FROM FRACTAL IMAGE COMPRESSION TO
FRACTAL-BASED METHODS IN MATHEMATICS

EDWARD R. VRSCAY™

1. Introduction. In keeping with the philosophy of this workshop,
the aim of this presentation is to provide an overview of the research done
over the years at Waterloo on fractal-based methods of approximation and
associated inverse problems. Near the end, some new and encouraging
results regarding “fractal enhancement” will be presented. The paper con-
cludes with thoughts and challenges on how the mathematical methods
that underlie fractal image compression could be used in other areas of
mathematics.

Let us go back to first principles for a moment in order to recall some
of the early thinking behind fractal image compression (FIC). In fact, since
the early work of Barnsley, Jacquin et al., there has been very little change
in the basic idea of FIC. Most efforts have focussed on developing strategies
to perform “collage coding” as effectively as possible — whether it be in
the pixel or wavelet domain. This includes the the competition between
employing the largest possible domain pools and searching them as quickly
as possible.

Very briefly, let I denote an image of interest as defined by an image
function u(z,y) supported over a region X € R? as shown in Figure 1
below. Here z,y € X denote spatial coordinates of a point or pixel of I.

Now suppose that there exists a suitable partition of D into subblocks
R; so that X = U;R;. For simplicity, the R; are assumed to be “nonover-
lapping,” intersecting only at their boundaries, which are assumed to have
zero Lebesgue measure in the plane. (In the discrete case, i.e., pixels, there
is no overlapping.) Assume that associated with each subblock R; is a
larger subblock D; C X so that R; = w;(D;), where w; is a 1-1 contraction
map. Furthermore, we have found that the image function u(R;) supported
on R; is well approximated by a modified copy of the image function u{D;)
as follows:

(1) w(R;) = ¢i(u(Dy) = ¢i(u(w; " (Ri))),

where ¢; : R — R is a greyscale or grey level map that operates on the
pixel intensities. The process is illustrated in Figure 2 below.
Because of the nonoverlapping nature of the partition, we may write

(2) u(z,y) = (Tu)(z,y) = Z@(U(WE"I(E,:L/)))-
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Fic. 2. Hlustration of the fractal transform. Left: Range block R; and associated
domain block D;. Right: Greyscale mapping ¢; from u(D;) to u(R;).

In other words, the image function v is approximated by a union of
spatially-contracted (w;) and greyscale-distorted (¢;) copies of itself. We
may consider this union of modified copies as defining a special kind of
fractal transform operator T". If the above approximation is a good one,
then the so-called collage distance | v — Tu || is small.

The carly excitement of fracta] image compression, following the re-
sults of IFS theory, lay in the fact that the operator T, under suitable con-
ditions, can be made contractive, This implies the existence of a unique
fixed point function @ = T that can be generated by the iteration process
Unt1 = Tun, with ug arbitrary, e.g. a blank computer screen. Moreover,
a simple triangle inequality - the so-called “Collage theorem” —establishes
that if u is “close” to Tu, then u is also “close” to @, implying that @ is
a good approximation to u. The dramatic conclusion was that one needs

only to store the parameters that define T in order to generate the approx-
imation .
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From this early work arose much intense effort in fractal image com-
pression. Indeed, the points outlined above provided a recurring theme for
research at Waterloo which can be summarized as follows:

1. The identificaton of suitable metric spaces (Y,dy) of functions,
measures or distributions that can be used to represent “images”
supported on a region X.

9 The construction of suitable fractal transform operators T : Y — Y
over these spaces. Such operators produce spatially contracted and
greyscale distorted copies of an image function u € Y — the frac-
tal components ¢i(u(w; (Ry))) in Egs. (1) and (2) — and then
recombine these components in an appropriate manner, in partic-
ular when more than one fractal component may exist at a point
r € X. It is also desirable that, under certain conditions on the
w; and the ¢;, the operator T is contractive in (Y,dy).

3. The formulation and solution of inverse problems in these spaces,
where a “target” element u € V' is approximated by a fixed point
i of a contractive fractal transform 7.

4. The construction of fractal transform operators on other metric
spaces that may not necessarily be connected with image function
spaces.

Finally, we consider the more general question whether the mathemat-
ical methods behind inverse problems in (3) above can be used in other,
possibly “non-fractal”, areas of mathematics. Some encouraging results
that indicate an affirmative answer will be presented.

1.1. Iterated function systems and IFS with probabilities. Let
us now backtrack even further to summarize the most important features
of Tterated Function Systems. Such a review obviously establishes notation
and refreshes the reader’s memory of IFS basics. Here, however, the review
will also allow us to appreciate the recurring themes that make their way
into later IFS research and its applications. Note that it is not possible here
to provide a complete account of works that could be considered as precur-
sors to IFS theory. At the risk of omitting some important works, I simply
mention a few references, beginning with the work of Williams [67] who
considered the problem of fixed points of finite compositions of contractive
maps. Nadler [55] considered systems of maps as defining “multifunctions”
following earlier work of others. In his studies of learning models, Karlin
[39] constructed random walks over Cantor-like sets, essentially the “Chaos
Game” [5] of IFS.

Our review begins with the work of Hutchinson [36] who studied the
geometric and measure theoretic aspects of systems of contractive maps
with associated probabilities, and the use of such systems to construct
fractal sets. Barnsley and Demko [6] independently discovered the use of
such systems of mappings, which they referred to as “Iterated Function
Systems”, but in a more probabilistic setting.
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Let (X,d) be a complete metric space (typically [0, 1]"™ with usual
Euclidean metric) and let H(X) denote the set of non-empty subsets of
A'. The metric space (H(X),h), where h denotes the Hausdorff metric, i
complete [20]. Now let w; : X =+ X, 1 <4 < N, denote a set of contractigy
maps on X with contraction factors ¢; € [0,1) defined in the usual way:

(3) ci= sup d(w(z),w;(y))/d(z,y).

T,y X, x#y
Associated with each contraction map w; is a set-valued mapping ;
H(X) = H(X) defined by wi(S) = {wi(z)|zr € 8} for S e H(X). The IFS
operator w associated with the N-map IFS w is defined as follows:

(4) W(S) = U wi(S), SeMHX).

This operator W is contractive on (H(X),h) [36):
(5) h(W(A4), %(B) < ch(A,B), VA, B e H(X),

where ¢ = max;<;<n{c;} < 1. The completeness of (H(X), k) guarantees
the existence of a unique fixed point A = W(A) in H(X). The set A, also
called the attractor, can be viewed as the IFS representation of an image.
From Eq. (4), it satisfies the self-tiling property,

(6) A= w(4).
i=1

The union is a natural operator to combine the component sets 4; = i (A4),
(Note that this definition was later extended to “partitioned” or “local”
IFS, where the contractions w; could map subsets D; C X to smaller subsets
Ri; C X. We omit the details.)

The moral of the story: “Classical” IF'S generate sets. Sets can be
interpreted as images but only of a limited class — black/white images. A
more useful method would accomodate shading, i.e., a greater number of
greyscale values in the interva] [0,1] (or [0,255]). Barnsley and coworkers,
beginning in [6], realized that invariant measures of IF'S with probabilities
could perform this task.

Let p = {p;,ps,... ;PN } denote a set of probabilities associated with
the IFS maps w;, with 2.0 = 1. Let M(X) denote the space of prob-
ability measures on the Borel sigma field of X with the following Monge-

Kantorovich metric [36]
[ fau- [ sav

W.hem Lip)(X) denotes the set of Lipschitz functions f : X — R with
Lipschitz constant K S 1. Associated with this IFS with probabilities

(7) dar(p,v) = sup
FELip (X))

H
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(IFSF) (w,p) is an operator M : M(X) = M(X) defined as follows. For
aje M(X):

(8) (Mp)(S) = 3 pinwi " (S), VS € HX).
Then [36]
(9) dM(MF“':AIV) SCdM([J,U), V[.L,VEM(X).

Gince M is a contraction mapping in M(X), there exists a unique measure
i € M(X) such that = M. This invariant measure of the IFSP (w,p)

also satisfies a self-tiling property:

(10) i(S) = Zmﬁ(w;‘l(S)), VS € HX).

With IFSP, images are represented as probability measures supported
on the attractor A C X. The measure p(B) of an appropriate Borel subset
B C X can be interpreted as the grey level value of the pixel representing
B. The probabilities p; can be used to modify these values, hence rendering
the shading of the attractor A.

Most probably the reader automatically accepted the use of the sum-
mation function in Eq. (8): If a point = € X has several preimages, say
wi'kl(a:), 1 < k < n, then we linearly combine the measures ‘,u(wg;l (z)) to
obtain (M u)(z), using the probabilities p; as weights. This procedure fol-
lows naturally from both probabilistic as well as measure theoretic aspects.

Jacquin’s original “block IFS” method [37] was formulated in the lan-
guage of measure preserving transformations and invariant measures, quite
reminiscent of earlier IFSP work. In its applications to image compression,
the method operates on measures over discrete pixel domains — scaling them
and adding them, which is essentially equivalent to treating the images as
functions. Indeed, it was quite natural that later work on fractal image
compression, for example that of Fisher [22], considered images as func-
tions — in particular, £2 functions, the usual procedure in signal and image
processing. The space £ offers some attractive simplifications for fractal
image compression. For example, the contractivity of the fractal transform
T depends only upon the Lipschitz factors of the grey level maps ¢;, unlike
the case for £2 [9].

1.2. IFS on LP spaces. An IFS-type method can easily be formu-
lated over the space £P(X),p = 1, of Lebesgue integrable functions on
X:

(11) LPX)Y={f: X >R /X|f(m)1pda:<oo}.

As before, let w;, 1 < i < N, denote a set of IFS contraction maps on X.
Associated with each map w; is a grey level map ¢; : R — R satisfying a
Lipschitz property on R: There exists a K; 2 0 such that
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(12) |p: (1) — ¢s(t2)| < Kilt1 — 22|, VYV t1,t2 €R.

In most applications, the grey level maps ¢; are affine, i.e., ¢;(¢) = a;it+4,.
so that K; = |ay].

The IFS with grey level maps (IFSM) (w, ®) defines an operator T :
LP(X) — LP(X) as follows: For u € £P(X),

(13) (Tu)() = 3 éilulw; (2))).

A simple calculation [27] shows that for all u,v € £LP(X),

(14) ” Tu—Tv ”PS CJD ” U v “13, Cp - ZC:/I)KZ

If Cp <1, then T is contractive on £LP(X). The unique fixed point function
it = T't satisfies the functional equation

(15) i) = 3 du(aw] ! (2))),

a self-similarity relation in which 1 is expressed as a union of contracted (in
the z direction) and distorted (in the grey level direction) copies of itself.

In the special case that the sets X; = w; (X ) are nonoverlapping (or
overlapping on a set of Lebesgue measure 0), then

(16) 1 Tu=Tv|l, < Cpllu—wv lps Cp = [Z e KPP,
Note that
(17) Cp < Cp £ K, K =max{K,).

In the nonoverlapping case, with P = 00,
(18) HTu~Tv |l < K | =2lle, u,veL®(X).

This is the usual bound presented in the literature on fractal transforms [9].
In many treatments, both the IFS maps w; and the grey level maps
¢; are assumed to be affine. In such cases, we refer to the IFSM (w, @) as

an effine IFSM. In the case that X is one-dimensional, e.g. X = [0, 1), the
maps will have the form

(19) Wi=siz+ai, ¢i(t)=ait+f, 1<i<N,

where a;, 5; € R and lsi] < 1.
Another interesting form of an IFSM operator is the following:

(20) (Tu)(z) = 0(z) + > ayu(w] (z)).
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Here, the function g(z) acts as a «condensation” function for the IFSM.
Note that the affine IFSM of Eq. (19) is a special case of IFSM with

condensation, with

(21) 8(z) = Zﬁifw,-(X)(fb"),

where Ig(z) denotes the characteristic function of a set SCX.

In closing we mention that the form of the grey level maps may be
generalized to include place-dependent maps d;: Rx X = R, where the
$; are dependent upon both the grey level value at a preimage as well as
the spatial location of the preimage itself. (This is analogous to IFS with
place-dependent probabilities [7].) Much of the above theory for IFSM
extends easily to place-dependent IFSM, as shown in [28]. This is the basis

of the “Bath Fractal Transform,” a very effective method of coding images
53, 54, 68].

1.3. Self-similar functions. Finally, a note on Eq. (15) satisfied by
the IFSM fixed point attractor function @. The notion of gelf-similarity
properties of functions is certainly not foreign in mathematics, especially
in the field of wavelet theory. Let ¢(x) be a scaling function (not to be
confused with the ¢; notation used for grey level functions) that satisfies
the conditions for a multiresolution analysis [47]. Now define the space
Vo = span{¢(z—n)}3=—co- Then Vo € Vi = span{¢(2z—n)}nlco> implying
that ¢ satifies the functional equation

(22) (z) =y crd(2z — k).
k

The functions ¢(2z — k) are dilations of ¢(z) produced by the IFS-type
contraction maps w(z) = 3(x+k). One can view the scaling function @(z)
as the fixed point of an IFSM operator with grey level maps ¢x (t) = ext.
(In this case, the IFSM operator is linear, implying that ¢(x) = 0 is also a
fixed point solution.)

A standard definition of self-similarity [38], which we include here for
completeness, demands that a function f be self-similar over sets satisfying
an “open set condition” used in the case for measures. Suppose that f
is continuous and compactly supported and let {1 be the bounded open
cubset of R such that & = supp{f}. Further suppose that there exist
disjoint subsets ; C Q,1=1,2,.. ., N, with S;(Q) = s, where the 5; are
contractive similitudes. Then

(23) flz) = Z A f(STMH=)) + g(2),

where g(z) = gj(z) is Lipschitz for z € Q; and g(z) = f(z) for x & Uilli-
From Eq. (20), f is the fixed point of an N-map (nonoverlapping) IFSM
with condensation function g.
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The idea of self-similarity can be traced farther back in history. For
example, Bajraktarevic [2], following the work of Read [56], studied 5 class
of functional equations of the form

(24) f(z) = F(z, f(91(z)), .-, f(gn(2))).

This class includes the functional equations satisfied by fixed points of
IFS-type operators used in fractal image coding. For this reason, various
authors have referred to fractal transforms as Read-Bajraktarevic opera-
tors. The various forms of fractal interpolation functions, for example in
(4, 18], demonstrate self-similarity. Indeed, the construction of orthogonal
wavelets from fractal interpolation functions has also received much atten-
tion - see [49] and references therein. A generalized self-similarity relation
of L7 functions relevant to the construction of wavelets and multiwavelets
has also recently been discussed [12].

2. Unification of IFS methods on function/measure spaces.
In this section we summarize the formulation of IFS methods on various
function spaces [27]. This leads to the definition of fractal transforms on
the space of distributions which permits a unification of IFS methods on
function and probability measure spaces [28].

Early work sought to complement the work of Fisher [22, 23], who
formulated fractal transforms on £2 functions. Our first attempts were to
look for function spaces that would appear to be well suited to IFS geomet-
ric contractions. Since the IFS was formulated in terms of the Hausdorff
metric, we were inspired to consider the space of fuzzy sets, where the dis-
tance between two functions involves the Hausdorff distances between their
respective level sets.

2.1. Fuzzy sets and IFZS. The space of fuzzy sets on X, F*(X),
is defined to be the set of all functions u : X — [0,1] that are (1) upper
semicontinuous on (X, d) and (2) normalized, i.e., for each v € F* (X) there
exists at least one point 29 € X for which u(zo) = 1. The grey level range
is B, = [0,1]. The metric on this space is given by

(25) deo{u,v) = Ogugl h{[u]®, [v]%), Vu,ve F* (X)),

where the a-level sets of u ¢ F* (X) for @ € [0,1] are defined as follows:

[w]* :={z e X : u(z) > a}, o€ (0, 1],

(26)
[u]® := closure{z € X : u(z) > 0}.

The metric space (F*(X), ) is complete [17].

An IFS-type method on F*(X), referred to as IFZS [11], may be
formulated as follows, Associated with the IFS contraction maps w =
{wl,...,wN} is a set of grey level maps ¢ = {¢y, ¢, e ®N Y, @ [0,1] =
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0,1, such that for all i € {1,2,...,N}: (i) ¢i1s nondecreasing on [0,1],
(ii) ¢ is right continuous on [0,1), (iii) ¢ (0) = 0 and (iv) ¢+ (1) = 1 for at

least one i* € {1,2, ..,.N}
The pair of vectors (w, ) comprise an IFZS with associated fractal

transform operator 7. FYX) = FHX). Forau€ F*(X), its image Tu
is (up to a minor technicality which will be ignored here, cf. [11]) given by

(27) (Tw)(z) = sup {diuw; (@)}, Vo & X.
1<i<N
The contractivity of the IFS maps w; implies that T'is a contraction map
on (F* (X}, dso) since [11]
(28) doo (T, TV) < cdoo(u, ), Yu,v € F7(X).

The completeness of this space guarantees the existence of a unique fixed
point @ € F~ (X). From the definition of T in Eqg. (27), the a-level sets of
i obey the following generalized self-tiling property:

(29) @le = | Jwillgse@l®), a€[01]
i=1

5.9. From IFS to IFZS. For completeness, it should be noted that
snormal” IFS on sets can be viewed as a special case of IFZS. The con-
nection between sets and functions is accomplished by means of character-
stic functions [27]. Let Is(z) denote the characteristic function of a set
SeH(X), e, Is(z)=1ifz € S and 0 otherwise. Now let A, B € H(X)
and ¢ = AU B € H(X). Then

(30) Ic(z) = sup{Ia(z), I8(2)}-
From the property that I, (s) (z) = Is{w; L(z)), it follows that

(31) Ta(s)(z) = sup (Is(w;* (=)}
1<i<N

It is natural to consider the normalized (“black and white”) function space
Fow(X) c F*(X) defined as

(32) Faw(X) = {u: X = {0,1} | supp(w) € H(X)}

This leads to the following fractal transform operator T : Frw(X) —
Fpw(X) associated with an N-map IF3 w:

<N

(33) (Tu)(z) = sup {u(wi'(z)}, VzeX,

a special case of the IFZ5 method in which the grey level maps are identity
maps.
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2.3. From IFZS to IFSM. Unfortunately, the IFZS method is dif.
cult to work with. The grey level maps must satisfy some rather restrictive
conditions that lead to some interesting theoretical consequences [24]. The
Hausdorff metric do is also very restrictive from both practical (image pro-
cessing) as well as theoretical perspectives — see [27] for a discussion, Ip
[27], the idea was to continue to consider functions in terms of their a-levg]
sets as these sets are transformed by geometric (w;) and grey level ()
maps. However, a weaker measure of distance between these sets, namely
the symmetric difference, was examined. Briefly:

1. For a p€ M(X) and u,v € F*(X), define for all « € [0, 1],

Glu,v; ) = p([u]*Af]*)
(34) - fX Tiuje (@) — Inje (2)]dus(e),

where A\ denotes the symmetric difference operator: For A, B C X ,
AAB = (AUB)—-(ANB).

2. Now let v be a finite measure on B(R,), the Borel sets on a suitable
grey level range R, C R, and define

(35) g(u,v;y)::/ G(u,v; a)dr(a).
R
An application of Fubini’s theorem yields
ol viv) = V(OB AR + [ v((o(e), ule))dn(a)
(36) + [ @, v @Ddute),

where X, = {z € X | u(z) > v(z)} and X, = {z € X | v(z) >
u(z)}.
It can be shown that g(u,v;v) is a pseudometric on £! (X, ). In the

particular case that v = m, the Lebesgue measure on the grey level range
R,, Eq. (36) becomes

(37) o, v;m) = /X lu(z) ~ v(z)|du(z),

the £1(X, 1) distance between u and v. The restrictive Hausdorff metric
dx over a-level sets has been replaced by a weaker pseudometric (metric on
the measure algebra) involving integrations over X and R,. The result is a
fractal transform method on the function space LM X, 1), While it appears
that only the £! distance can be generated by a measure v on B(R,), it is

still natural to consider fractal transforms over the general function spaces
LP(X, p).
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The result of the above is a union of IF3 methods for various image
function spaces. What now remains is to establish a connection with IFSP
on probability measures. This is accomplished by means of an IFS-method
over a Space of distributions that ‘ncludes both integrable functions and
measures. This 18 summarized in the next section.

In closing, wé mention that no subsequent work has been done to
explore the possible use of the the distance function g in Eq. (36) as an
image metric - in particular, the role of the greyscale measure .

2.4, IFS on the space of distributions D'(X). In what follows
x = [0,1] although the extension to [0, 1} is straightforward. Distribu-
tions [61] are defined as linear functionals over & suitable space of “test
functions”, to be denoted as D(X). Here we choose D(X) = C®(X), the
space of infinitely differentiable real-valued functions on X. (Note: In the
literature, D(X) is normally taken to be Cse(X), the set of C°°(X) func-
tions with compact support on X. With this choice, the expressions for
distributional derivatives simplify due to the vanishing of boundary terms.)
The space of distributions on X, to be denoted as D'(X), is the set of all
bounded linear functionals on D{X), that is, F:D(X)— R, such that
1. |F(y)| < oo for all ¥ € D(X),
2. F(Cll,b]_ -+ CQI[)Q) = ClF(T,bl) + CgF(’l!)g), ¢1,C2 € R, ’(pl,’l,bg & ’D(X)
The space D'(X) will sccomodate the £P(X) spaces 1< p<o0as
well as (probability) measures, including «Dirac delta functions.” Tt will
be convenient to write a linear functional F € D'(X) symbolically as

(38) F(y) = fx f(e)yp()de

even though there may not exist a pointwise function f(z) that defines the
distribution F (e.g. the Dirac distribution). (The f is understood in the
context of a limit of a sequence of distributions Fn(#) € R that, in turn,
corresponds to a sequence of test functions fn € D(X). This sequence is
guaranteed to exist — see [28] and references therein.)

The goal is to construct an IFS-type fractal transform operator T :
D(X) — D'(X) which, under suitable conditions, will be contractive with
respect to a given metric on D'(X). We begin with the following definition
[28]:

DEFINITION 1. A function g : R — R will be said to satisfy a weak
Lipschitz condition on D'(X) if there exists o K > 0 such that for all
¥ € D(X),

-sK\ [ 1) = et
Vfi,f2 € D'(X).

\ [ (g0 £)(@) = (g0 @)
(39) -

Note: If g is affine on R, then it satisfies a weak Lipschitz condition on
P'(X).
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Now let w = {wi,...,wn} be a set of affine contraction maps in
X with contraction factors ¢;. Let & = {gbl,...,qﬁN}, be a set of grey
level maps satisfying the weak Lipschitz condition on D'(X) with Lipschity
constants K;. Associated with the IFS on Distributions (IFSD) (w, ®)isa
fractal transform operator T : D'(X) — D'(X) defined as follows. For any
S € D'(X), the distribution g = T'f will be defined formally by the linear
functional

G) = fX o(2)p(z)da = fX (T f) (@)(z)da
(40)
=Y [ @io fou) @iz

We now define the following metric on D’ (X):

(41) dp(f,g9) = sup
YED{X)

,» Vf,9eD'(X),

/ F(@)g(z)de —/ 9(z)p(z)dz
X X

where Dy (X) = {y € C®(X) | || v lo< 1}. The metric space (D'(X),
dpr) is complete [28]. Then for any £, g € D(X),

(42) Ao (Tf,T9) < Cpdp(f,9), Cp=3 cK,
i=1

If Cp < 1, there exists a unique distribution 4 € D'(X) such that 7% = 7.
Furthermore, dp/ (T, @) — 0 as n — oo for all u € D'(X).

Since the space D'(X) contains elements of LP(X) as well as M(X),
we have now accomplished the sought-after union of IFS methods over
function and measure spaces. Note that in the case of IFSP, the K; are the
probabilities p;. With the condition >.: Ki = 1, we obtain the usual IFSP
contraction factor Cp = ¢ = max;{c;}, cf. Eq. (9).

3. Generalized fractal transforms. In each of the IF S-type
schemes outlined above, an image or target is represented as a point y
in an appropriate complete metric space (Y dy). Each clement y is some
kind of real-valued function/measure /distribution that is supported on the
‘pixel space” (X, d). Some useful spaces ¥ have been outlined in the previ-
Ous section. From a more general perspective, the IF'S-type methods over
these spaces share a common feature: Given an image or target u € Y,
the IFS maps w; are first used to make N spatially contracted and trans-
lated copies w(w(z)) of u. The greyscale values of these copies are then
modified by means of appropriate grey level functions ¢; (including prob-
abilities p; for IFSP). Thege modified copies ¢; (u(w;(z))) of u are then
combined to produce a new function v. The entire process can be sum-
Mmarized as v = Tu, where T is 5 Jractal transform operator T : Y — Y.
Conditions imposed on the w; and ¢, guarantee that T" maps Y into itself.
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It is also desirable that, subject to additional conditions, T be contractive
on (Y, dy)-

In most, if not all, fractal-based approximation methods, it is assumed
that the sets Xi = wi(X) are nonoverlapping (or overlap on a set of zero
Lebesgue measure): For almost all z € X, w; ' (z) exists for only one value
ie{1,2,...-N }. However, we now wish to consider the more general case
of overlapping, where a point z € X can possibly have more than one
preimage.

These questions — the common feature of IF'S methods to produce mod-
ified copies of a function and the question of how to combine these copies
in regions of overlap — led to a formulation of generalized fractal transforms
which is summarized below. (Details are in [29].) The ingredients are as
follows:

1. The base space: denoted, as above, by (X, d). This is the support
of the image functions, hence the space representing the pixels — a
compact and connected subset of R, typically, X = [0,1]™ with
Euclidean metric. (It may, however, be useful to use X = R"™.)

9. The IFS component: For an N > 1, let w denote a set of
contractive maps, wi ! X =+ X, 1<i<N. (Or, in the case of
local IFS, w; : Di — R;, contractive, where D; € X. It may also
be possible to relax the condition that the w; be contractive.)

3. The image function space: F(X)={u: X = Ry}, the func-
tions which will represent our images. The grey level range
R, CR will denote the range of a particular class of image func-
tions used in a given fractal transform method. (In practical ap-
plications, R, is & bounded subset of RT.) These image functions
will comprise the space (Y,dy).

4. The grey level component: Associated with the IFS maps W
will be a vector of N functions ® = {1, 02,1 én}, it Bg = By
We may also consider $i s Rg x X = Ry, ie., “place—dependent”
grey level maps, as discussed earlier.

5. The fractal components of u will be given by fi € F(X), 1L
i < N, where

{ i (u(wi (2)), = € wilX),
0, T ¢’LU1(X)

6. The generalized fractal transform of u € F(X): Fy ¢
[Ry)* — R, 1 < k < N, where

(44) Fk(t)sz(h,tg,...,t,\;), t; € Ry, 1<1<k.

The transform Fpy defines an operator T« F (X) = F(X ) that
associates to each image cunction u € F(X) the image function
v = Tu.

The F) operators combine the k distinct fractal components #; =
fi(z) subject to a prescribed set of conditions [11, 28]. (Note that k

(43) filz) =
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depends upon z.) These conditions include (1) permutatiop sym-
metry and (2) recursivity which imply that F} is an associative
binary operation S on R* x R*. The choice of the binary opers.
tion S depends on the image function space used. The grey leve]

ranges and fractal transforms for IFZS and IFSM are given beloy:
I¥ZS: R, =0, 1]. Fy(z) = SUP15i5N{fl (), fa (z),..., fN(iB)}.
IFSM: R, = R. Fy(z) = TN fi(z).

Under suitable conditions that depend upon the space F (X) and
the operator F}, the generalized fractal transform 7T ig contractive
on the space F(X), implying the existence of a fixed point § ¢

F(X). The relation f = T'f implies that f satisfies the functiona)
equation

(45) f(z) =Fi(¢o fowr'(z),...,¢0 Fow (a)).

The presence of 7 on both sides indicates that it possesses a kind
of self-similarity, L.e., that it can be expressed as a suitable combj-
nation of scaled and modified copies of itself. Eqgs. ( 10) and (15)
were already encountered as examples demonstrating this prop-
erty. Indeed, these equations are special cases of the Bajraktarevic
functional equation in Eq. (24).

Remarks on the overlapping property.

1. As mentioned earlier, most, if not all, fractal-based compression
methods assume that the fractal components do not overlap.
Nonoverlapping simplifies the procedure of “collaging.” However,
techniques that either simulate or introduce overlapping have been
used to reduce the problem of blockiness in fractally encoded im-
ages. This was one of the original motivations for fractal-wavelet

posed to the nonoverlapping Haar basis) to perform some kind of
smoothing between blocks.

2. The overlapping broperty was used in formal solutions to the var-
ious inverse problems of approximation using IFS-type methods
[29]. An infinite set of contraction maps w = {wy,wy,...} is em-
ployed as a kind of basis set of IFg maps with arbitrarily high
degrees of refinement. The sets X; = w;(X) necessarily overlap.

above. (It also may not be obvious why one would even consider such
prok?lems.) We begin with cases that are relatively straightforward. In this
Section, we assume that hotl IFS and grey level maps are afline, cf. Eq. (19).
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4 Z
where ¢ is 1-1 and invertible (and preferably linear, i.e. an isomorphism).
Then a fractal transform operator T': ¥ — Y induces an equivalent op-
erator M : Z — Z that is considered to define a fractal transform on Z.
Such methods have been useful for the treatment of inverse problems in
more suitable spaces. Two noteworthy examples are moment methods for
measures and fractal-wavelet transforms for image functions.

Moment methods for measures: Let (¥, dy) be the space (M(X),dnm)
of probability measures on X = [0,1] (for simplicity) with the Monge-
Kantorovich metric of Eq. (7). Consider the following space D(X) of
moment vectors

(46) D(X) ={g=(g0,91,92:- - ) |9n=/mndx’nzg’l’gi“-’VPEM(X)}-
X

(Note that go = 1.) Now define the following metric on D(X): For u,v €
D(X),

o0

(47) dg(u,v) = Z 'k%(’uk - ’Uk)2.
k=1

Then (D(X),d2) is a complete metric space [26]. Now let (w,p) be an
N-map IFSP with associated Markov operator M : M — M(X). There
corresponds to M an associated linear operator A: D(X) — D(X). More-
over, A is contractive in (D(X ),d2). As a result, there exists a unique
element g € D(X) such that Ag = g. (The elements of g are the moments
of the invariant measure ji of the IFSP.) Details are given in [26]. A similar
procedure may be employed for Fourier transforms of measures [29].

Transforms of £? functions. For simplicity of notation, we consider
the one-dimensional case, X = [0,1]. Let {gn}pzo, With go(z) = 1, de-
note a complete set of orthonormal basis functions on X. Then for a given
u € L2(X),

(48) u(z) = Z crqr(),
k=0
where
(49) cp =< U, Gk >= /Xu(cc)qk(:c)d:n.

The infinite vector ¢ € (2(IN) is a faithful representation of u € L2(X).
Now let (w,®) denote an N-map affine IFSM on X with with associated

operator T and let v = T'u. Then
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o0
(50) v(z) = de%(x)a
k=0
where
o0
(51) dy =) aua + e,
=1

The coefficients

N N
(52) am =) ai<gngow > ex=) fi< Tk, T(x) > .

i=1 i=1
define the affine mapping M : ¢ — d associated with the IFSM operator
T. I T'is contractive in (L7(X),d,) then the mapping M : I2(N) — 12(N)
is contractive in the corresponding metric. (The fixed point € = MG is the
vector of Fourier coefficients of the IFSM fixed point function @ = Tg iy
the g¢; basis.)

In general, the matrix representation of M is rather full, which is the case
for the discrete cosine transform, for example. However, in the special case
that the q; are localized in space, e.g. wavelels, many of these matrix
elements vanish. The relations between the di. and the ¢ simplify even
further when the IFS maps w; coincide with the dilatations involved in the
construction of wavelet bases. This was nicely illustrated by G. Davis for
the case of Haar wavelets [16] and then shown more generally in [28]. We
discuss the resulting fractal-wavelet transform in the next section.

3.2. Fractal-wavelet transforms. It ig instructive to look at the
transformation induced on a wavelet expansion tree by a simple affine
IFSM. Let ¢(z) denote a scaling function that yields a standard multireso-
lution approximation of L2(R) so that (z) is the corresponding orthogonal
mother wavelet function. (For details, see [15, 47]).) Then the functions

(53) Vi (2) = 22920 - ), —o0<i,f < oo,
form a complete basis of L%(R). In the special case of the Haar basis,
(54) ¢(l‘) = 1[0,1](55), 1,/)(33) = 1[0,1/2]($) - 1[1/2,1](33),

We consider functions f € 12 (R) admitting the following wavelet expan-
sions:

co 2i—1
f(2) = boop(a) + > > ciis(z)
(55) i=0 j=0

= boogp(x) + fo(z).

The wavelet expansion coefficients are usually displayed in the following
manner:
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boo
Coo
€10 C11
Co0 C21 Coo €23

Cso | Ca1 | Cs2 [ Caz | Caa | Css | Css | Csr

Each entry or block C;; represents a wavelet coefficient tree of infinite length
rooted at ¢;j. The block Cog Tepresents the complete wavelet expansion tree
of fo(z). In the case of the Haar basis, f has support {0, 1].

Now consider the following two-map affine IFSM:

1

wy () = 5% ¢1(t) = aat + Bu,
(56) 11
| 'U)g(CL') = -2-33+§, ¢2(t)=a2t+,52,

and let g =T f. Then
g(z) = arbood(2z) + Y cijthi(22) + Bl 2)(x)
(%)
+ aaboop(2z — 1) + Z cij i 2z ~ 1) + Baljyj2,1 ().
i,

It is convenient to write g(z) in the form

(57) g(z) = () + go(z),
where
(58) B(z) = [e1boo + B1}[0,1/2) (%) + [xaboo + Bolli 2.0 ().

In the Haar basis, the components of #(z) lie only in the top two entries of
the wavelet tree occupied by the scaling and mother wavelet components.

The function go(z) has the wavelet expansion

0
0

1 .
ﬁal Coo ﬁazcoo

(59)

The IFS operator T is seen to induce an IFS-type operation on the wavelet
coefficient trees: The two blocks Cp and Cry of the wavelet expansion of
f are replaced by scaled copies of Coo. In addition, the the bgg and coo
entries representing 8(z) are modified appropriately.

In the Haar basis, such a scaling and copying of higher subtrees onto
lower subtrees is also produced by appropriate “local IFSM” that map
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dyadic domain blocks to small range blocks. This Conlnection,. made possible
by the nonoverlapping nature of Haar Wave}et basis functions, has beep
discussed in in [16, 29]. From this connection, a number of researchers
independently defined discrete fractal-wavelet tmnsforms that performed
scaling and copying operations on wavelet coefficient trees for generalizeqd
(non-Haar) systems of compactly supported wavelclets (16, 29, 40, 59, 62] to
name a few). In these cases, the supports of contiguous wavelet functions
overlap. The motivation to devise such transforms was an attempt to
reduce the blockiness exhibited by usual fractal (= Haar) block-encoding
schemes.

Indeed, such fractal-wavelet (FW}) transforms represent an interesting
IFS-type of operation on wavelet subtrees. Working backwards, however,
the connection between these operations and the transformations they in-
duce in function space are not quite as straightforward as in the Haar case.
In the case of nonperiodized wavelets, the discrete FW transform is equiva-
lent to a recurrent IFSM [51]. In the case of periodized wavelets, which have
been used in image processing, the connection is an even more complicated
form of IFSM. (The connection in the case of biorthogonal wavelets that are
employed in most current image processing applications has not yet been
considered.)

We illustrate the basic idea of FW transforms with a simple
example taken from [51]. Consider the following F'W transform with four
block maps:

(60) I-'Vl : Cm - Cgo, T/VQ: 011 — Cgl, Wg: ClO — 0‘22, Wq! Cll — 023,

with associated multipliers a;, 1 < i < 4. Diagramatically,

Coo
(61) M C(]o — Cio Cl1
a1 Chp | azC11 | a3Cyp ' aygChy

Note that the coefficient, bgy remains unchanged in this FW operation - for
this reason its contribution is ignored. Now iterate this process, assuming
that it converges to a limit Cog which represents the wavelet, expansion of a
function @ € £2, (A look at the sequence of wavelet coefficients generated
by the iteration shows that the condition la;| < % is sufficient to guarantee
the existence of such a limit.) Then

(62) U= cootPon + T.

The function ¥ admits the wavelet expansion

(63) €10 €11
a1 C1g | a:C11 | a3Cig | a1 O
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Since < 0, %11 >= 0, etc., we may write
(64) 7= U + U2,
where the components 9; satisfy the relations

71 () = cyoio(z) + 041\/5'171(23)) + QQ\/i'l_)g(QiL')

5
(6 ) 1’}.2(3;) = Cllwll(m) + agﬁf)l(Qm — 1) -+ C!q\/i’ljg(?ﬂ) - 1)
These equations define a vector IFSM with condensation. The vector v is
composed of the orthogonal components 71 and @ that satisfy the above
fixed point relations.

Note that the contractive IFS maps w;; are mappings from the entire
base space X into itself and not local IFS maps. What appeared to be a
local transform in wavelet coefficient space is a vector IFSM in the base
space. (Again, in the special case of the nonoverlapping Haar wavelets, the
above IFSM may be written as a local IFSM.) The locality of the block
transform has been passed on to the orthogonal components 71 and 73 of
the function 9. These components may be considered as “nonoverlapping”
elements of a vector. We refer the reader to [51] for a more detailed discus-
sion of such fractal-wavelet transforms and the operations that they induce
in function space.

3.2.1. Generalized (2D) fractal-wavelet transforms for images.
Two-dimensional fractal-wavelet transforms involve mappings of “parent”
quadtrees of wavelet expansions to lower “child” quadtrees as was done for
binary trees in the one-dimensional case. In the discussion that follows, we
assume the standard construction of orthonormal wavelet bases in L2(R?)
using suitable tensor products of 1D basis functions. Once again we assume
the existence of a scaling function ¢(z) and its corresponding (orthogonal)
mother wavelet function 1 (z) that giverise to a 1D multiresolution analysis
[15, 47]. Let

(66) di;(z) = 2/2¢(2%x — k), ij(z) = 21/ 2q(2'x — k),

and define the following orthogonal subspaces spanned by appropriate ten-
sor products of these functions:

VO = span{epij(z,y) = dr:(2)dr; (W), 0 <47 = 2k —1}
Wl = span{gly (2, 4) = dui (@) (), 0< 6,5 <2 — 1}
Wy = span{ply;(z,y) = Yri(@)de; (), 0< 4,5 <25 =1]
Wi = span{vd; (7, y) = Yii(2) e (), 0< 4,5 <281}

(67)

The superscripts h, v and d stand for horizontal, vertical and diagonal,
respectively [15, 47].
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By | A} | Al
5| Ag A3

Ay | Af
Al A

Fi1c. 3. Matriz arrangement of two-dimensional wavelet coefficient blocks.

We consider functions u{z, y) admitting the following wavelet expan-
sions:

u(z,y) = boogooo (z,y)
oo 2k—12k_
(68) + Z z Z[aﬁij‘/);:ij(may)‘*'a}éijlbgij(m:31)"'@%13'?/’1?@'3'(5”,3/)]-

k=0 i=0 j=0

The wavelet expansion coefficients ap; ; are conveniently arranged in a stan-

dard fashion ([15, 47]) as shown Figure 3. Each of the blocks Ay, AY, A%,
k >0, contains 22¢ coefficients aifi i+ @iz agij, respectively. The three col-

lections of blocks
o3 0] (o]
(69) AM=UAb av=Jay, at={ay,
k k k

comprise the fundamental horizontal, vertical and diagonal quadtrees of the
coeflicient tree.

Now consider any wavelet coefficient a,’}ij, A € {h,v,d} in this matrix
and the unique (infinite) quadtree with this element as its root. We shall
denote this quadtree as Apyj. In the Haar case, for a fixed set of indices
{k,4,j} the three quadtrees Alij» AY,; and Af;; correspond to the same
spatial block of the function or image.

Two-dimensiona) fractal-wavelet transforms Involve mappings of “par-
ent” quadtrees of wavelet expansions to lower “child” quadtrees. For sim-
plicity in presentation and notation, we consider a, particular case in which
the roots of all parent quadtrees appear in a given block and the roots of
all child quadtrees appear in another given block. The method is easily
modified for other schemes, for example, quadtree partitioning.

Select two integers, the parent and child levels, kY and k3, respectively,
with 0 < &} < k2. For each possible index, 0 < 4,7 < 2% Z 1. definc the
three sets of affine block transforms: -
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m Horizeontal subband Az

Vertical subband Az Diagonal subband Az

Fic. 4. The 2-dimensional fractel-waovelet transform.

A, A A
Wi Aps vyt ()~ kg

A}‘\* 'l:,j = ai}Ai; ,‘i}‘(ﬁl,j),jk(‘i,j)’ A E {h,’u, d}.

2

(70)

Notice how the child quadtrees at level k3 are replaced by scaled copies of
parent quadtrees from level k¥. The procedure is illustrated in Figure 4.
These block transforms comprise a unique FW operator M. The use of the
indices i", j, etc. emphasizes that the parent quadtrees corresponding to a
given set of child quadtrees Aifé i Ak i and Aﬁa,i,j need not be the same.
As well, the scaling coeflicients a%,a;’j and a,‘fj can be independent. The
“fractal code” associated with the operator M consists of the following:

1. The parent-child index pair (k. k3).

9. The scaling coefficient booo 1n block Bg along with the wavelet
coefficients in blocks A}, A € {h,v,d} for 1 < k = ki — 1. 4k
coefficients.

3. The scaling factors o and parent block indices, (*(Z,7), 52 1),

for all elements ai‘j in each of the three blocks A;‘;E. Total number
of parameters: (i) 3- 4*3 gcaling factors, (ii) 2-3- 4%3 indices.
It has been shown [64] that, under certain conditions, the fractal-wavelet
transform M is contractive in an appropriate complete metric space (Lo
square summable sequences) of wavelet coefficients. For the special trans-
form given in Eq. (70), contractivity is guaranteed when

(71) co = 2K =M maxjagy] < 1,
MiLg

where A € {h,v,d} and 0 <4,J < oki —1. The condition cg < 1 guarantees

the existence of a unique fixed point wavelet coeflicient tree A = MA.
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From the definition of M, A is a union of scaled copies of its subtrees, 5
kind of local self-similarity property.

The wavelet tree A may be generated by iteration of M. Some simple
examples are presented in [64]. In practical applica.tions, e.g. images, one
may begin with a wavelet coefficient matrix — call it Cqy — containing the
“fractal code” scaling and wavelet coefficients in 2) above, with a]] other
blocks A3, k > k3 being zeros. In the iteration procedure Chi = MG,
each application of M produces an additional level of blocks, represent.
ing an additional degree of refinement of the function w in terms of itg
wavelet expansion. Note that such an iteration of M essentially produces 5
geometric-type extrapolation of the wavelet coefficients of the base matrix
Cy, involving products of the scaling coefficients a,i_‘ij. We shall return to
this idea in a later section.

In standard F'W schemes [16, 40, 59, 62], common parents and common
scaling factors are used for the various subbands, that is:

(4, 5) = i¥(i, 5) = 1%, §)

(72) 3", 5) = 7Y (0, 5) = 746, 5)
afj = a:j’j = afj.

In other words, the h, v and d subbands are not treated independently.

The FW transform M induces an equivalent mapping in function
space. As in the case of 1D FW transforms, such mappings are generally
a kind of vector IFSM operator with condensation functions, once again
performing scaling and mixing operations among orthogonal components
of a function. Some examples are given in [64].

3.3. IFS on integral operators. In [25], the “parallel” space (Z,dz)
was considered to represent an appropriate space of function transforms,
namely, integral transforms. There are at least two motivations to consider
integral transforms:

1. In many cases, e.g. MRI, blurred images, the data that we seek
to represent or compress is the result of an integral transform on
some function space.

2. It may be more convenient to work in certain spaces of integral
transforms. For example, Lebesgue transforms of normalized non-
negative £' functions are nondecreasing and continuous functions.
They may be easier to work with, especially in the sense of ap-
proximability.

In this section we let S : F — G denote an integral transform with
kernel K: X xR » R,

(73) 7ls) = (S1)(s) = /X K (t,5)/(t) dt.

We shall also write this transform in inner product form as Sf =< K, f >.
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Let T be an affine IFSM operator as defined in Eq. (19). For an
fe LHX), let g=TF. Then the transform § = S(g) is given by

N
36) = [ K(t0) 3 o F " )+ 81 L4
i=1

N N
(74) = o [ K@ofwr®)d + Zﬁif

K{s,t)dt
Xi

i=1

N
= S aues [ Ko+ aps)flw) du + Be)
=1 X
where

N
(75) B(s) = Bilxi(s).

i=1

(Note that B (s) depends only on the B; — and, of course, the X; - but not

on f.)
Eq. (74) may be written in the form

(76) <K,Tf>=<TIK,f> + L(s), [e7T.

The operator Tt may be interpreted as a kind of “adjoint” fractal operator
on the kernel K,

N
(77) (TTK)(,8) = 3 ascik(cit + ai, 5),

i=1

and L as a kind of condensation function. However, the dilations in the
spatial variable produced by Tt in the above equation represent ezpansions.
In contrast to IFSM fractal transforms on functions, the transform K is
tiled with expanded copies of itself. (This was well known for the case of
Fourier/Laplace transforms [29, 33].)

In an effort to express the integrals in Eq. (74) involving K as bona fide
integral transforms of f, one may postulate that K must satisfy a general
functional relation of the form

(78) I{(ciu""a'iaS):O(Ci:aiss)I{(uaC(Ci!a‘iis))> VU’EX‘! 7‘:112”N

This equation may be considered in a number of ways, including:
1. A functional relation between the kernel K, the constant C and
scaling function ¢,
2. A functional equation in the unknown functions K and ¢, given C,
3. A functional equation in the unknown functions C and ¢, given K.
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As in the case of differential equations, the solution of functional equations
requires initial conditions. In addition, however, an admissible space of
functions in which solutions are sought must also be specified. Some simple
results are presented in [25]. In addition, the familiar cases of integra]
transforms — Fourier, wavelet, Lebesgue, as well as moments of measures —
are shown to be covered by the above general formalism.

3.4. IF'S on vector-valued measures. In [52], IFS-type transforms
over self-similar vector-valued Borel measures were defined. This method,
motivated by [33], permits the construction of tangent and normal vector
measures to planar fractal curves. In this way, line integrals of smooth
vector fields over planar fractal curves may be defined. This leads to 5
formulation of Green’s theorem and the Divergence theorem for planar
regions bounded by fractal curves.

Very briefly, let w; be contractive IFS maps on X and p; > 0 be
associated real numbers without the restriction that >, p; = 1. Also let R,
denote linear operators on R™. We let M™(X, R") denote the set of vector-
valued measures on the Borel sigma field of X with values in R™. Then
associated with the “IFSVVM” (w, p, R) is an operator T : M™(X, R") -
M™(X,R") with action as follows:

(79) (Tp)(B) = ZpiRiu(wg"l(B))

for all Borel sets B C X. This operator is an obvious modification of the
scalar IFSP Markov operator M in Eq. (8). F. Mendivil has reported on
this work at this conference.

4. Inverse problems for generalized fractal transforms. We
consider target functions or images to be elements of an appropriate com-
plete metric space (Y,dy). The underlying idea in fractal compression is
the approximation, to some suitable accuracy, of a target y € Y by the
fixed point § of a contraction mapping f :Y — V. It is then f which is
stored in computer memory. By Banach’s Fixed point theorem the unique
fixed point § may be generated by iteration of f, using an arbitrary “seed”
image yo € Y.

Naturally, most effort in this area has focussed on the compression
of digital images: For a given accuracy (typically £2 error) find a fractal
transform f such that the parameters defining it require the least amount
of computer memory after quantization and entropy coding. As in any
compression scheme, there is a competition between accuracy of approx-
imation and the compression /reduction of data. The various theoretical
and practical aspects of fractal image compression have been covered very
well in the books by Fisher [23], Barnsley and Hurd [9] and Lu [46].

In practical fractal image coding, the parameter space P of feasi-
ble, quantized fractal codes corresponding to a given scheme (partition-
ing. choice of domain pools, etc.) is discrete and finite. As such, there
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exists a minimum value of the attractor error dy(y,J{p)) for some p € P.
gince digital images are described to only a finite resolution and since, for
practical purposes, fractal coding schemes will not employ partitions com-
prised solely of single pixels, the attractor error will generally be nonzero.
However, it 18 8 tedious, if not typically intractable, procedure to determine
such optimal codes. This is the reason, as is well known, that fractal coding
schemes generally employ “collage coding”. In fact, Ruhl and Hartenstein
[57] have shown that optimal fractal coding is an NP-hard problem.

In what follows, we outline the work to establish a more general theory
of fractal-based approximation in continuous spatial and grey level vari-
ables, as done in [26-29]. The central theme is the mathematical solution
to the following formal inverse problem of approzimation by fized points of
contractive operators:

Define the set of contraction maps on (Y,dy) as follows:

Con(Y)={f:Y =Y | dy (f(z), f(y)) £ crdy (z,y)

80
(80) Ve,y€eY, ¢y € [0,1)}.

Then:
Given a “target” y € Y and an € > 0, find a map fe €

Con(Y) such that dy (y,Je) < €, where felle) = Ye-
In other words, we look for conditions that guarantee that a target ¥ € Y
can be approximated to arbitrary accuracy by the fixed point of a contrac-
tion map f € Con(Y).

There are three important mathematical results which provide the
basis for fractal transform methods and fractal-based compression. It is
worthwhile to list them here.

1. Banach fixed point theorem for contraction maps [3]:

TueoreM 1. Let (V,dy) be a complete metric space. Suppose there
ezists a mapping f € Con(Y) with contractivity factor ¢ € [0,1). Then
there ezists a unique § € Y such that f(g) = §. Moreover, for any y ey,
dy {f*(y),§) — 0 as n — 0.

2. Continuity of fixed points with respect to contraction maps
(13):

TuporeMm 2. Let (Y,dy) be a compact metric space and Con(Y") be
an appropriate space of contraction maps on Y with the following metric:

(81) dCon(Y)(f: Q’) = 528 dY(f(y)ag(y))r Vf:g € COTL(Y)

Let f,g € Con(Y) with fized points §s and 7§y, respectively. Then

1
82 Te ii.) < deoniyy (F1 ),
(82) dY(?JfﬂJg) =7 ill(Cf,Cg) C z(?r)(f g)

where ¢y, cy denote the contractivity factors of f and g, respectively.
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This result is a generalization of Barnsley’s “continuity with respect t
a parameter” result [5]. It was used to derive continuity properties of IFS
attractors and IFSP invariant measures [13] as well as IFZS attractors [24].
Although never stated explicitly, fractal compression algorithms depend o,
this property since an optimization of the approzimation of a target involyes
the variation of parameters that define fractal transform operators. (In
special cases, IFS attractors are also differentiable with respect to fracta)
parameters [65].)

3. “Collage theorem” [8]:

THEOREM 3. Let (Y,dy) be a complete metric space and let f ¢
Con(Y'} with contractivity factor ¢y € [0,1). Then for anyy € Y,

L v, 1)),
—

(83) dy (1,9) < 5
where § is the fived point of f.

This result follows from Banach’s theorem by using a simple triangle
inequality. It appears as a remark to Banach’s theorem in [60]. In fact,
another manipulation of the triangle inequality involving y, f (y) and §
yields the following interesting result:

4. “Anti-Collage theorem” [65]:

THEOREM 4. Assume the conditions of Theorem 8. Then for any
velt,

(84) dY(y: Z,_I) 2 (ya f(y)):

v
1+Cf Y

where § is the fized point of f.

Given a suitable space P of acceptable parameters that define contrac-
tion mappings f € Con(Y), it is generally a tedious procedure - even for
“non-fractal” problems (cf. Section 5) - to determine the best fixed point
approximation to a target, that is, the mapping f,,: whose fixed point FJapt
yields the smallest possible attractor error dy (y, 7). For this reason most,
if not all, fractal coding methods rely on a reformulation of the inverse
problem made possible by the Collage theorem. Instead of searching for
contraction maps f the fixed points § of which le close to a, target y (and
most probably having to compute by iteration), we look for maps f that
map y close to itself. The reformulated inverse problem becomes:

Givenatargety € Yandad > 0, find a map fs € Con(Y")
such that A = dy (y, f5(y)) < 4.

The term A is often referred to as the collage distance. From the Collage
theorem, the fixed point §s of fs will lie within a multiple of 6.
Interestingly, the Collage and Anti-Collage theorems provide upper
and lower bounds to the approximation of ¥ by 7 in terms of the collage
distance A. A nonzero collage distance keeps the error dy (v, ¥) away from

zero (unless, of course, y = ), a consequence of the triangle formed by v,
fly) and 3.
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4.1. Solutions to inverse problems for measures and functions.
The basic strategy in solving the inverse problem lies in working with an
finite set w = {w1,wa, - .. ,} of fixed (affine) IFS contraction maps that
satisfy refinement conditions for the particular metric spaces (Y, dy) con-
cerned. (The reader is referred to the appropriate references for details
regarding these refinement conditions.) A useful set of [F5 maps on [0,1]
that satisfy such refinement conditions for both measure and function ap-
proximation is

1 . . ) .
(85) wij(z) = —2—;(:v+a ~1), i=12,..., 1=12,...,2%

(The extension to [0, 1]2 is straightforward.)

The two major inverse problems which have been considered are

1. Measures: on the space (Y,dy) = (M(X),dw) [26],

9. Functions: on the space (Y,dy) = (LP(X),dp) [27].

We now summarize the main points in the solutions to these problems.
In both cases, we choose N-map truncations of w, w = {wy,..., wy}, in
order to construct either

1. Measures: N-map affine IFSP (wh,p¥), where

N
(86) p'e v = {(pflv> o) | pY > O,Zpﬁvzl} c R2N (compact).
i=1

P = IV is the feasible set of probability vectors for N-map IFSP.
Each point in 11V defines a fractal transform (Markov) operator
TN in Con(M(X)).
9 Tunctions: N-map affine IFSM (WN, d ), where &N = {gb{v, e,
O}
(87) o (1) = ot + BY, (aV,pMy e ¢ R2M (compact).

P = TI?¥ is the feasible set of grey level map parameters for N-
map affine IFSM. Each point in TI2N defines a fractal transform
operator T € Con(LP(X)).

In both approximation problems, the idea is very simple. For func-
tions, we exploit the property that the set of simple functions on X is
dense in L£%(X). For measures, we exploit the property that the set of
measures with finite support is dense in M(X). One proceeds as follows.
Given a target y € Y, then for an N > 0, find the minimum collage distance
(88) Al = min dv(y, T"0).

(The minimum exists due to the compactness of the feasible sets II"V and
12V ) In both cases, we have the important result:

(89) AN 50 as N — 0.

min
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This guarantees the existence of solutions to the formal inverse prob.
lems for measure and function approximation. The solution of these prob-
lems is equivalent to the following result:

COROLLARY 1. Given a fized set of affine IFS maps W = {w, w,, B!
satisfying the appropriate refinement conditions for (Y,dy) being either
(a) (M(X),dr) (measures) or (b) (LP(X),dp) (functions), then the set of
all fized point attractors for (a) (w™,p™) or (b) (wh, oMy, respectively,
N =1,2,..., is dense in (V,dy).

In both the measure and function approximation problems, the mini-
mization of the squared collage distance (A™)? in the appropriate metric
becomes a quadratic programming problem in the probability/grey level
map vector with constraints. Some numerical results of these algorithms
are presented in [26, 27, 29].

4.2. “Direct” methods of fractal image compression. The ma-
Jority of efforts in fractal image compression have been involved with the
image functions: Given a target image function v, find a fractal transform
operator 7' that minimizes the collage distance [l u—~Tw ||, usually in the (2
norm. We classify such methods that operate in the image function space
(Y,dy) as direct methods. The formal solutions outlined in the previous
section also represent direct methods.

It is not possible here to provide even a summary of the various meth-
ods that have been devised to perform fractal image compression. For
this, we refer reader to books that have been dedicated to the subject -
[22, 23, 9, 46] ~ as well as the marvellous repository of research papers on
fractal image compression stored at the Leipzig Fractal Image Compression
website http://www.informatik, uni-leipzig.de/cgip/.

4.2.1. A note on the suboptimality of collage coding. As far
as practical fractal image coding is concerned, it is well known that collage
coding is suboptimal. Collage coding is a greedy algorithm that seeks to
solve the fractal image approximation problem in one scan of the image.
Suppose that for a target y € Y, the contraction mapping T, minimizes the
collage error dy (¥, Ty). Then the fixed point §, of T, does not necessarily
minimize the attractor error dy (u,7), i.e. §, is not necessarily ,,, defined
carlier. In fact, it has been shown [57] that the ratio of collage error to the
optimal attractor error can be arbitrarily large.

In {65] some systematic methods to perform attractor optimization -
finding better fixed point approximations to 2 target y than the collage
attractor g, — were examined, following earlier work by others (see refer-
ences in [65]). Often, one begins with the collage attractor, performing
a local search in parameter space P in an attempt to lower the attractor
error. In this study, it was shown that affine IFSM attractors are differ-
entiable functions of the grey level map parameters a; and #;. This per-
mitted the use of gradient descent methods in the search. Unfortunately,
there was no advantage in employing such methods - simple hill-climbing
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algorithms (e.8- Nelder-Mead) would yield virtually identical results, often
with much less computational expense. (The computation of the gradients
is quite complicated. Even for the simple partitioning scheme employed in
our study, the partial derivatives comprised a vector IFSM.) As well, the
improvements over the collage error were very low, on the order of 0.5 dB
in PSNR. A limitation of such methods is that they keep the parent-child
assignments fixed.

4.3. Indirect methods in the inverse problem. Indirect methods
involve the formulation of the inverse problem in (Y, dy) as an equivalent
inverse problem in the faithful representation (Z,dz). Two noteworthy
examples that will be summarized below are: (1) Formulating the inverse
problem for measure approximation using IFSP as an inverse problem in
smoment space,” and (2) Fractal-wavelet transforms.

4.3.1. Moment matching methods for measure approxima-
tion. Much of the early work on the IFS approximation of measures was
based on the idea of matching the moments of IFSP invariant measures
as closely as possible to the moments of the target measure. The moti-
vation lay in the fact that moments of invariant measures of affine IFSP
can be computed in terms of the IFS parameters in a recursive manner [6].
Indeed, it was in [6] that such an indirect inverse method was first per-
formed. Barnsley and Demko estimated the non-zero (complex) moments
g2 and gg of the “twin dragon” region in the plane, assuming a normal-
ized {(go = 1) and uniform (2D Lebesgue) measure OVer the region. Using
the two complex IFS maps wi(z) = 82 + (1 — s)a, wa(z) = 82 — (1 - s)a,
they computed the expressions for these two moments in terms of the IFS
parameters s and a, with pp = p2 = 3. Matching these moments to the
estimated target measure moments yielded approximate values of s and «
that were reasonably close to the correct values.

Indeed, this inspired a number of works that applied some form of
moment matching along the following lines: Given a target measure v €
M(X) (let X = {0,1] for simplicity) with moments gn = [ z™dz,n =
0,1,2,..., find an IFS invariant measure i whose moments gn = o
are “close” to the gn for m = 1,2,... M, where M > 1. (We do not list
all relevant references here but rather cefer the reader to [63] for a list of
important early papers.) Early investigations sought to minimize a sum
of squared distances between target and IFS moments. In most cases,
methods were devised to find optimal affine IFS maps wi and associated
probabilities p;.

In [26], the moment matching problem was formulated over the metric
space (D(X),d) of infinite moment vectors introduced in Section 3.1.1.
Recall from that section that each N-map IFSP defines a linear operator
A: D(X) — D(X) that is contractive in (D(X),d2)- Hence the following
Collage theorem for Moments:
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THEOREM 5. Let (X, d) be a compact metric space and i € M(X) with
moment vector g € D(X). Let (w,p) be an N-map IFSP with contractivity
factor c € [0,1). Let v € M(X) with associated moment vector h € D(X).

Then

(90) d2(g,8) < d2(g, Ag),

l1—c¢

where g is the moment vector corresponding to fi, the invariant measure of
the IFSP (w,p).

In [26], fixed sets of affine IF'S maps w; were used. The inverse prob-
lem then reduces to the determination of probabilities P; that minimize
the moment collage distance dz(g, Ag). The minimization of this distance
in D{X} is a quadratic programming problem with linear constraints on
the p;.

4.3.2. Image compression using fractal-wavelet transforms.
Section 3.2 outlined the mathematical apparatus necessary for perform-
ing “indirect” methods for image approximation/compression using FW
transforms. The space (Z,dz) is an appropriate [2 space of wavelet expan-
sion coefficients and Con(Z) consists of FW transforms M defined by the
scaling coefficients ai\ij (as well as the associated parent-child indices). In
the collage FW coding of a target image u with wavelet coefficient matrix
A, one seeks to find an FW transform M that maps A as close as possi-
ble to itself so that the fixed point A will be a good approximation to A.
Of course, in practical applications of image compression, one is concerned
with the competition between increased accuracy of the approximation and
its “cost” in terms of computer storage of the fractal code.

We have already mentioned that FW transforms were devised inde-
pendently by a number of workers some time ago (e.g. [16, 40, 59, 62]).
Generally, the motivation was to reduce the blockiness that plagued frac-
tally coded images. Since that time, fractal-wavelet coders have been shown
[10, 45, 30] to be able to demonstrate rate-distortion performances that can
match state-of-the-art (at the time) wavelet coders such as SPIHT [58]. We
also mention that FW transforms have been used quite effectively for the
compression of one-dimensional audio signals [66].

Our work on fractal-wavelet transforms has been motivated by the
philosophy -~ which has been supported by experimental verifications —
that they have the potential to combine the best of the two worlds they
bridge:

1. Wavelets: with the power of multiresolution analysis, scaling
properties of basis functions, scaling properties of wavelet coef-
ficients, as well as the fast wavelet transform,

2. Fractals: with properties of scaling, recursivity and (local) self-
similarity.

It is an acceptable criticism that to be considered as viable competi-

tors in compression, hybrid methods such as FW transforms should be
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required to perform better than the methods they hybridize, i.e., fractal
coding and wavelet coding. Admittedly, this is not yet the case: To date,
FW transforms do not, in general, perform better than state-of-the-art
wavelet coders. For this reason, we have been examining the role of quan-
tization and entropy coding schemes (including context-based coding) in
an attempt to push fractal-wavelet coding to the limit. As well, we have
been exploring the following avenues:

1. Using FW methods to improve rate-distortion performance of

wavelet coders,

9. Using wavelet coder methods to improve FW coders.
Below are summarized some encouraging results of recent experiments con-
ducted by two graduate students at Waterloo.

A. “Fractal postprocessing” (M. Ghazel). The SPIHT wavelet
coder locates and transmits the most significant wavelet coefficients in
terms of bit planes. It uses a hierarchical set partitioning method to iden-
tify and transmit significant wavelet coefficients while progressively varying
the order of significance. For a given compression ratio, the decoder trans-
mits the most significant bits of the most significant wavelet coefficients.
All other coeflicients, deemed insignificant by the encoder, are set to zero.

For various compression ratios, a fractal-wavelet transform was used at
the SPIHT decoder end to interpolate between the transmitted significant
coefficients in order to estimate the insignificant wavelet coefficients that
were “zeroed.” The most important feature is that this fractal coding is
“free” since it is applied at the decoder end, requiring no fractal parameters
to be sent by the SPIHT coder. A successful FW prediction will improve
the fidelity of the reconstructed image without changing the bit rate.

Figure 5 illustrates the results of this experiment as applied to the
512 x 512 pixel, 8bpp, image Lena. Note that at compression ratios higher
than 50 : 1, the scheme actually degrades the SPIHT representation. A pos-
sible explanation is that at such high compression ratios, the SPIHT scheme
has not transmitted a sufficient amount of information on the wavelet coef-
ficients to be able to permit reliable predictions of the missing coefficients
by the FW method. Setting the insignificant coefficients to zero yields
better results.

At lower compression ratios, the FW scheme actually improves the
quality with no “bit cost.” The only costs are the extra computations
required in the FW encoding/decoding, which may not be a problem if
the postprocessing does not have to be performed in real time. These
preliminary results show that there is potential in the use of free fractal-
based methods to enhance SPIHT or other bit-plane coders.

B. “Fractal preprocessing” and a “Bitplane algorithm”
(S. Alexander). As mentioned earlier, in zerotree/bitplaning methods such
as SPIHT many small wavelet cocfficients, representing fine detail in an
image, are deleted in the reconstructed image. The proposed hybrid algo-
rithm — certainly representing a different way of thinking — approximates




96 EDWARD R. VRSCAY
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F1G6. 5. “Fractal postprocessing” of SPIHT wavelet code using F'W interpola-
tion at the decoder. (Courtesy of M. Ghazel.)

these small coefficients using the FW coder with a low bit expense (smal]
parent and child levels). This is the “fractal preprocessing.” These coefi-
clents are then generated and the error image (in the wavelet domain) is
computed. A bitplaning algorithm is then applied to the error image.

The rationale behind this approach is to use FW coding to obtain

bitplaning in the £2 distance. Instead, the attempt is to achieve a visual
improvement in compressed images without a significant cost in the rate-
distortion sense. The fixed parent-child relationship is clearly wrong for
most rates and should be determined based on the required rate. Never-
theless, there should be a region of the rate-distortion curve in which the
fixed choice is appropriate, resulting in improvement. In order to reduce
the error in the FW coder approximation selectively for the small wavelet
coefficients, a modified least-squares fit is used in the collage coding which

ignores larger coefficients. The gain from this approach is modest but con-
sistent.

Another approach - the bitplane algorithm - has been devised to de-
termine whether the zerotree/bitplane methods used in the SPIHT coder
can be performed Dy a context-based arithmetic coder. Very briefly, the
wavelet coefficients are firgt rescaled to the interval [-1,1]. The algorithm
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Fig. 6. Comparison of simple bitplane, “fractal preprocessing” and SPIHT
wavelet coding algorithms. (Courtesy of S5.K. Alezander.)

the threshold is reduced by one-half and the scanning is repeated. Now,
however, if a coefficient was previously determined to be significant, the
error is improved by a fixed amount in the appropriate direction (at a cost
of 1 bit). If newly significant, the coefficient is coded as before. This pro-
cess is continued until the bit budget is exhausted. The key feature is that
the modelling is performed entirely in terms of the context generated by
the significance of coefficients related to the current position (e.g. parent,
neighbour, etc.).

Figure 6 shows the results of applying these two algorithms as well as
the SPIHT coder to the same Lena image as above. These algorithms have
been applied to many other images with quite similar results. Note that
the performance of the bitplane algorithm is quite comparable to that of
SPIHT. The hybrid “fractal preprocessing” algorithm also performs quite
comparably, losing ground at higher rates, however. There do not seem to
be any notable benefits to this method - both visually and in the L? sense
- when compared with the bitplane method.

4.3.3. Image analysis using fractal-wavelet transforms. The
“fractal” in fractal image coding refers, of course, to the fact that an image
is being aproximated by the attractor of an IFS-type operator, such at-
tractors being typically fractal in nature (in the limit of infinite resolution
and iteration). Unfortunately, this is where the “fractal analysis” of FIC
stops, apart from some possible estimates of fractal dimensions and the
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like. However, the concept of fractal dimension alone has little to offe to
image analysis, as has been acknowledged to be the case in other areas of
application. On the other hand, the rich subject of multifractal analysis
[19, 21] has much to offer. Indeed, there has been much work ([1, 38] and
others) showing how multifractal properties of functions can be understood
in terms of their wavelet expansions, in particular the scaling properties of
the latter. This indicates that fractal-wavelet transforms could provide g
natural bridge between multifractal analysis and IFS-based fractal coding.

We must mention here that J. Lévy Vehel and his “Groupe fractales”
at INRIA, Rocquencourt have been responsible for some of most detailed
investigations of fractal and multifractal methods in in signal and image
processing [42, 43]. Over the years, this group has developed very effective
methods of segmentation, texture analysis, denoising, approximation and
compression — see, for example, {14, 35, 44]. Of particular relevance to the
discussion below is a generalized IFS (GIFS) method [14] that produces
fractal interpolation functions with prescribed local regularity, in terms of
their Lipschitz-Holder exponents a(z).

We now show how the relationship between regularity of functions and
the scaling properties of their wavelet expansions can be connected to the
fractal-wavelet transform. First, recall that the FW transform performs a
kind of extrapolation of wavelet coefficients onto the child wavelet blocks.
Because a given parent subtree can contain several child subtrees, there
is much mixing in the copying. Nevertheless, we can make some crude
estimations of the asymptotic properties of the extrapolated wavelet coef-
ficients. For simplicity, we consider the one-dimensional case and examine
the following FW transform,

Coo
91 M Cy — .
( ) 00 alcoo l O!QCOO

which is related to the transform in Eq. (57) induced by the IFSM in

Eq. (56). Iteration of M produces the following extrapolation of wavelet
coefficients:

Qg Qg
2
(92)  eqo 251 €1 Gy Q1 Qg Qy
2 ¥
o1 | ajen | afas | aial | o?ay el | ajed | of

In this case, the asymptotic behaviour of the coefficients in lower trees is
given by

(93) lenil = 0(le|™,  0<j<2m—1

}

where o = max,{|la|}, ie., a geometric decay as n — oo,
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We now employ some results that relate the regularity/irregularity
of a function and its wavelet transform, keeping the discussion as brief
and simple as possible and restricting it to the one-dimensional case. Let
f:R— Rbe uniformly Lipschitz-8 on an interval I wheren < f <n+1
for some nonnegative integer n. That is, we assume that for all zg € I,

(94) 1£(@) = Prso(2)] < Klz ~ 2o’

where Pn,zo(x) denotes the Taylor polynomial of f at zg and K is inde-
pendent of Zo- (See, for example, (48], p. 164.) Now let 1p(z) be a wavelet
with n vanishing moments. Then the continuous wavelet transform of f(z)
at the scale s > 0 and position zp € I, defined by

~1/2 [T —To

(95) W (oo ) =57 [ )do
0 s

(assuming the integral exists), behaves as

(96) \W f(0,5)| < AsP*E, Vzoel, s>0.

The dyadic wavelet expansion coefficients ¢n; in Eq. (55) correspond to
the discrete scales s = 277, implying that

(97) lenj| < B27METY),

The uniform Lipschitz behaviour of f on I implies a uniform asymptotic
decay — more precisely, a geometric decay — of wavelet expansion coefficients
across a resolution level n. (Analogous expressions exist for local Lipschitz
behaviour about a point zo.)

If we crudely compare this decay result with Eq. (93), then the (maxi-
mum) fractal scaling coefficient o and the Lipschitz exponent 3 are related
as follows:

(98) la] =270+,

A greater 3 value implies more regularity which, in turn, implies faster
decay of the c¢n; via smaller « scaling coefficients. At smooth regions of
an image, we expect the wavelet coefficients ¢nj to decay more quickly and
the FW scaling coefficients to have smaller magnitudes. Conversely, near
singularities, e.g. edges, we expect the FW scaling coefficients to have
larger magnitudes. This is seen in Figure 7, in which magnitudes of the a;
coefficients obtained from FW coding of the Lena image, (k},k3) = (5,6)
are plotted on a 64 x 64 grid. For simplicity, the Euclidean lengths of the
vectors (afy, af, af) are plotted for 1 < 4,7 < 64 so that the horizontal,
vertical and diagonal contributions have been combined into one index.
Larger values of || a Il represented by darker squares, are clustered in
irregular regions of the image, i.e., edges.
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Fic. 7. Magnitudes of the scaling coefficient vectors iy = (az’-‘j,a}’j,a%) for
a (5,6) froctal-wavelet approzimation of the Lena nage.

‘The above also suggests that a kind of “denoising” of the FW approx-
imation to an image f can be performed by decreasing the magnitudes of
FW scaling coefficients a;j. In order to increase the Lipschitz exponent f
in a region of the attractor by a factor AB > 0, we multiply the appropriate
scaling coefficient(s) by the factor 228 < 1. We note the similarity of this
modification to that of the “operator design” associated with multifractal
image denoising [35, 44]. In that procedure, the wavelet coefficients ¢,; are
multiplied by the factor 21258

Let us now return to Eq. (98). The Lipschitz exponent 3 is usually
obtained by estimating the slope of appropriate log-log plots of wavelet
coefficients cn; across scales [48]. The FW transform estimates this scaling
by “collaging”, seeking to express lower wavelet trees as scaled copies of
higher wavelet trees, essentially performing a geometric fit across scales.

Admittedly, the above analysis is very rudimentary. A more detailed
analysis would have to take local regularity and all of its intricacies into con-
sideration. Nevertheless, we hope that these results represent a scratching
of the surface in what can possibly be accomplished via the fractal-wavelet
transform. Another goal is to Incorporate more aspects of multifractal
analysis into the FW transform.

4.4. Fractal-wavelet transforms over nonseparable wavelet
bases. We finally mention that two algorithms for fractal-wavelet trans-
forms and compression have been developed for the case of nonsepara-
ble wavelet bases — bases that are not constructed as tensor products of
wavelets on lower dimensional spaces [50). One algorithm implements a pe-
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Fic. 8. Partial wavelet expansions of the Lenna image in the Haar basis using
9 +1i comples tilings. Left: Summation to level p = 9. Right: Summoation to level
p=10. (Courtesy of D.G. Piché.)

riodic wavelet transform for any valid wavelet filter sequence and dilation
matrices satisfying a trace condition.

The other algorithm formulates a Haar wavelet transform on tiles asso-
ciated with complex bases. The characterization of multidimensional Haar
wavelets was done by Grochenig and Madych [34]. Gilbert [31] provided
the connection between fractal tiles of complex bases and Iterated Function
Systems. This led to a long division algorithm for complex bases [32] that
provides the basis for the wavelet transform in this algorithm — essentially
a translation of the Mallat decomposition algorithm into the language of
complex bases.

There are cases where the two algorithms overlap — for example, the
classic twin dragon tile. However, the dilation matrices associated with
complex bases do not in general satisfy the trace condition. As a result,
the two algorithms overlap but neither is a generalization of the other.

In both cases, the tilings associated with the nonseparable wavelets
are nontrivial and usually fractal, even.dust-like. Such tilings introduce
dithering that is not, concentrated along horizontal or vertical lines as is
the case for separable wavelets. In Figure 8, the partial wavelet expansions
of the Lenna image using the complex basis 2 + i, for which the tiling is
dust-like, are shown. The artifacts that result are visually most interesting.
It is conceivable that such tilings could be useful in digital “paintbrush”
applications.

5. Fractal-based methods in other areas of mathematics. The
central mathematical idea behind fractal image compression is the approx-
imation of a target element y € Y, where (Y,dy) is an appropriate metric
space, by the fixed point ¥ of a contraction mapping T.Y =2 Y. Itis
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natural to ask whether this idea can be applied to problems in other .
eas of mathematics that employ contraction mappings. Indeed, one of the
first such areas to come to mind is that of ordinary differentia} equations
(ODEs). If f : R™ — R", then the existence and uniqueness of solution
to the initial value problem

(99) &= f(z), =(to) = mo,

can be established using the associated Picard integral operator T' whoge
action is defined by

(100) (Tu)(t) = zo + t F(u(s))ds.

With suitable conditions on f, the mapping T is contractive on an appro-
priate space of functions supported on an interval [0, a] for some a > 0.
This implies the existence of a unique fixed point & = T which is the
solution to Eq. (99).

We now have the ingredients for an inverse problem: Given a target
curve y(¢) € R™, find an ODE # = f(z) that admits y(t) as either a solution
Or an approximate solution. The problem is to determine the optimal
function f which defines the integral Picard operator. This inverse problem
can be treated by the Collage Theorem [41]. Details of this approach have
been given by H. Kunze in this workshop. The encouraging results obtained
from this work have led us to consider inverse problems involving integral
transforms, boundary-value problems and eigenvalue problems. Indeed, we
are inspired to think about the possibility of using such approaches in other
areas of mathematics.
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