavelet bases. Note the steady improvement in the approximation. Also
shown for comparision is an approximation yielded by the place-dependent IFSM or “Bath
Fractal Transform”. As with the IFSW transform, the BFT employs three scaling parame-
ters for each child cell - see Eq. (78) in Appendix A. Blockiness is also reduced by the BFT
in a rather satisfactory manner. It is interesting to note that the BFT and Haar IFSW
transforms yield results with roughly the same error. There is, however, a greater flexibility
with the IFSW transform since a variety of wavelet basis sets may be employed.

Simple attempts at compression. The results in Figure 10 demonstrate a moderate
image compression since both the parent wavelet coefficients and scaling coefficients were
computed as single precision real numbers. We now present the results of some rather
elementary compression techniques which have employed very simple quantization of the
fractal code parameters. The stored wavelet coeflicients in blocks A,)c‘, 1<k <Eks—1 were
uniformly quantized (midriser) between their maximum and minimum values. The bggg
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Figure 9. IFSW approximations with (&}, k3) = (4,5). Top: “Standard” fractal-wavelet in which
a?j =aj; = a;-ij, same parents. Left: Haar basis (usual IFSM), d2 = 13.5, PSNR= 25.6. Right:
Coifman-6 basis, ds = 13.0, PSNR= 25.8. Bottom: Three child blocks Ai;ij have independent

scaling factors af-‘j and parents. Left: Haar basis, do = 11.4, PSNR= 27.0. Right: Coifman-6 basis,

ds = 10.7, PSNR= 27.6.
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Figure 10. Top: Generalized IFSW approximations with (kf, k3) = (4, 5). The three child blocks
AQ;U have independent scaling factors af‘j but a common parent block. Left: Haar basis,
dy = 12.5, PSNR= 26.2. Right: Coifman-6 basis, d; = 11.8, PSNR= 26.7. Bottom: Left: (4,5)
IFSW approximation as above but with Daubechies-10 basis, d2 = 11.4, PSNR= 27.0. Right:
Place-dependent IFSM (Bath Fractal Transform). 32 x 32 pixel parent cells mapped to 16 x 16
pixel child cells. Each child cell has three scaling factors. d; = 12.5, PSNR= 26.2. The

compression ratios (unoptimized) are roughly 45:1.
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A a
16 10 8 6 4 16 10 8 6 4
8| 26.67 26.66 26.64 26.33 22.59 8 |42.7 488 51.2 53.9 56.9
6| 26.60 26.59 26.56 26.24 22.57 6|48.8 569 60.2 64.0 68.3
ny 4] 26.07 26.07 26.06 25.82 2231 ny 4569 683 731 788 853
3|25.00 25.01 24.97 2471 21.53 3621 759 819 89.1 97.5
2119.59 19.60 19.56 19.36 17.41 21683 853 93.1 1024 113.8
PSNR (dB) Compression Ratio R

Table 1. Results of IFSW approximation of “Lena” where (k7, k3) = (4, 5) for various quantizations
of stored wavelet coefficients and scaling parameters. For a fixed index (4, j), the three child quadtree

blocks Af‘j, A € {h,v,d} are scaled independently but share a common parent block. Full search of

parent blocks. Periodized Coifman-6 basis. The maximum PSNR value (no quantization error) is
26.7: Figure 10, top right.

wavelet coefficient, which stands out at a rather large magnitude, was stored separately. The
scaling factors af‘j were quantized uniformly (midriser) with truncation. In low-bit cases
where n1,nq9 < 4, a truncation value of 1.25 was used. This value was found experimentally
f‘j scaling
coefficients, found to be roughly 0.96. For higher bit allocations larger truncation values up

to yield the best approximations. It is naturally related to the variance of the «

to 2.5 were used. (Note that no results using entropic coding of the fractal code parameters
or sophisticated “bit allocation” are reported here. Some preliminary calculations have
shown that a simple Huffman coding of the parameters can increase the compression ratios
by a factor of more than 1.5.)

We simply assume that n; bits of storage are used for each parent wavelet coefficient
and n, bits for each scaling coeflicient af‘j. As before, we assume that corresponding child
blocks in the h, v and d quadtrees share the same parent block. Unless otherwise indicated,
a full search of parent blocks is made so that each (i*,;*) parent index pair requires 2k}
bits. Then a “raw” or unoptimized compression ratio R will be defined as the ratio of bits
required to store “Lena” , i.e. 5122 x 8 = 22! to the number of bits required to store the
fractal code:

921
© 4k (ny + 3ny 4 2k3)
This value is also applicable to the Bath Fractal Transform of Figure 10.

Table 1 summarizes PSNR values as well as compression ratios for a number of (n, ns)
cases where (kj, k3) = (4,5) in the periodized Coifman-6 basis. For each child block, a full
search of parent blocks was performed.

These tables reveal that there is virtually no reduction in accuracy as the number of

(63)

bits n; allocated for the stored parent wavelet coefficients is reduced from 16 to 8. A
marked reduction is observed, however, as n; decreases from b to 4. As expected, there is a
reduction in accuracy as the the number of bits ns allocated for the a;; scaling parameters
decreases. A significant reduction is observed as as n, decreases from 3 to 2. Clearly, there
exist minimal bit-rates for these two sets of fractal code parameters. Figure 11 shows the
attractors for (a) (n1,n2) = (10,6) and (b) (n1,ns) = (6,4).

For purposes of comparison, Table 2 presents PSNR values obtained for a range of
compression ratios using the “Set Partitioning in Hierarchical Trees” (SPIHT) algorithm
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Figure 11. Generalized IFSW approximations with (&7, k3) = (4,5) with quantization. The three
child blocks Ai;ij have independent scaling factors af‘j but a common parent block. Left:

(n1,n2) = (10,6), PSNR= 26.59, R = 56.9. Right: (n1,ns) = (6,4), PSNR= 25.82, R = 78.8.

[31]. This wavelet compression method is probably one of the most powerful to date.
With some additional optimization of the storage (e.g. Huffman coding), and adaptive
partitioning, the unoptimized results of this study could be improved to compare favorably
with the results of Table 2.

C.R. ‘ 30:1 35.0 40:1 45:1 50:1 55.1 60:1 70:1
PSNR‘34.32 33.63 33.10 32.61 32.13 31.72 31.36 30.70

Table 2. PSNR vs. compression ratio for the “Lena” image using the SPTHT method.

More than one parent per child. Finally, in the spirit of developing other “collaging
strategies” with these fractal-wavelet transforms, one may consider the mapping of more
than one parent quadtree onto a child quadtree. In the simplest case of two parents, the
minimization of the square of the collage distance (omitting the A index),

Aij = dory) (Akyijs Qi1 Akriy (.5)i (15) T %52 Ak 12(6.5)72 (0.6)) (64)

by least-squares leads to a set of linear equations in the two unknown scaling factors a;;
and o;;2. The computational time required for two simultaneous full searches becomes
quite large: For the case (k7, k2) = (4, 5), a full search for both parents (omitting, of course,
repetitions) requires over 20 minutes of CPU time in total, as opposed to typically 40-50
seconds for the full searching of one parent. One possible simplification is as follows: given a
child quadtree, perform (a) a full search for one parent along with (b) a restricted search for
the other parent, limited to quadtrees which lie within a prescribed neighbourhood n, > 0
of the quadtree containing the child quadtree. Clearly, if n, = 0, then the second parent is
restricted to be the quadtree containing the child. Better approximations are expected as
n, increases.

For the case (k7, k5) = (4,5) with no quantization, the maximum PSNR values obtained
for the first four cases are given below, along with CPU times (unoptimized FORTRAN
code):
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Figure 12. Generalized IFSW approximations with (k7, k3) = (4, 5): Two parents mapped onto a

single child block. Full search for one parent. Search for other parent restricted to quadtrees which
lie within a neighbourhood of two quadtrees from the parent block containing the child. (a) No
quantization, PSNR = 27.99. (b) (n1,n2) = (10,4) quantization, PSNR = 26.87, R = 45.1.

n, | 0 1 2 3
PSNR |[27.25 27.74 27.99 28.17
CPUsec. | 53 201 492 933

As expected, the introduction of a second parent yields approximations of higher ac-
curacy than the maximum PSNR value of 26.7 obtained with a (4,5) single-parent fractal-
wavelet transform of Lena. The accuracy of the approximations increases with the size n, of
the neighbourhood searched but at a rapidly growing computational expense. As well, the
improvements in accuracy for n, > 3 are small and diminish rapidly. The PSNR accuracy
corresponding to a full search, n, = 15, is 28.91. These fractal-wavelet transforms with
two parents are also sensitive to the quantization, especially the truncation value. Two
approximations obtained for the n, = 2 case are shown in Figure 12: (a) unquantized,
(b) (n1,m2) = (10,4) quantization, with PSNR = 26.87. The compression ratio of 45.1 is
slightly less than that for a (10,8) quantization for a single parent (48.8 in Table 1), since
4 bits are needed to code the location of the second parent.

6 IFSW and Extrapolation of Wavelet Coefficients

The fractal-wavelet transforms discussed in this paper perform an IFS-type operation of
scaling and copying of wavelet coefficient subtrees onto lower subtrees in a parallel manner.
The net result of the IFSW operation is an extrapolation of wavelet coefficients which is
produced by the iteration of the fractal transform operator. We start with the the stored
wavelet coefficient blocks A,)g‘, 1 < k < k5 —1. This truncated wavelet expansion is the
“zeroth-order” approximation to the image. The ith application of the fractal-transform
operator produces the set of higher resolution blocks Al)c‘;+ia i=1,2,.... As shown below,
the asymptotic geometric decay/growth of the extrapolated wavelet coefficients is char-
acterized by the scaling coeflicients af‘j. Recall that these coeflicients are determined by
the least-squares “collaging” of high-frequency wavelet coefficients by their low-frequency
counterparts. We now outline two particular applications of this extrapolation process.
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6.1 Regularity/Irregularity Properties

There is a natural connection between the affine of the fractal-wavelet transform and the
scaling relationships for wavelet transforms in regions of regularity and irregularity. In the
case of image functions, irregularities are typically manifested as edges; regular regions are
areas of smoothness. An image is fundamentally characterized by its edges which typically
define boundaries of objects in it. Moreover, such sets of irregularity usually comprise a
rather small fraction of the total area of the image. As such, there has been much work on
the reconstruction of images from the large information contained in edge regions. Recently,
Mallat and coworkers have used scaling relationships of wavelet transforms to reconstruct
images with claims of high data compression [24, 25, 16].

We now show roughly how the scaling coeflicients «;; of the fractal-wavelet transform
can be related to regularity/irregularity features of the image being represented. This
discussion will be kept as brief and simple as possible and, for simplicity, will be restricted
to the one-dimensional case. First, consider an “image function” f(z) on R. Let n be a
nonnegative integer and n < # < n + 1. Suppose that for a point 275 € R, there exist a
constant K > 0 and an nth degree polynomial P, ., (z) = Y7_, ar(zo)(z — zo)* (the ay
depend on the zg as they do for Taylor polynomials) such that

|f($)_Pn,zo(w)| S K|m_£0|'g (65)

for all z in a neighbourhood N of zg. Then f is said to be locally Lipschitzf at zq. In the
case n = 0, i.e. 0 < g <1, the inequality becomes

|f(2) = f(zo)| < Kle - 2ol”. (66)

If inequality (65) holds for all ¢ in an interval I (independent of K), then f is said to
be uniformly Lipschitzf3 on I. The larger the Lipschitz exponent 8 that can be found to
satisfy the above, the greater the regularity of f at 2 (or on I). For example, 8 = 0 implies
that f is locally bounded; 3 > 0 implies that f is continuous at zq; 8 > 1 implies that f
is differentiable at 2, etc.. Negative Lipschitz exponents § < 0 may also be defined: The
Lipschitz exponent associated with the “Dirac delta function” §(z — o) (in the sense of
distributions) is 8 = —1.

Here we consider only one particular result involving wavelet transforms of f. Let v (z)
be a wavelet function on R. The (continuous) wavelet transform of f(z) on R at the scale
s > 0 and position zg is defined by

W f(zo, s) = /OO

— o0

fla)s /g (220 do (67)

(assuming the integral exists). Now let ¢(z) be a wavelet with n vanishing moments, i.e.
[ 2F4p(z)dz = 0 for 0 < k < n. Suppose that f(z) is uniformly Lipschitz-3, 0 < 8 < n

z
—00
on an interval I. Then there exists a constant A > 0 such that [23]

W f(zo,s)| < AsPT1/2, VY zoeR, s> 0. (68)

The dyadic wavelet expansion coefficients c,; correspond to the discrete scales s = 27" in
Eq. (67). Hence, ‘

|an| < A2_n(ﬁ+1/2), Vaegel. (69)
The uniform Lipschitz behaviour of f implies a uniform asymptotic decay - more precisely, a
geometric decay - of wavelet expansion coefficients across a particular refinement /frequency
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level n. Expressions for asymptotic decay also exist for the case of local Lipschitz-3 be-
haviour about a point zg.

Without loss of generality, we consider the simple fractal-wavelet transform M of Ex-
ample 1 in Section 2.2. Iteration of M produces a wavelet tree whose coefficients c,; behave
as follows:

len;] < Alal™, 0<j<2" -1, n=1,2,..., (70)

where A = |coo| and |a| := max;{|co;|}. From the inequalities (69) and (70), we have the
connection
o] =271/, g 12 log, |al. (71)

As 8 increases, implying that f is more regular, |a| decreases. As 8 — 0%, |a| — 1/1/2.
(Recall that |a| < 1/4/2 guarantees that the IFSW operator M is a contraction mapping
on [2(N).)

Analogous results exist for the behaviour of the wavelet transform about isolated singular
points 2. In these cases, the wavelet transform, hence the wavelet coefficients c,,;, increase
geometrically. (More complicated relations exist for nonisolated singularities.) The net
result, which also applies to the two-dimensional case, is as follows: At “smooth” regions of
an image, we expect the fractal-wavelet transform to yield scaling coefficients af‘j with small
magnitudes. Conversely, near singularities, i.e. edges, we expect the scaling coefficients to
have larger magnitudes. This is illustrated by the “scaling contour map” for the Lena
image in Figure 13(a). The magnitudes of the scaling coeflicients obtained from the IFSW
approximation in Figure 8(b), where (k], k5) = (5,6) are plotted on a 64 x 64 grid. The
magnitude || o;; || of each scaling coefficient triple (afj, oy, afj) for each 1 < 4,7 < 64 was
computed simply as:

| e lI= [(ef)® + (a3;)* + ()12, (72)
In this way, the horizontal, vertical and diagonal edge contributions have been combined
into one “edge index.” It is clear that larger values of |a|, represented by darker squares,
are clustered about the irregular regions of the image, i.e. edges. (By representing the
A = {h,v,d} coeflicients with three separate colours, different edge orientations may be
distinguished in the contour map.)

In Figure 13(b) is shown a histogram plot of the af‘j scaling coefficients. (Here, the
h,v, d coefficients are considered separately.) In this case, 90% of the coefficients lie in the
interval [—0.6, 0.6]. In fact, the distributions obtained from the fractal-wavelet transforms of
a number of standard images are virtually identical, exhibiting a highly peaked Laplacian-
like structure. (The distribution of wavelet coeflicients is also observed to be Laplacian in
nature.) Figure 13(b) reveals that much of the Lena image consists of smooth regions. The
edges, associated with scaling coefficients with large magnitudes, comprise a small fraction of
the image. Nevertheless, it is the edges which characterize an image. This is important when
considering quantization schemes for scaling coefficients. (Note that a midriser quantization
of the af‘j assigns a value of zero to scaling coefficients in a neighbourhood of zero. Since
a zero value of the scaling coefficient implies that the corresponding child quadtree is zero,
the process is in some way analogous to zerotree wavelet schemes [32].) It is important to
be able to code as much higher-resolution information, e.g. edges, into the fractal-wavelet
transform. These ideas will be explored further elsewhere [37].

Given an image (function or measure), the determination of “sizes” of subregions with
prescribed irregularity /regularity (as measured by Lipschitz or Hélder exponents) is a sub-
ject of multifractal analysis [20]. On this note, we draw the reader’s attention to some recent
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Figure 13. (a) Fractal scaling parameter “contour map.” Magnitudes of «;; scaling vectors for
(k3. k3) = (4,5) IFSW approximation of Lena image plotted as a 64 x 64 array. Higher scaling
magnitudes, represented by darker points, are situated at or near edges or irregular regions of the
image. (b) Histogram (normalized) of af‘j values for the (4,5) IFSW approximation of Lena.

and very significant work on the problem of constructing (continuous) fractal interpolation
functions with prescribed local Hélder regularity conditions [6, 7]. This has been accom-
plished by several means, including a generalized affine IFS (GIFS) interpolation functions.

6.2 “Fractal Zoom?”

Up to this point, the fractal-wavelet transform has been used to extrapolate the wavelet
expansion of a image from “zeroth order,” i.e. the stored block By:, to the “complete”
expansion of the image, i.e. Bg for a 512 x 512 pixel image. However, the fractal-wavelet
transform may be iterated even further to produce additional wavelet blocks, e.g. approxi-
mations to Bg, or 1024 x 1024 representations of the image, B1;, etc.. These correspond
to higher resolution approximations of the image. For a fixed pixel size, they permit an
approximate “zooming.” Figures 14(a) and 14(b) show approximations to B and Bi;
resolutions of the Lena image. In both cases, 512 x 512 pixel blocks from the centre of each
approximation have been plotted.

7 Concluding Remarks

In this paper a generalized class of affine two-dimensional fractal-wavelet transforms has
been introduced. The action of these IFS-type operations on wavelet quadtrees induces an
action in function space: a recurrent IFSM with condensation functionsinvolving dilatation,
scaling and mixing of orthogonal components of the image function. Under suitable condi-
tions, the affine IFSW operator is contractive, leading to a fractal approximation method
based on the collage theorem. The fixed point wavelet tree ¢ of the contractive operator
exhibits a kind of “self-tiling”: it is expressible as a union of an upper “parent” blocks with
scaled copies below them.

The compression methods employed in this study were quite simple. Further investiga-
tion is required in a number of areas including: (1) less restrictive parent-child configurations
where the refinement can be adaptive, (2) a detailed analysis of searching vs. nonsearching
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Figure 14. “Fractal zooming” obtained from (7, k3) = (5, 6) IFSW transforms. (a) Wavelet
coefficients extrapolated to Big. (b) Extrapolation to Bi;.

or partial searching of parent quadtrees, (3) the role of quantization and entropic coding,
(4) exploitation of possible correlations between the three sets - h,v, d - of the o;; scaling
coefficients. (5) the use of more than one scaling coefficient for a given quadtree collage.
From the discussion in Section 5, the IFSW method extrapolates low frequency wavelet
coeflicients from a knowledge of higher frequency behaviour. The extrapolated coeflicients
grow or decay geometrically according to the magnitudes of the affine scaling factors af‘j.
From the discussion in Section 5, these scaling factors are intimately related to the local
regularity /irregularity properties of the image. As such, the fractal-wavelet transform is,
in some way, encoding edge and smoothness information of the image. Perhaps there are
even better ways to encode this important information in the IFSW transform. One must
keep in mind that the discussion was very simple, being limited to isolated singularities. It
remains to analyze thoroughly the connection between wavelet transform scaling results and
fractal-wavelet transforms. It may also be helpful to define IFSW which employ nonlinear
transformations of wavelet subtrees.

It is also possible to use “fractal zooming” to enhance images where high frequency
information may be lacking. The results of some work in this area, along with (3)-(5)
above, will be reported elsewhere [37].

In closing we draw the reader’s attention to some recent work in which edge information
encoded in low order DCT/JPEG coeflicients is used to improve the fractal approximation
[38]. The use of fractal transforms to enhance JPEG compressed images is also reported.
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Appendix A: Some Generalizations of IFSM

Local IFSM: A significant improvement based on a method introduced in 1989 by A.
Jacquin lies in the method of “local IFS” [18, 4]. Rather than attempting to express a
function as a union of copies of subsets of itself, the local IFSM, or LIFSM, method seeks
to express it as a union of copies of subsets of itself. In other words, the contractive IFS
maps w map subsets of X into smaller subsets of X. We write these maps as wj;, : I; = J,
where I; is the parent or domain block which is mapped into the (smaller) child or range

block Jy,.

Example: Let X = [0,1]. Suppose that there are two domain blocks I; = [0,0.5] and
I, = [0.5,1] and four range blocks J; = [(¢ — 1)/4,¢/4], 1 < ¢ < 4. Thus, the IFS maps
w;j, will have contraction factors 1/2. Each range block J; must have a domain block L4,
1 < j(¢) < 2, which is mapped onto it. Associated with each such IFS map wj(;); is also a
grey level map ¢;(¢) which will modify the function values on I ;(s) to produce the function
values on J;, 1 < ¢ < 4. Suppose that the indices j(z) and grey level maps ¢; for the range
blocks J; are given by

0] ¢i(t)

1 1 0.66195¢ — 0.04843
2 1 0.28564¢ 4 0.71847
3 2 0.28564t 4 0.71847
4 2 0.66195¢ — 0.04843

(In other words, block I; is mapped onto range blocks J; and Ja, but with different grey level
maps.) An approximation of the attractor of this four-map local IFSM is shown in Figure
Al. In fact, the domain-range pairs and grey level maps ¢; minimize the collage distance
associated with approximating the function sin(72) on [0,1] with a two domain block/four
range block LIFSM. A much superior approximation to the graph of this function is obtained
by this method as compared to the usual IFSM method. Roughly speaking, it is easier to
“tile” the graph of sin(wz) with parts of itself. For example, the portion of the graph
supported on [0, 1/4] is better approximated as a shrunken copy of the graph supported on
[0,1/2] as opposed to a shrunken copy of the entire graph supported on [0, 1].

Figure A1l: The attractor function #(z) of the four-map local IFSM given in the text. It is an
approximation to the target function sin(7z) which is also shown.

Place-Dependent IFSM: The grey-level maps have the ¢, : Rx X - R, 1 < k < N.
Much of the theory developed above for IFSM easily extends to place-dependent IFSM [14].
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The fractal components fi(z) of a function u € £?(X, p) will be given by

i) = { gbfw(w,; @) e, 2 ; Ziﬁgf (73)

The operator T' associated with an N-map PDIFSM (w, ®) will have the form

N
(Tu)(e) = Y 'dn(u(wy*(2), w; ' (2)), (74)
k=1

It is convenient to work with ¢ maps which are only first degree in the grey-level variable
t, i.e.

o(t,s) = at+PB+4g(s), 9: X — R, bounded on X, (75)
o(t,s) = oa(s)t+p6(s), o,f:X — R, bounded on X. (76)

The action of the first set of maps can be considered as a “place-dependent” shift in grey-
level value. The second set of maps produce a more direct interaction between position and
grey-level value.

Example: The 2-map PDIFSM on [0,1] with IFS maps w;(z) = %m, wy(z) = %J) + % and

grey-level maps
1

2 ?
where v € R may be considered as a “perturbation” parameter for the place-dependent
term. When v = 0, @(z) = 1 (a.e.). In Figure A2 are presented histogram approximations
of fixed points @ for two cases, vy = :l:%. The place-dependent term -s produces a gradation
or “ramping” of the function over the interval [0,1].

1 1 1
P1(t,s) = St P2 (t,s) = St 5 ts (77)

Figure A2: Fixed-point attractor functions #(z) of the 2-map PDIFSM in Eq. (72). When v = 0,
a(z) =1 (ae.). (a) y=3. (b) y=—1.

In the two-dimensional case, i.e. X = [0, 1], relevant to image representation, the affine
grey-level maps will have the form

or(t, 2, y) = agt + Bre + 1ry. (78)
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Appendix B: Periodized Wavelets

In many applications one needs wavelet bases adapted to a compact interval. For this
purpose, periodizing the wavelet basis functions is useful. Furthermore, in practical com-
putations, one often deals with finite data sets and periodizing the discrete transform is
simple and clean to implement [41].

For a function f € L%(R), define the periodized version of f to be

F@) =Y S i) (79)

where the sum is over all integers ¢. This process “wraps” the function f around the interval
[0,1] and sums the various contributions.

Let ¢ be a scaling function for an MRA on R and % be the associated “mother” wavelet.
Then the periodized wavelets %7;(z) form an orthonormal basis of L*[0,1] and we have a
nested MRA structure as in the case of wavelets on R [10]. Unfortunately, the transla-
tion/scaling relations in Eqs. (2) and (7) of Section 2 do not hold for periodized wavelets.
For example,

Pii(@) = D ti(z k)
k
= Y2 - 2k )
k
# ¥ (2z - j). (80)

As a result, the rather simple scaling analysis of Section 2 is not applicable here. The action
of an IFSM associated with an IFSW on periodized wavelets is discussed in [26].

Finally, consider the fractal-wavelet transform of Example 1, Section 2, but now applied
to coefficient trees for periodized wavelets. In the Haar case, the result is trivially the
same as in Figure 1(a) of Section 2. The periodic attractor function @ for the Coifman-6
periodized wavelets is shown in Figure B1. (Note that the wavelet coefficients c;; for the
graphs in Figures 2(a), 2(b) and B1 are identical.)
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Figure B1. Attractor function @ for IFSW in Example 1, Section 2.2, using Coifman-6 periodized
wavelet functions.
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