Signal Modeling
With

Iterated Function Systems

A THESIS
Presented to
The Academic Faculty
By

Greg Vines

In Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy in Electrical Engineering

Georgia Institute of Technology

May, 1993

Signal Modeling
With

Iterated Function Systems

Approved:

Monson H. Hayes 111, Chairman

Russell M. Mersereau

Ronald W. Schafer

Date approved by Chairman

to my mother and in memory of my father

i

ACKNOWLEDGEMENTS

First I would like to thank my parents, and my siblings, who have always been
supportive in whatever endeavor 1 have decided to undertake. In addition to my
family, the support and intuitive suggestions of my advisor, Professor Hayes, were
crucial in this effort. I would also like to thank reading committee members Pro-
fessors Mersereau and Schafer as well as committee members Professors Williams
and Geronimo for their thoughtful comments on my work. In addition, Professor
Malassenet, a.k.a. Bubba, provided an invaluable sounding board for many ideas.
Thanks also to Armin Kittel for the large variety of one-dimensional data used in
Section 4.4.1.

My experience at Tech was enriched tremendously by the time I spent at Georgia
Tech Lorraine. The opportunity to live in another country allowed me an educational
experience far beyond that achievable in the halls of Van Leer. The gang at GTL,
especially Mr. Hanet, whose infinite patience with my feeble attempts at French in
the early months in Metz, will always be fondly remembered.

Five years of grad. school leaves one with many memories and friends. A one-
page acknowledgement can hardly touch on all of the people and events which have
had an influence. There are events and people that stand out, and they follow:
Keepin’ one wing in the sunshine, Aunt Charlie and her Brunswick Stew, Robbie for
keeping the eight-hour rule of concern & going right when I went left. Dino for his
driving, Disturbance Man and Sheila. Just how many Ph.D.’s does it take to change
a tire? E466 — home of the real estate tycoons. And there is always that nagging

question... So so so so so what will you do with the baguette?

111

Contents

1 INTRODUCTION

1.1 Objectives

2 IFS THEORY

2.1 Tterated Function Systems
2.1.1 Condensation Maps,
2.2 Attractor Generationo

2.3 Conclusion L

3 BACKGROUND FOR ONE-DIMENSIONAL MODEL

3.1 Model
3.1.1 Piecewise Maps L
3.1.2 Hidden Variable Fractal Interpolation

3.2 Discrete Data oo

3.3 Inverse Problem oL

3.4 Conclusion

4 ONE-DIMENSIONAL MODELING

4.1 Improvements to IFS Interpolation Method
4.1.1 Relaxing the Boundary Conditions
4.1.2 Map Selection Criteria

4.2 Non-Affine Maps

v

[\

- Ut = e

10

11
11
14
15
17
18
21

4.2.1 Polynomial Nonlinearities 26

4.2.2 Nonlinear Addressing 31
4.2.3 Condensation Type Maps 32
4.3 Quantization 33
4.3.1 Affine Mapso 33
4.3.2 Non-affine Maps 0oL 35
4.4 Results oo 35
4.4.1 Test Files and Methodology 35
4.5 Algorithms for Interpolation Points 41
4.5.1 Fixed-Point Algorithm 43
4.5.2 Geometric Algorithm oo 44
453 Results. 44
4.6 Hidden Variable Fractal Interpolation 46
4.6.1 Map Parameter Determination A7
4.6.2 Hidden Data Determination 48
463 Results. 52
4.6.4 HVIFS Conclusion 52
4.7 One-Dimensional Conclusions 54
BACKGROUND FOR TWO-DIMENSIONAL MODEL 62
5.1 Early IFS Coding Efforts oo 62
5.2 Search-Based Block Coding 63
5.2.1 Block Coding Background 63
5.2.2 Imitial Approach oo 66
5.2.3 Improvements to the IFS Block Coding Method 68
5.3 Conclusion 71
TWO-DIMENSIONAL MODELING 74
6.1 Extension of 1D Approaches 74

6.1.1 Relaxing the Boundary Conditions 75

6.1.2 Condensation Maps 76

6.1.3 Nonlinear Addressing 76

6.2 Other 2D Maps 77
6.2.1 Multiscale Maps oo 77

6.2.2 Multiple Domain Maps 78

6.2.3 Adaptive Block Size Coder 78

6.3 Search Strategies o 79
6.3.1 Proximity Maps oo 80

6.3.2 Fractal Dimension 0L 81

6.3.3 Hierarchical Block Matching 84

6.4 Searchless Based Approach 86
6.4.1 Orthonormal Basis Approach 87

6.5 Results. 99
6.5.1 Quantization L oo 99

6.5.2 Construction of Coders 100

6.5.3 Comparison of Results 104

6.6 Conclusions L 106

7 CONCLUSIONS 110
7.1 Future Work 112
BIBLIOGRAPHY 114
VITA 118

vi

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

6.1
6.2
6.3
6.4

vii

List of Tables

Nonlinear addressing functions 32
1D IFS nonlinear map comparison 40
1D IFS map compression ratios 41
IFS algorithm comparison 45
HVIFS model performance 53
1D IFS model average gains 55
1D IFS model algorithm comparison with nonlinear maps. 60
1D IFS algorithm average SNR costs over exhaustive search 61
Two-dimensional nonlinear addressing functions 77
Fixed block size coder — map functions 101
Image coding results oo L 103

Coding results for several images 105

2.1
2.2
2.3

3.1
3.2
3.4
3.5
3.6

4.1
4.2a
4.2b
4.2¢c
4.2d
4.2e
4.3
4.4

viil

List of Figures

Condensation map example L. 6
Deterministic algorithm example 7
Random iteration algorithm example 9
Fourmap IFS 14
Attractor for hidden variable IFS 16
Discrete mapping exampleo 17
Cantor middle thirdsset o 0L, 18
Error surface for three map IFS of test file 1, isometric view 21
Error surface for three map IFS of test file 1, contour view 22
Affine map example oL Lo 34
Test file 1 o 37
Test file2 o 38
Test file 3 o 38
Test filed 39
Test file5 39
SNR versus compression ratio for test file 1 57
SNR versus compression ratio for all test files 59
Two-dimensional [FS mapping 64
Eight isometries for 2D maps oL 66

Eleven ways to append subblocks to a larger block 67

5.4 Typical SNR versus compression ratio for I[FS coded image 73
6.1 Quadtree type block division configurations 79
6.2 Adaptive block size partitioning of LENA image 80
6.3 Dimensionexample Lo 82
6.4 Local fractal dimension of LENA image 84
6.5 Hierarchical block matching example 86
6.6 Example of projection of a range vector onto subspace 90
6.7 Example of selection of vector with largest correlation 93
6.8 Selection of domain vector with largest projection on direction vector. 93
6.9 Example of moving vectors to the same half-space 95
6.10 Original 512 x 512 eight bit gray scale LENA image 107
6.11 LENA coded with proximity maps and adaptive blocks 107
6.12 Orthonormal basis coded image prior to quantizing 108
6.13 LENA coded with orthonormal basis method 108
6.14a Basis vector blocks for covariance method: before Gram—Schmidt . . 109
6.14bBasis vector blocks for covariance method: orthonormalized vectors . 109

X

SUMMARY

A new method of modeling signals has been proposed through the use of Iter-
ated Function Systems (IFSs). Iterated Function Systems are capable of producing
complicated functions, many of which closely resemble images and other waveforms
that can be found naturally. The task of modeling a given data sequence with an IFS
is an ill-posed problem and methods proposed to date have relied on iterative algo-
rithms and using simple affine maps to determine an appropriate IFS. This research
focuses initially on modeling one-dimensional signals. Variations of the basic affine
map are explored, including the use of nonlinearities on the mapped data, as well as
on the addressing of the data in the map. In addition, a condensation type map has
been developed, as well as a non-iterative algorithm which is based on characteristics
of the data to be modeled. The method used to determine the model parameters
is improved through relaxing the boundary conditions which define the interpolation
points for the model. All of the enhancements are evaluated with a set of test files
and results are given quantifying the improvements with the new methods.

The second portion of this research concentrates on two-dimensional models,
specifically the application of image coding. The nonlinear addressing and condensa-
tion type maps were extended to the two-dimensional case, as well as the relaxation
of the boundary conditions. In addition, three new search techniques were developed
based on the local fractal dimension of pixels in the image, a hierarchical block match-
ing algorithm and the correlation between adjacent blocks in an image. An entirely
new orthonormal basis approach was introduced which allows multiple domains to
be used in each map. Several versions of this method are described, one of which is
faster than all previous approaches, at a slight cost in SNR. Slower methods are also

introduced, which offer higher reconstructed image quality.

CHAPTER 1

INTRODUCTION

With the ongoing computer revolution, we have become inundated with vast amounts
of information. There is an ever present need to transter and store copious volumes
of data. Many methods have been developed to reduce the storage requirements for
saving and moving this information. The purpose of this research was to investigate
new methods for modeling and compressing data using a recently developed area
of mathematics, namely fractals [1]. Fractals have seen much attention due to the
pretty pictures and fascinating patterns which can be generated from these simple
systems [2]. However, there is more to this field than just an application as a new art
form. Preliminary research has shown several potential applications of fractal theory,
including filtering [3], image segmentation [4], time-series modeling [5], and image
coding [6]. This dissertation deals exclusively with a type of deterministic fractal
which is generated from Iterated Function Systems [7].

Iterated Function Systems (IFSs) offer the possibility of high rates of data com-
pression because they are capable of generating complex functions, yet the IFS itself
is very simple in form. Initial work with IFSs was in the area of synthesizing images,
which were very realistic, and as a consequence of these results much of the enthusi-
asm was born [8, 9, 10]. Because this data was synthesized, it was stored at extremely
high compression rates, in excess of 10,000:1 [10], further fueling the interest in this
emerging field. These results were very encouraging for applying this technology to
creating new efficient compression algorithms for image data. Because this is a new

technique, part of the research effort for this dissertation was directed towards finding

the ideal type of data for this method. Previous work has utilized a variety of one

and two-dimensional data sources [5, 11].

1.1 Objectives

Most of the research conducted to date has concentrated on IFS models with affine
maps, which work well with self-affine data. Unfortunately, naturally occurring data
is rarely self-affine. The demonstrated ability of IFSs to generate naturally appearing
complex data justifies a more in-depth examination of this model. One of the objec-
tives of this research was to derive an efficient IFS model for coding data which is not
self-affine. In addition to alleviating the self-affinity constraint, the method by which
the map parameters and the maps were constructed was examined and improved.

Another stumbling block in the application of IFSs to signal modeling has been
the lack of an efficient algorithm to determine the map parameters. Previous algo-
rithms relied on long searches to find the interpolation points on which to base the
model [12]. The development of a faster algorithm to determine the IFS parame-
ters was another goal of this research. The combination of a fast algorithm and the
improvements to the IFS maps results in an efficient IFS model.

In summary, the three main objectives were to
o Create an IFS model for non-affine data
e Examine and improve the method by which the maps are constructed
e Create fast algorithm(s) for determining model parameters

This research was divided into two major parts, modeling of one-dimensional
and modeling of two-dimensional data, and consequently this dissertation is orga-
nized along similar lines. An overview of IFS theory is given in Chapter 2, followed
by chapters on one-dimensional modeling background and improvements to these

models in Chapters 3 and 4. Several modifications to the standard 1FS were explored

for the one-dimensional model. A variety of nonlinear maps were evaluated as well
as a new algorithm and method to determine the map parameters. Chapter 5 begins
the second part of this dissertation with background on two-dimensional modeling.
The primary emphasis with the two-dimensional model was the application of image
coding, which is covered in Chapter 6. Those modifications that worked well for the
one-dimensional case were extended to the two-dimensional case. Because of the in-
creased amount of data in two-dimensions, the necessity of an intelligent and efficient
algorithm is crucial. Three new search-based techniques were introduced based on the
correlation of adjacent blocks, a hierarchical block matching algorithm, and the frac-
tal dimension of the domain and range blocks. However, all search-based approaches
tend to be time-consuming. An entirely new view of the IFS coding problem was pro-
posed based on interpreting each of the terms in the map as basis vectors in a finite
dimensional vector space. Based on this viewpoint, a coding scheme was developed
which eliminates the time-consuming search required in previous methods. Finally,

conclusions and recommendations for future research are given in Chapter 7.

CHAPTER 2

IFS THEORY

[terated Function Systems were first conceived by Michael Barnsley in 1985 as a
method to generate deterministic fractals [13]. The basic theory behind IFSs is very
straightforward, and an overview is provided here. Additional material can be found

in a number of texts, such as [7] or [14].

2.1 Iterated Function Systems

An IFS is a finite set of contraction mappings, {w;}, defined on a complete metric

space, U, with a distance function p, i.e.,
w, U - U (2.1)

for:=1,2,..., P with
plwi(x), wi(y)] < si - plx,y] (2.2)
for all x,y € U with 0 < s; < 1. The notation {U : w;,7 = 1,2,..., P} will be used

to represent the IFS, and the transformation by all of the maps will be written:

W(B) = | wi(B), (2.3)

=1
where B C U.

Because W is a contraction, every IFS has a unique fixed point given by [15]
A=W(A), (2.4)

which is called the attractor and is defined below.

Definition 2.1 (Attractor) The fized point, A = W(A), is called the attractor of
the IFS.

A measure of how close an IF'S fits a particular data set can be estimated without

computing the attractor and is provided by the Collage Theorem [16].

Theorem 2.1 (Collage Theorem) Let {R? :w;,i =1,2,..., P} be an
IFS code of contractive T-dimensional affine maps, where R denotes the
set of real numbers. Let s < 1 denote the largest contractivity factor for
the maps. Let € > 0 be any positive number. Let V be a given closed
bounded subset of RT, and suppose the maps, w;, have been chosen so
that

RIV,W (V)] <,

then
€

RV, A] < :

1 —s

where: A denotes the attractor of the IFS, and h(A, B) is the Hausdorff

metric, which is a measure useful for comparing binary sets'.

The Collage Theorem provides an upper bound on the closeness of fit between
a data set, V, and the attractor of an IFS. While this theorem does not help us
directly determine the appropriate mappings for a particular data set, it does assure
us that if our mappings are individually ‘close’, then the composite IFS will also
closely resemble the data set. This implies the ability to construct the IFS in pieces,

as in a collage.

2.1.1 Condensation Maps

A condensation map is one which converges to its fixed point in one iteration. Thus

if the map wyq is a condensation map with fixed point A, then wo(B) = A, for all B.

!The Hausdorff metric is the maximum separation of the furthest elements (either in A or B)

from the opposite set.

Essentially the condensation map generates a fixed data set, regardless of the data
being transformed by the map. Another way to view the condensation map is not
as a map at all, but rather as a stored data sequence which is available to improve
the performance of the [F'S model. For example, creating a circle is difficult with an
IF'S, yet by using a condensation map which synthesizes a circle, the problem is easily
resolved. An example of the use of a condensation map is given in Figure 2.1 which
was created with only two maps, one of which was a condensation map used to create

the circle, and the other map rotates and shrinks the entire image.

1]
- '-w\
{ :
%, ”/f
,,,, e o
{3 S
Pt - -
i
4
™ !
e Tt
{ £
L, s e 5-.«"
]
- e o
. [bt Po3
PN wi £y ot

o
E 4\',

Figure 2.1: Condensation map example

2.2 Attractor Generation
The attractor for an IFS is given by?

A= lim W(B) (2.5)

n—oo

for any B C U. There are two methods to take an IFS and generate the attractor,
the Deterministic Algorithm and the Random Iteration Algorithm [7].

The Deterministic Algorithm is based on the contractivity of the W mapping
and begins by selecting any compact set Ay C R?, where 7' is the topographical
dimension of the data set. After successively computing A, = W°"(A), the sequence
{A;1}%2, will converge to the attractor of the IFS. Figure 2.2 shows the first nine

iterations in the generation of the attractor for an IFS, and the final attractor.

Figure 2.2: Deterministic algorithm example

2The notation W°"(A) means the n? iterate of A by the function W(). For example: W°3(A) =
W(W(W(A))).

The Random Iteration Algorithm uses the properties of the dynamical system
associated with the w;’s and proceeds with an initial zo € R? and then chooses

recursively and independently,
Ty € {wi(zno1), Wa(2p1),...,wp(xn_1)} forn=1,2,3,... (2.6)

where the probability of selecting w; is p;. The sequence {z,}22, will converge to
the attractor of the IFS [17]. Thus, in each iteration, a map is selected at random
and the point z, is transformed by that map. In the limit, the path of x, will trace
out the attractor. The probabilities, p;, need to be assigned to each map before
this algorithm can be used. Because these probabilities are used in distributing the
generated points, they should relate how much of the total attractor comes from each
mapping. A simple method to assign probabilities is to look at the relative scaling

performed by each mapping and assign a fraction for each mapping:

det TZ
py = JdetTi] (2.7)

N 2
> [det Ty
7=1

where T} is the transformation matrix for the :** map using the following notation.
For the two-dimensional case, such as in the examples given here, the affine maps

may be written,

1 a; b 1 €
WZ(X) = W; = + = TZ'X + ti, (28)
Ty ¢ di || @ fi
where the T; matrix performs a linear transformation on the input vector, x, and t;
provides a translation.
If for some 2 the value of p; is 0, then the Random Iteration Algorithm will never
allocate any points to that map, therefore, a small value should be assigned to this

p; to insure that this map is used. Figure 2.3 illustrates several intermediate steps in

the generation of an attractor with the Random Iteration Algorithm.

Figure 2.3: Random iteration algorithm example

While both of these algorithms are capable of synthesizing an attractor given
a set of maps, there are implementation differences worth noting. Because the Ran-
dom Iteration Algorithm follows a single point through the attractor, the memory
requirements are minimal. The disadvantage of this method is that the attractor is
only traced in the limit. For the discrete case, to insure that every required point has
been determined, the algorithm must run for many iterations. In addition, some im-
plementations of an IFS intentionally restrict the amount of data that is transformed
by each map. In this case, because not every point is transformed by each map, the
selection of the next map is dependent upon the address of the present point. There-
fore, besides complicating the algorithm, it is also possible for the sequence of selected
maps to become limited to a subset of the entire collection of maps. Maps which do
not operate on the entire data set are called piecewise maps and are discussed in
Section 3.1.1.

On the other hand, with the Deterministic Algorithm, because every point on the
attractor is calculated at every iteration, it is possible to calculate with certainty when
the algorithm can stop for a given size and resolution of the reconstructed attractor.
For example, with maps having a contractivity factor of 0.5, to insure convergence in

generating an attractor with eight intensity levels would require three iterations. Each

iteration comes within one-half of the final value of the attractor. The disadvantage
of the Deterministic Algorithm is the increased memory requirement — the entire
attractor must be stored in memory. In this work, the Deterministic Algorithm was
used almost exclusively. The largest quantity of data being worked with at one time
was a 512 x 512 image, which easily fit in the memory of the Sun workstations that
were used. In a commercial implementation of this method, this memory requirement
issue may become a factor, in which case the Random Iteration Algorithm could be
adapted to overcome the shortcomings mentioned here with some simple checks on

the path of the calculations.

2.3 Conclusion

In this chapter it was shown that an IFS is a simple collection of contraction mappings
and that the Collage Theorem provides a hint of how to construct maps to model
a given data sequence. Finally, two methods were discussed to render the attractor
given an IFS. What is needed now, and is covered in the next chapter, is a method

to construct the maps to model time-series, or one-dimensional data.

10

11

CHAPTER 3

BACKGROUND FOR
ONE-DIMENSIONAL MODEL

In the one-dimensional case, the data must be interpreted in a manner conducive to
IFS modeling. In this chapter, a generic finite length sequence, {z[r]} =} is consid-
ered. After introducing the one-dimensional model itself, the issue of constructing

an IFS for discrete data is addressed. Variations on the basic model are discussed as

well as an algorithm for determining a set of maps.

3.1 Model

One-dimensional IFS modeling is based on selecting points from the data samples,
{z[n]}Z}, and creating IFS maps to interpolate between these points. If we consider

n=0 >
the set of data to be modeled as a set of points of the form {(n,z[n]): n =0,1,...,N—
I;z[n] € R}, then a function could be created to interpolate between selected sample
points, {(m;,z[m;]) : mo < m1 < ... < mp}, closely following the shape of the
original data sequence. By using an IFS to perform this interpolation, the data could
be reconstructed from the IFS maps. In this manner, the IF'S interpolation function is

set up such that the graph of this function will pass through the interpolation points,
(mg, xz[m;]). A graph is defined below.

Definition 3.1 (Graph) Let I,Y C R, Let f: I — Y be a function. The graph of
f is the set of points
G={(z,f(z)) eRxY 2z e}

Thus, one-dimensional data is set up as a two-dimensional graph for the IFS
to model. This is accomplished by constructing the maps in a manner that creates
a single-valued function that passes through the interpolation points, using P affine

maps of the form

n a; 0 n €;
W; = + , (3.1)
x[n] ¢ d; z[n] fi
for 2 = 1,2,...,P. The zero term in the above matrix forces the function to be

single valued in the sense that for any n, there is only one z[n] [18], and therefore the
reconstructed data is forced to be a graph. This equation can also be expressed as

two separate equations, one for z[n] and the other for n,
wiz(z[n]) = ci-n+di-z[n]+ fi (3.2a)
Win(n) = a;-n+e;. (3.2b)

Each map, being two-dimensional, must be a contraction in both the n and

the z[n] directions. A contraction in n is assured because the i**

map transforms N
samples into M; samples, where N > M;. The contractivity in z[n] is controlled by
the parameter d;. Thus, the map w; will be a contraction mapping if |d;| < 1 and d;
is called the contraction factor for the i map. The parameter d; is independent of
the interpolation points and is used to control the shape of the interpolation function.
The remaining parameters, a;, ¢;, €;, and f;, are constrained so that z[0] and =[N — 1]
are mapped by w; to the selected sample points for this map, z[M;;] and z[M,]
respectively; the ith map projects the N samples onto the M; samples [M;1, M;3].

The interpolation point constraints can be written as:

0 M; N —1 Mo
w; = and w; = , (3.3)
z[0] [M) z[N — 1] [M)

12

for 2 = 1,2,...,P. As a result of the end point constraints, the following map

parameters may be written as a function of d;:

(M2 — M)

N 1 , € = Mil; (34&)

a; =

(@[Mi] — «[Ma]) , (2[N —1] —[0])
(N —1) ' (N —1) ’

(3.4b)

Cc; =

The final parameter to be determined is the contraction factor, d;, which is cho-
sen to minimize the distance between the original data sequence and the transformed
data sequence for each map. Two methods have been proposed for selecting the con-
traction factor, a geometric approach and a least squares approach [19]. Because both
methods provide similar results, we will concentrate on the least squares approach
which determines the contraction factor by minimizing the error function

M,
E=) (wi(z[n]) — 2[n])?, (3.5)
n=M,
where w;;(x[n]) is the equation from the map w; which transforms z[n], as defined in
equation (3.2a).

Figure 3.1 illustrates the generation of an attractor for a four map IFS. The
initial data set consisted of a large square in the space K shown in the figure. Each of
the maps transforms all of the points in K during each iteration. With each iteration,
the data is mapped in a contractive fashion closing in on the attractor. Because the
maps have been constructed in the form of equation (3.1), the resulting attractor is a
graph. This figure illustrates how any initial data set would yield the same attractor
due to the contractive nature of the IFS. In addition, the self-affinity characteristic of
this model can be seen in this example. Data which is constructed with this model will
be self-similar. This means that subintervals of the data sequence are equal to a scaled
and translated version of the entire data sequence. This self-similar characteristic is

one of the identifying traits of fractals [7].

13

wa(K)

IS

w3 (K)

Figure 3.1: Four map IFS

3.1.1 Piecewise Maps

The linear fractal interpolation model produces self-affine data using a set of affine
functions that map the entire data sequence onto sections of itself. A more general
form of similarity, known as piecewise self-affinity, is a property in which intervals of
the data sequence are mapped onto intervals [20]. Specifically, given a set of N sample
points, {z[n]})2}, the interpolation function is constructed with P affine maps of the
form of equation (3.1). However, in place of the end point constraints for the self-
affine model given by equation (3.3), for the piecewise self-affine model, a subset of

the interval [0, N — 1] is mapped between each pair of sample points:

Na M; N; M;
and w; = , (3.6)

for:=1,2,...,P.

W

14

Thus, for each 7, the function w; maps the signal z[n] over the interval [N;;, N;o]
onto the interval [M;;, M;3]. The interval [N;1, N;3] is called the address interval be-
cause it can be thought of as the address of the source data for this map. The
contraction factor for each map is again constrained to be bounded by one in mag-
nitude: |d;| < 1. In addition, to insure a contraction mapping, the width of each
address interval associated with a map is constrained to be strictly greater than the

width of the section associated with the map:
NiQ_Ni1>Mi2_Mi1 fOI’?:Zl,Zj...,P. (37)

Once the contraction factors, addresses and interpolation points have been chosen,
the remaining map parameters are easily determined from the end point constraints
given by equation (3.6). Synthesis of the piecewise self-affine fractal interpolation
function may be accomplished in a manner similar to the Deterministic Algorithm

with some slight modifications [20].

3.1.2 Hidden Variable Fractal Interpolation

The Hidden Variable Fractal Interpolation (HVFI) method is based on modeling the
data in a higher dimensional space. The data is then recovered by taking a projection
of the reconstructed higher dimensional data [21]. The advantage of this method is
that data which is not self-similar can be created due to the additional flexibility of
the added dimension.

For a one-dimensional sequence, the HVFI method would model the data in R?.
Given the original data sequence, z[n], which consists of N data samples, the data for
the additional dimension, z[n], would have to be determined prior to modeling. With

a given z[n] and z[n], the :** map out of P maps is set up in the following manner:

n a; 0 0 n €;
Wi z[n] = | ¢ d h zn] |+ | fi |- (3.8)
z[n] ki i omy z[n] gs

The zero terms are again necessary to insure the resulting function is single valued.
The ** map covers M; data samples for M;; < n < M;,. The set of P maps are
constructed to cover the entire data sequence. Figure 3.2 shows three views of the
attractor for a hidden variable IF'S. This method has seen little use due to the difficulty
in determining the appropriate z[n] data to use. One example, given in [22], uses a
circularly shifted version of z[n| for the data set z[n]. Although it is also possible to
construct piecewise HVFI functions, because of the large number of parameters, no

one has yet attempted to model data with this method.

x[n| versus n z[n| versus n
T T T 150

1001

-100F

150

-2001-

-2501

100 200 300 400 500 600) 100 200 300 400 500 600

x[n] versus z[n]
150 T T T T

1001

i
Z [n]»m
sl

-2001-

-2501

-150 -100 -50 0 50 1 150 200 250 300
x[n

Figure 3.2: Attractor for hidden variable IF'S

16

3.2 Discrete Data

In the continuous case, the operation of the maps on a data set is well defined. Each
point in a data set is transformed by the maps in the IFS to another point. The
location and value of the mapped data is exactly specified by the map equation.
However, when the transition to discrete data is made, some potential problems can
arise. Because the location for each sample in the data set must be quantized as it
is transformed by the maps of the IFS, there can be cases where the address for the

transformed sample does not correspond exactly to any of the actual samples.

—o—o—o— —o—o—0— —o—e—e— Map Domain

Vamyal

—o—o—+— —o—o—+— —e—e—+— Map Range
Sample: 1 2 3 1 2 3 1 2 3

a) b))

Figure 3.3: Discrete mapping example for 3:2 contraction mapping using: a) averaged,

b) non-averaged, and c) non-averaged and non-contractive sampling.

Consider Figure 3.3, illustrating a map that transforms three samples into two.

The addressing portion of this map can be written as
2
Win(n) == n. (3.9)
3
Note that the actual scaling of the samples is not important for this example. The
question is which samples to use in the transformation equation (3.2a). The sample

“z[n]”. However, in this case the address n is not an

is referenced by a ubiquitous
integer. There are numerous ways to perform the transformation, three of which
are shown here. The problem stems from the fact that when the contraction ratio,

which is equal to 1/contraction factor, is not integral, an approximation must be

17

made in determining the address for the transformed data. In this example, the
transformation should take the 5% sample to the %jth sample, which results in non-
integral indices when transforming the data. In Figure 3.3 a) an averaging scheme
is used, that has been shown to work well [6]. Here the samples which correspond
to ceil(n) and trunc(n) are averaged, where ceil(n), the ceiling operator, returns
the smallest integer > n, and trunc(n), the truncation operator, returns the largest
integer < n. It is also possible to avoid averaging if care is taken in determining the
index, as is shown in b) and c¢). Note that ¢) is not a contraction because the first and
second samples are always mapped to themselves. This can be avoided with careful
use of rounding when calculating the index in the map calculations. Furthermore,
this entire issue can be avoided by restricting the contraction ratios to be integer, as

is done in the two-dimensional case, as will be seen in Chapter 5.

3.3 Inverse Problem

The Inverse Problem is that of how to take a given data set and determine the set of
maps whose attractor will closely approximate the original data. This problem has
turned out to be extremely difficult to solve, primarily because the determination of
the map interpolation points is an ill-posed problem. While an IFS will produce a
unique attractor, for a given attractor there are many IFSs which can produce this
attractor. An example of this is the Cantor Middle Thirds set as shown in Figure 3.4.

This set can be produced by an infinite number of IF'Ss. For example two such systems

Figure 3.4: Cantor middle thirds set

18

are:

{10,1] : wq(z) = %.I',WQ(I) = % + %x} (3.10)
and
{10,1] : wq(z) = %m,wz(:c) = g + %I,WS(SC) = ;—{— %r} (3.11)

Therefore, given a data sequence, for an efficient model it is desirable to find the IFS
that has the fewest number of maps and also accurately represents the data. Several
obvious approaches have serious drawbacks, as discussed below.

A brute force approach, checking every possible map combination, turns out to
be computationally impractical. For a fixed number of maps, the number of possible

mappings is
n!

kl(n— k)

where n = N — 2, N is the number of points in the data set, and k& is the number

(3.12)

of maps minus one. For example, with a 128 point data sequence and five maps, the
evaluation of just over ten million map combinations is required. As the number of
maps is increased by one, the number of computations goes up by approximately two
orders of magnitude for this example. Obviously, an exhaustive search for the best
map is not feasible. However, exhaustive searches are used in the next chapter for
evaluating the IFS model enhancements when the number of maps is small.

Another logical method is to use a gradient search for the best interpolation
points. Unfortunately the error surface is extremely rough, and not conducive to
gradient methods. A series of test files was created for evaluating the enhancements to
the IFS model, a complete description of which is given in Section 4.4.1. To illustrate
the error surface as a function of the map interpolation points, an exhaustive search
was performed for a three map IFS modeling the first of these test files. The error
was then plotted for each of the sets of interpolation points, thereby illustrating the
error surface.

The maps were constructed so as to have two free variables: the two interpolation

points for the second map. The first map, wy, used the interpolation points {0, My, },

19

and the second map’s interpolation points were denoted as { My, My}, The third
map had interpolation points {Msy, N — 1} to complete the IFS model. Thus for
this three map IFS, there are two free variables, My; and My;. The remaining map
parameters were determined by minimizing the error equation (3.5) as discussed in
Section 4.1.1, the specifics of which are not important at this point. Using these two

variables, an error can be defined as,
error = — log(f(Mz1, M23)), (3.13)

where the negative log of the error was used because we are interested in minimizing
the error, and visually seeing the low point on a plot is difficult. This error surface is
shown from an isometric view in Figure 3.5 and as a contour plot in Figure 3.6.
This error surface does have a certain regularity to it; there are definite valleys
and ridges, which suggests that good results may be obtained by searching along
each axis. In [19] such a search method has been proposed. The method begins with
one interpolation point fixed and advances the other interpolation point through the
data to be mapped looking for the best map. This would correspond to searching
along the error surface along one axis for the maximum. The best map is selected
and the data covered by that map is not examined during subsequent searches. The
remaining data is searched again by fixing one interpolation point at the edge of the
remaining data to be mapped and repeating the search. In this manner, a set of maps
is determined to model the data. This method has the disadvantage that there is no
way to specify the number of maps to use, and it also does not take into consideration
the interaction of the maps; each map is chosen independently. That is to say, by
picking the peak of the error surface as we scan along one direction, we are limiting

ourselves to a small subset of all the local extrema.

20

M21
M22

Figure 3.5: Error surface for three map IFS of test file 1, isometric view

3.4 Conclusion

In this chapter an IFS model was introduced for modeling one-dimensional sequences.
Several variations on the model were introduced, including piecewise maps and the
Hidden Variable Fractal Interpolation method. An algorithm for determining the
model parameters was discussed, as well as some of the issues involved in determining
a set of maps. In the next chapter, this model is expanded, and two new algorithms

are introduced.

21

Figure 3.6: Error surface for three map IFS of test file 1, contour view

22

23

CHAPTER 4

ONE-DIMENSIONAL MODELING

This chapter examines a series of modifications to the basic IFS affine map, as well
as algorithms to determine the necessary model parameters. In addition, the method

by which the IFS model is constructed is explored.

4.1 Improvements to IF'S Interpolation Method

In addition to the modifications to the individual maps, the following changes were
investigated in the structure of the IFS model itself. The first concerns how the maps
are set up to interpolate specific data points, and the second examines the selection

criteria for the maps.

4.1.1 Relaxing the Boundary Conditions

In the fractal interpolation methods proposed to date, the IFS parameters have been
calculated by forcing the model to intersect the interpolation points exactly. In mod-
eling a one-dimensional sequence, these boundary conditions have been used to reduce
the number of free variables, leaving only d;, the contraction factor, to be calculated,
as discussed in Section 3.1. By not imposing the boundary conditions, the number
of variables increases from one, d;, to three, ¢;,d; and f;, but the model will be more
flexible to fit the data [23]. These three variables can be determined with a least

squares minimization of the error equation (3.5). Substituting equation (3.2a) into

(3.5) yields,

M;—1
E= 2 [oMa+j] = (ci-n+di-z[n] + fi), (4.1)
where
. o N—1 . ‘
n= mt(Mi — 1]). (4.2)

Taking the partial derivatives of ¢ with respect to each of these three variables,

and setting these partials to zero,

9¢ S 9¢
=0 =0 =0 4.3
aci Y adZ Y afZ Y ()
provides the following set of linear equations:
M;—1 M;—1
EA-X:EKO-K, (4.4)
7=0 7=0
where
A=K K7, (4.5)
K = [n,«[n], 1], (16)
X = [Ciadiafi]Ta (4.7)

n is defined in equation (4.2) and T signifies the transpose operator.

This method has the advantage of not forcing the synthesized data to intercept
the sampled data at any point exactly, instead the synthesized data is made to fit as
well as possible overall. As a result, the overall error is not sacrificed in order to meet
the interpolation point constraints. The choice of interpolation points is somewhat
arbitrary as they have been chosen in order to minimize the error with the constraint
that the model actually touches these points. The existence of this constraint is not
necessary and in judging the fidelity of the modeled data, one data sample typically

is no more important than another in achieving a good fit.

24

4.1.2 Map Selection Criteria

The Collage Theorem has been used extensively as a basis for map selection [6, 24, 25].
However, this is usually done by simply taking the map with the smallest distance
measure as given by equation (3.5). The Collage Theorem also shows that a small
contraction factor is desirable for an accurate model. For a one-dimensional signal,
the IF'S model is two-dimensional, so there is a contraction along the two axes of the
graph. There must be a contraction in n, and the contraction factor along this axis
is N;/M;, and there must also be a contraction in z[r], which is equal to d;. These
contraction factors are presently ignored in the map selection process, other than the
binary decision of whether or not the maps are contractions. To test the improvement
of including these values in the map selection process, a variable o was defined,

N;
M;

+ ko - d; + k3 - &, (4.8)

Oé:kl'

and maps were selected based on a minimum «. For a given weighting scheme, more
emphasis could be placed on the contractivity of the map. Numerous combinations of
weights were tested, from setting all of the weights to the same value, ky = ky = ks,
to individually emphasizing each term separately, for example, by = 1, ky = k3 = 0.
No improvements were noticed with any of the weighting schemes used.

The Collage Theorem also dictates the use of the Hausdorfl metric in specifying
the error bound. This is not a convenient metric because it involves comparing many
points in the two sets, which can become computationally intensive for large sets. In
order to find a suitable metric, the Li, Ly and L., norms were tested, with similar
results obtained for each.

Because the results obtained were unaffected by different selection criteria and
distance measures, all maps were selected based on the Euclidean distance, ¢, from
the error equation (3.5) alone. The Euclidean distance is a convenient metric when

solving for parameters with least squares.

25

4.2 Non-Affine Maps

The basic affine map limits the type of data which can be generated to be self-affine
in nature. As mentioned before, this is not a common characteristic of naturally
occurring data. While the HVFI and the piecewise methods offer ways to eliminate
this restriction, modifications to the basic affine maps are also possible. The affine

map, equation (3.2a), is repeated here for reference,
wig(z[n]) = ¢ - n+di - z[n] + fi. (4.9)

There are many possible nonlinearities which can be introduced into this equation.
We are interested primarily in two opposing desires: the first is to allow maximum
flexibility in transforming a data set to fit another data set, and the second is to
keep the number of map parameters to a minimum, or to construct the map so as to
minimize the storage requirements. Additionally, it is desirable to be able to easily
determine the best map parameters. In order to achieve this goal, nonlinear equations
were implemented which are linear in the coefficients, thereby allowing least squares

to be used to determine the parameters.

4.2.1 Polynomial Nonlinearities

The affine map of equation (4.9) was modified with the addition of various nonlin-
ear terms in both z[n] and n. Each of these equations was linear in the coefficients.
In addition, all of the derivations here are done for piecewise maps. Because the
piecewise case is more complicated, these results have been provided, with the under-
standing that the non-piecewise case can easily be derived with a simple substitution

of variables:

Nil =0 and NZ'Q =N — 1, (410)

thereby fixing the end points for the map addresses to the entire data sequence.

26

A) Simple Quadratic IF'S

The first nonlinear map was created by adding a quadratic term to the affine map

equation (4.9) to get:
wiz(z[n]) = ¢; - n +d; - x[n] + h; - z[n]* + fi. (4.11)

As with the affine maps, the boundary conditions can be used to eliminate some of
the variables, leaving two unknowns: d; and h;, which can be solved for using a least
squares minimization of the error.

Least Squares Solution

The two boundary equations can be written as:
a[Mi] = ci - Nig + d; - 2[Na] + by - 2[Nal* + f; (4.12a)
and
t[Mp) = ¢; - Nig 4 d; - [Nig] + hy - 2[Npo)* + fi. (4.12b)
These equations can be solved for ¢; and f; to get:
z[Ni] — [Ny

JC[MzQ] - $[Mz1] I[Nil]Q - w[NiQ]Q

.= d; - h; - 4.13
‘ Nia — Njy i Nis — Na * Nis — Na (4.13)
and
f‘ Nig - "C[Mn] — Nj - $[Mz2] 1+ d - Ni - [22] — N;z - "E[Nzl]
' Ny — Ny ' Nig — Ny
Ni - $[Nz‘2]2 — N;p - $[Nz‘1]2
h;- . 4.13b
+ Nis — Na ()

The error equation (3.5), with the simple quadratic map substituted, may be written

as
M;-1
= > [e[Ma+j] = (e n+di - z[n] + by - z[n] + fi)), (4.14)
7=0
where
N; —1
n = N; + int (M—l) (4.15)
Mi = MZ'Q — Mil + 1 and NZ = NZ'Q — Nil + 1. (416)

27

By substituting equations (4.13a) and (4.13b) into (4.14), then calculating the partial
derivatives of ¢ with respect to the two unknowns, d; and h;, and setting the partials

equal to zero:

0¢ 0¢
0d; 0 , oh: 0, (4.17)
the following equation is obtained:
M;-1 M;-1
Y A-x= Ky K (4.18)
7=0 7=0
where
A=K K" (4.19)
K = [Ky, Ky)" (4.20)
X = [di, hi]” (4.21)
and
. . $MZ n—Ni —|—.TL’MZ NZ —n
Ky = - (:c[Mﬂ +Jl+ [Mall Ni) — N[2l)) (4.22a)
- 2[Nu](Nia = n) + z[Nip](n — Na) o
K, = No— N z[n] (4.22b)
12 W 12(n — N
K, = [N (N Z\?) —I_;E\ENZZ] (n=Na) z[n], (4.22c¢)

and n is defined in equation (4.15).
Test for a Contraction Mapping

Whereas the contractivity of an affine map may be easily checked, the above
quadratic is a little more complicated. One condition which will indicate a contraction
mapping is if the fixed point is an attracting hyperbolic fixed point of prime period
one [26]*. This is true when, for a given function f(z), |f'(z)| < 1. Applying this to
equation (4.11) yields:

|d; + 2h; - z[n]| < 1. (4.23)

!Prime period one means that the fixed point lies on an orbit of period one, and an attracting

hyperbolic fixed point ensures convergence.

28

In order to facilitate calculations, all of the data to be modeled is normalized. With
a maximum magnitude of one, the inequality can be reduced by considering only the

extreme values for z[n]. Therefore the inequality (4.23) can be written as
|d; + 2h;] < 1. (4.24)

Each mapping that is generated must satisfy the inequality (4.24) in order to be a
contraction mapping.
Relaxed Boundary Conditions

The method of relaxing the boundary conditions, Section 4.1.1, can also be
utilized here. Taking equation (4.11) and using least squares without the boundary
equations, yields the same equations, (4.18) and (4.19) with the new variables:

K={n, en], afn]*, 1]" (1.25)
x=1lec,di, hi,f;]" (4.26)

with
Ko = «[Mi + j]. (4.27)

The contraction mapping test remains the same.

B) Additional Quadratic Terms

The simple quadratic equation (4.11) was supplemented with additional terms as

follows:
wie(z[n])=c;i n+d; - z[n]+gi-n®+ ki z[n)]* + kz[n]-n+ £ (4.28)

Again the boundary conditions can be used to eliminate some of the variables, leaving
four unknowns: d;, ¢;, h;, and k;, which can be determined, as before, with a least
squares minimization of the error.

Following the above procedure, equations (4.18) and (4.19) would remain the

same, with the new variables:

K=[K , K,, Ky, K, |" (4.29)

29

x=1[di, g, hi, k] (4.30)

with
Ko = — (x[Mﬂ 1 j] 4 Al]V;) - ;Cv[j%?](Ni - ")) (4.31a)
Ky = oo+ 2l ZYVQ) : fv[jvm](N“ —") (4.31b)
Ky = nt4 Y= fjva) + xzé(Nn —n) (4310)
Ks = z[n]*+ z[Na]*(n — A;'z) ‘_|' if\gj\fiz]Q(Nn —n) (4.31d)
Ky, = n-z[n]+ Ni1 - 2[Na](n —]\;\2[22) i xf - 2[Nia] (Nin — n) (4.31e)

and n is defined in equation (4.15).
Test for a Contraction Mapping

The conditions under which we have a valid map are determined again by en-
suring that the fixed point is a attracting hyperbolic fixed point of prime period one.
Taking the derivative of equation (4.28) with respect to z[n], and again incorporating

the normalized data we are dealing with, yields the constraint

Each map that is used must satisfy this inequality over the range of Ny < n < Ns.

This provides four inequalities to check:

|d; + ki - N + 2hi] < 1

Relaxed Boundary Conditions
Again the method of relaxing the boundary conditions, Section 4.1.1, can be

applied. Solving equation (4.11) with least squares yields the same equations, (4.18)

30

and (4.19) with the new variables:

K:[nv .17[71], n27 1‘[71]27 n;c[n], 1]T (434)
x=lc,di,g,hi,6 k,f]" (4.35)

and
Ko = z[M;; + j]. (4.36)

The contraction mapping test remains the same.

C) Higher Order Polynomials

As more terms were added to the map equation, it was found that fewer and fewer
maps were contraction mappings. Because so few maps could be used with the addi-
tion of cubic terms, no benefit in model accuracy was seen.

The disadvantage of the previous sections method of adding terms to the maps
is that all of the additional coefficients must be stored. The next method provides a

less expensive way to permute the data as it is transformed.

4.2.2 Nonlinear Addressing

The idea behind nonlinear addressing is to take the source data sequence and add
a nonlinearity in the addressing of these points as they are mapped onto the region

[My, M3] [27]. Let this nonlinear function be called ¢g(n), so that g(n) returns another

index into x[r| within the range [0, N — 1]. We can then write equation (3.2a) as
wiz(z[n]) = ¢ -n+d; - z[g(n)] + fi- (4.37)

In an interest of keeping the additional information required to describe the
nonlinearity as small as possible, the number of nonlinear functions was limited. Thus
each map only requires a code to specify which function is used in that map. The set

of functions given in Table 4.1 was used. Note that the first function is the standard

31

linear addressing method. The second flips the data in n, while the remaining stretch
and compress various portions of the data. For those functions which return non-
integer values, the nearest integer is used as the address. The appropriate addressing
function would be selected by evaluating the map error equation (3.5) for each of the

functions and selecting the nonlinearity that gives the smallest error.

Table 4.1: Nonlinear addressing functions

4 Function
0 n

1 N-—n

2 N - sin(x/2 - n/N)

3 N - cos(t/2 - n/N)

4 | N[0 = sin(x/2 - n/N)]
5 | N-[1.0 - cos(x/2 - n/N)]
6 N - sin(r - n/N)

T | N-[1.0— sin(x-n/N)]

4.2.3 Condensation Type Maps

Because the attractor of an IFS will have a built-in roughness to it, it is difficult to
model smooth curves [28]. Conversely, although the condensation map with sinusoidal
data allows a map to code a segment of smooth data with a known and fixed error,
it does not take advantage of any self-affinity in the data. A hybrid approach to the
condensation map was evaluated which allowed the incorporation of the advantages
of both the pure condensation map and the normal IFS map [29]. The addition
of the condensation data function to the map itself combines these two features. A

sinusoidal condensation function was used, and was added to the map equation (3.2a)

32

to get:
21n

N -1

wiz(z[n]) = ¢ - n 4+ cl; - sin(

The coefficients for the condensation terms were determined in a similar manner to
the other map parameters. In addition, the boundary conditions were relaxed to

improve the model’s performance.

4.3 Quantization

By carefully constructing the coded maps, the number of required bits can be re-
duced. First, bit allocation is examined for the standard affine map, followed by the

alternative maps covered thus far.

4.3.1 Affine Maps

In the basic affine map there are five parameters: a, e, ¢, d, and f. The a and e values
can be determined from equation (3.2b) using the map end point addresses, M; and
M,, whose size depends on the number of samples in the data being modeled. If each
map is adjacent and not overlapping, then only one address will have to be stored
for each map because M; for one map will be M, for the adjacent map. In addition,
the first and last map will have known end point addresses — the first and last data
sample. Therefore, to determine a and e for P maps will require (P — 1) x Np bits,
where Ny is the number of bits in the address.

Because d is constrained by |d| < 1.0 for a contraction mapping, this suggests
storing d as a signed fixed-point fraction. This requires one bit for the sign, and
additional bits for the binary fraction portion.

The data transformation equation (3.2a) may be interpreted in two parts, a

linear interpolation function,

w(z[n])=c-n+ f, (4.39)

33

combined with the mapped data portion, d - z[n]. This is shown in Figure 4.1 as the
mapped data being laid on a linear interpolation between the map end points. If the
data is normalized prior to modeling, the bias in the linear interpolation portion of
the map, f, must have sufficient range to bias the smallest d- z[n] value to the highest
z[n], and also the highest d - z[n] value to the lowest z[n]. Because d is restricted
to |d| < 1, and xz[n] is restricted to the range 0 < z[n] < 1, the maximum range of
fis =2 < f <2, and f can be stored in a similar manner as d with the addition
of a single bit for the 1’s place. The slope, ¢, depends on the smallest map width:
le] < 2.0/M. Examination of many IFS models has shown that most ¢’s are within
the range 1072 < |c| < 1077, This range limitation is taken advantage of by using an
exponent with a binary offset of 7, so ¢ was stored in the format £0.bbb x 2~ (7+eer)
where exp is a four bit number, giving ¢ the desired range. With this coding method
a minimum of 6 bits are required for ¢: four for the exponent, one for the sign, and

one or more for the mantissa.

d x[n]

. N

Figure 4.1: Example of affine map illustrating how the transformation can be inter-

preted as a linear interpolation combined with the mapped data.

34

Tests were run on a series of IFSs and there were no noticeable quantization
effects when using eight bits for ¢, six bits for d and seven for f. In none of these

tests were any underflow or overflow seen for the ¢ exponent.

4.3.2 Non-affine Maps

Unlike the affine case, with polynomial terms the magnitude of the parameters is not
strictly limited. Therefore a more liberal quantization scheme was used. For each
of the parameters, both the polynomial and the condensation terms, an eight bit
format, like the one discussed above for ¢, was implemented. For each parameter the

exponent ranges were determined from a set of IFSs.

4.4 Results

All of the above mentioned one-dimensional models were tested with a series of data
sequences. A set of standard test files was created to test all of the various algorithms
and modifications to the basic I[F'S. Before running any tests, it was first necessary to
determine a suitable type of data to model with an IFS. Once this was determined,
the test files were constructed and a uniform testing methodology was used to obtain

results which facilitated comparisons.

4.4.1 Test Files and Methodology

A known characteristic of fractal data is a spectral shape of an exponential decay [4].
This shape is commonly seen in nature with stochastic processes and has been given
the name of 1/f noise [30]. In determining an appropriate class of data to apply IFS
modeling techniques to, it is important to use a compatible type of data. Fortunately,
such a type of data exists and is the focus of many modeling and compression tech-
niques — image data. Because image data is an ideal application for IFS modeling,

and is so prevalent, this research effort has focused on this application. For the one-

35

dimensional models, scan lines from images were used, and in the two-dimensional
case, the entire image was used.

For one-dimensional data samples, scan lines were extracted from a series of
image files, such as LENA and the CAMERA MAN from the USC database. A set of
five files was gathered and all tests were conducted with these files. Figures 4.2a
through 4.2e show the original files.

In order to evaluate each of the modifications, exhaustive searches were con-
ducted with a fixed number of maps. This was performed with two through five maps
for most of the tests. Occasionally the computational burden of five maps was too
much, and the tests were halted at four. Table 4.2 gives the true SNR values for the
test files coded with each of the nonlinear modifications covered thus far, as well as

with the original affine IFS for comparison. The SNR is defined as

3 xln’
10log | "> : (4.40)
X_: (z[n] — &[n])*

where #[n] is the noise corrupted version of the signal.

36

240

220 A

200 N

180 N

160} N

140t .

120t .

100t .

60 .

40 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 4.2a: Test file 1

37

240

220 A

200 N

180 N

160} N

120 .

100t .

80 .

60 .

40 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 4.2b: Test file 2

240

220 .

200 N

180t .

160 .

140 R

120 .

100} N

80 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 4.2c: Test file 3

38

220

200

180

160

140

120

100

80 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 4.2d: Test file 4

250

200 7

150} .

100t .

50 .

o 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Figure 4.2e: Test file 5

39

Table 4.2: 1D IFS nonlinear map comparison

File | Method 2 Maps | 3 Maps | 4 Maps | 5 Maps
SNR SNR SNR SNR
1 Affine 19.4 21.2 23.4 25.0
Relaxed Affine 20.0 23.2 24.5 26.0
Simple Quadratic 194 21.2 23.5 25.2
Full Quadratic 19.9 22.5 24.4 27.5
Relaxed Full Quadratic 20.2 23.9 25.3 27.6
Nonlinear Addressing 21.5 24.2 26.0
Condensation Maps 21.1 23.5 25.0
2 Affine 19.5 24.6 24.7 26.9
Relaxed Affine 22.6 25.6 26.8 28.5
Simple Quadratic 19.5 24.5 24.9 27.1
Full Quadratic 20.3 24.6 28.3 28.9
Relaxed Full Quadratic 22.6 25.9 27.6 30.0
Nonlinear Addressing 22.6 25.8 27.3
Condensation Maps 23.2 25.9 274
3 Affine 24.2 27.8 324 35.0
Relaxed Affine 25.4 31.0 33.3 36.1
Simple Quadratic 24.2 28.3 33.3 35.7
Full Quadratic 26.4 31.5 35.7 36.7
Relaxed Full Quadratic 25.4 334 36.2 37.2
Nonlinear Addressing 27.8 33.9 34.9
Condensation Maps 26.1 33.5 35.8
4 Affine 24.3 26.5 30.2 32.9
Relaxed Affine 26.4 30.4 33.0 34.4
Simple Quadratic 24.2 26.6 30.3 33.3
Full Quadratic 30.5 35.3 37.1 39.3
Relaxed Full Quadratic 27.8 35.9 374 39.6
Nonlinear Addressing 28.5 32.7 34.4
Condensation Maps 26.7 32.1 34.2
5 Affine 11.9 15.6 16.9 18.5
Relaxed Affine 14.2 17.2 194 21.1
Simple Quadratic 11.9 15.6 17.1 18.7
Full Quadratic 15.2 17.3 21.5 22.3
Relaxed Full Quadratic 15.8 18.5 20.9 22.9
Nonlinear Addressing 14.3 17.6 20.1
Condensation Maps 16.2 18.5 21.1

40

Examination of these results shows that all of the nonlinearities improved the
performance of the model. In addition, relaxing the boundary conditions improved
each of the maps even further. However, it is important to take into consideration the
increased storage requirements for these new and more complicated maps. Table 4.3
shows the calculated compression ratios for each of the methods with two through

five maps. Further analysis of these results is given in Section 4.7.

Table 4.3: 1D IFS map compression ratios

Method 2 Maps | 3 Maps | 4 Maps | 5 Maps
CR CR CR CR
Affine 20.9 13.3 9.8 7.7
Relaxed Affine 20.9 13.3 9.8 7.7
Simple Quad. 15.8 10.1 7.5 5.9
Relaxed Simple Quad. 15.8 10.1 7.5 5.9
Full Quad. 10.6 6.9 5.1 4.0
Relaxed Full Quad. 10.6 6.9 5.1 4.0
Nonlinear Addressing 18.6 11.9 8.8 6.9
Condensation Maps 15.8 10.1 7.5 5.9

4.5 Algorithms for Interpolation Points

Presently there are two methods for determining the interpolation points; first, the
exhaustive search, which has only been used here for evaluating the various improve-
ments to the IFS model, and second, the previously mentioned search algorithm [19].
Using exhaustive searches is too time consuming to be of practical use. The disad-
vantage of the search-based method, is that there is no firm control over the number

of maps used in modeling a data sequence. In this section we will introduce two new

41

approaches to determining the interpolation points, which allow the number of maps
in the model to be fixed.

It has been shown that in two-dimensional binary self-affine data, the vertices of
the convex hull enclosing the attractor are also the fixed points of the maps for the IF'S
which generated the attractor [31]. This result was used as the basis for an algorithm
for determining the interpolation points for one-dimensional data [32]. The convex
hull is expensive to compute, and instead, the local extrema of the data sequence
were used as the fixed points of the maps. The extremum points are obtained by
comparing a low-pass filtered version of the data to the original data and selecting
those points which differ the most between the two data sequences. The first and
last points in the data sequence are vertices of the convex hull and must also be fixed
points for the first and last map, respectively. Therefore, in order to determine the
interpolation points for P maps, an additional P — 2 extremum points are required.
The locations of the fixed points do not uniquely define the interpolation points, as is
shown in the derivation below. However, they greatly reduce the number of possible
sets of interpolation points, thereby simplifying the map selection process.

The update equation (4.15) for n will have a fixed point, 7, for the i'* map
when

Each w; must map the end points of the data sequence, 0 and N — 1, onto the map

end points, M;; and M;,. From equation (4.15), this gives

M.y — M.
=My, a = Ha—Ma 4.42
e a N (4.42)
and therefore equation (4.41) can be written as
My — My,

Thus, given the fixed point of a map and either end point, the remaining end point

can be determined.

42

The first map has the additional known constraints M;; = 0 and ny = 0, which,
when used in equation (4.43), give no additional information about Mi,. In addition,
the last map has the known constraints, np = N—1 and Mpy; = N—1, which also yield
no information about Mp;. The intermediary maps have the two interpolation points
as unknowns, and one equation for each map, as given by equation (4.43). Because
each map is adjacent, for the remaining P — 2 maps, there are P — 1 unknowns and
we have P — 2 equations. In addition, the interpolation points are constrained so
that the fixed point must lie between the interpolation points for that map, and the

interpolation points must be increasing:
My < n; < Mgy , M;y, = M(i+1)1- (4.44)

Unfortunately this does not give a unique solution to the problem. However,
there are enough restrictions on the interpolations points, so that the number of possi-
ble solutions is greatly reduced. Because the selection of the interpolation points is an
ill-posed problem, this leaves the option of evaluating all possible sets of interpolation

points, which leads to the first of the two algorithms.

4.5.1 Fixed-Point Algorithm

The first method begins by selecting M5 for the first map. All possible interpolation
points are evaluated. While at first this may appear to be a large number, in fact it
typically is quite small, being equal to ny—1. This is because M;5 must be less than the
next fixed-point, ny, which must be in the next map. Once M, is selected, then the
remaining interpolation points can be determined from equation (4.43) and knowing
the remaining n;’s. If a valid set of interpolation points can not be determined from
M;i,, then that value is skipped and the search continues. Once there is a complete
set of interpolation points, then the map parameters are determined. Subsequent sets
of interpolation points are compared by the squared error between the original data

and the transformed data, as in equation (3.5), with the map set which produced the

43

lowest error being saved as the final set. If a minimum map size is imposed, such as

five samples, then the search is reduced further.

4.5.2 Geometric Algorithm

The second algorithm is not based on the aforementioned proof, instead it is motivated
by a geometric construction of the model. The map equation (3.2a) may be viewed

as a linear interpolation portion,
win(z[n]) =¢-n+ fi, (4.45)

combined with a mapped data portion, d; - [n]. The maps are initially set up to
approximate the original data with a linear interpolation. This is implemented by
taking the extremum points as the interpolation points exactly. In this manner, even
without the effects of the IFS, the model will roughly follow the original data using
a series of straight-line segments. Then, the mapped data portion can be used to
further increase the accuracy of the model. As with the previous algorithm, the map
parameters are determined through a least squares error minimization. This method
avoids most of the computations of the first method completely, and consequently
is extremely fast, depending on the number of maps, the coding time can be ten to

twenty times faster than the fixed-point algorithm.

4.5.3 Results

The results are given in Table 4.4, which shows the best possible performance through

the exhaustive search followed by each of the two algorithms introduced here.

44

Table 4.4: IFS algorithm comparison

File | Method 2 Maps | 3 Maps | 4 Maps | 5 Maps
SNR SNR SNR SNR
1 Exhaustive search | 20.0 23.2 24.5 26.0
Fixed-point alg. 14.0 20.7 21.2 22.9
Geometric alg. 18.2 19.8 21.6 23.0
2 Exhaustive search | 22.6 25.6 26.8 28.5
Fixed-point alg. 8.2 18.9 22.3 22.8
Geometric alg. 22.6 21.0 22.9 24.0
3 Exhaustive search | 254 31.0 33.3 36.1
Fixed-point alg. 22.8 27.2 32.9 33.9
Geometric alg. 24.0 25.7 27.0 29.1
4 Exhaustive search | 26.4 30.4 33.0 34.4
Fixed-point alg. 11.9 22.8 31.0 32.4
Geometric alg. 25.1 27.3 31.1 31.8
5 Exhaustive search | 14.2 15.6 16.9 21.1
Fixed-point alg. 11.8 14.9 15.5 15.8
Geometric alg. 12.9 14.6 15.1 16.4

45

It should be noticed that the method of scanning for the best initial interpolation
point occasionally performed poorly. For example, the two map system with the
second file gave only 8.2dB SNR. It turns out that when there are very few maps,
say two or three, the use of equation (3.5) to select the best map set could lead to a
poor choice. This is caused by the fact that there is a small error when M; is very
small, and also when it is close to the size of the entire data sample. If there are
only two maps, when equation (3.5) is evaluated for the case My = 2 and M; = 126,
it is possible that this might appear to be a good mapping, when in fact it is not.
By experimenting with a minimum map size, for example of five data samples, this

problem can be alleviated.

4.6 Hidden Variable Fractal Interpolation

The HVFI method is based on using an IFS to interpolate between selected sample
points in R*. We are given the original data sequence, z[n], which consists of N data
samples for 0 < n < N — 1, and have to determine the additional dimension’s data,
z[n], prior to modeling. Unlike the previous IFS models, the equations here will be
limited to the simpler non-piecewise case. The HVFI method has not seen much use
because of the lack of a method to determine the hidden variables and no work has
been done on the piecewise case. A variety of methods can be used to determine the
z[n] data [33]. With a given z[n] and z[n], the :'" map out of P maps is set up as given
in equation (3.8). The " map covers M; of the data samples for M;; < n < M;,.
The set of P maps are constructed to cover the entire data sequence. First a method
for determining the map parameters is discussed, followed by several approaches for

generating the hidden data.

46

4.6.1 Map Parameter Determination

As with the simple IFS, an error equation can be defined based on the Fuclidean

distance between the original data and a transformed version of this data. Because

there is the additional hidden data, the sum of these two distances is used to get:

M;a

b= Y [wialelnl, 2ln)) — 2[j])? + (wis(aln), =[n]) - 2[j]]

J=Mi

for each map, where

wie(z[n],z[n]) = ¢-n+di-zn]+ hi-z[n]+ fi,

wi(z[n],z[n]) = ki-n+1L-zn]+m;-zn] + g,

n=in((51)7),

The total error from all of the maps is defined as

and

(4.46)

(4.47a)
(4.47b)

(4.48)

(4.49)

Once the z[n] data is known, the map parameters can be determined through

a least squares minimization of the error equation (4.49), giving the following sets of

equations for each map,

_ . -
M;-1 d2 M;-1
55+ S7] = Y S e[Ma+ 4],
Jj=0 hz 7=0
| fi]
and i i
k;
M;—1 I; M;—1
J=0 m; 7=0
L 9]

(4.50D)

where
Si=|mn zn] z[n] 1] , (4.51)
and n is defined in equation (4.48).
Once the map parameters have been calculated, the map must be checked to see

if it is a contraction mapping. This can be done by examination of the sub-matrix

d; h;
A= . (4.52)
Zi my;
If the determinant of A; has a magnitude less than one, then the map is a contraction

mapping.

4.6.2 Hidden Data Determination

The remaining tasks in using the HVFI method are the determination of the z[n]
data and selection of the interpolation points. Several methods were developed to
determine the z[n] data based on a least squares minimization of the error for each
map.

For continuous functions, the IFS maps are constructed to be ‘just touching’,
which means that adjacent maps share end points. For the discrete case this is not
necessary and would result in an overdetermined system of equations. Therefore, the
maps were set up with adjacent, instead of overlapping, end points. With adjacent
end points, the P maps provide N equations for the N unknowns. The nice feature
of this system of equations is the sparseness of the matrix; most rows have only
two non-zero coefficients. The system of equations can be solved using an iterative
method, such as the Gauss-Seidel or the Conjugate-Gradient method, both of which

were implemented with similar results.

An Optimal Approach

The optimal z[n] data was obtained in a least squares sense through the error equation

(4.49) for all of the maps. Because the z[n] data is used by all of the maps together,

48

it is not possible to work with each map individually. Therefore the z[n] data must
be derived from the composite error equation (4.49). Examination of equation (4.46)
with regard to z[n| shows that there are three distinct ranges depending on the value

of j or n, where n is defined in equation (4.48).

1. My <n < M and j # My Sl

2. My <n < M and j = le%

3. n outside of {M;; --- M5}

The range M;; < n < M;; can be written in terms of j:

(Mi — 1)

M — 1) < e
N -1

M; i < M; 1.5
N-1 —/ =" (4.53)

Taking the partial derivative of equation (4.49) with respect to z[n] for each of

these three cases yields three equations:

m-z[n] —z[Ma + j] = —ki-n—1; - z[n] — ¢;, (4.54a)

(hf +mi —mi) - z[n] + (1 —m) - 2[Mix + 5] =
(1 =mg)(ki - n+ 1 zn] +g:)
+h(x[Mia 4+ j] — ¢ -n—d; - z[n] — fi), (4.54b)

—(h? +m3) - z[n] 4+ mi - z[Min + 5] =

hi(ci-n+d; - z[n]+ fi — [Mi + n]) + mi(ki -n+ 1 - z[n] + ¢;). (4.54¢)
Determination of the map parameters and the z[n| data proceeds as follows.
1. Initialize z[n]
2. Calculate the map parameters using the method from Section 4.6.1

3. Determine the z[n| data to minimize the error

49

4. Calculate error and compare to previous; if the change is small then stop, oth-

erwise go to step 2

Obviously the last step offers some flexibility in that the iterations may be allowed to
continue if the error is decreasing, or stopped after a certain number of iterations, and
in addition, a check should be made for divergence. The initial value chosen for z[n]
will affect the convergence of the algorithm. There is no guarantee of convergence for
a given initial value. The only value which should not be used is z[n] itself; which

will lead to a singular set of equations when the map parameters are calculated.

Two Fast Iteration Methods

Rather than solve the system of equations for all cases, if instead z[n| and z[M;1 + j]
are treated as different variables then a simpler solution is derived. When the partial
of equation (4.46) with respect to z[n| and z[M;; + j] is set to zero, the following two

equations are obtained:

(hf +mi)z[n] + (=ms)z[Ma + j] =
hi(ci-n+d; - z[n] + fi — [Mia + j))
+mi(k; -n+ 1 - x[n] 4+ ¢:) (4.55a)
and
(my)z[n] + (=1)z[Ma +j] = ki -n+1-z[n] + g. (4.55b)

These equations can be solved for either z[n] or z[M;;+j] resulting in a single equation

to calculate z[n] directly from z[n]. The two equations obtained are:

z[Mi 4 j] = %(w[Mn +jl—¢i-n—d;-zn]— f)

K3

+ki-n+ 1 - zn] + g, (4.56)

and

_ x[My +J']—Ci'n—di'$[n]—fz"

3 (4.57)

20

While these two equations are not optimal, they can generate the necessary z[n] much
more quickly than solving the previous system of equations.
The above iterative algorithm is again used to determine the best set of maps

and corresponding z[n| data.

Independent Hidden Variables

With the aforementioned methods one problem which occurs with the interdepen-
dence between z[n] and z[n] during the reconstruction process is that the model has
built in additional performance requirements. The reconstructed z[n] data will de-
pend on the proper reconstruction of the z[n]| data. Errors tend to propagate and
in an interest of stopping this, the link from z[n] to z[n] was broken. This was
implemented by setting the [; variable in all of the maps equal to zero. With this

modification equation (4.50b) becomes

Mi—1 AT ki M;—1
[Sj e N I I A Yy) (4.58)
7=0 7=0
Yi

where
T

g]‘:[n z[n] 1

This method was implemented with each of the methods for determining z[r| and the
results are given in Section 4.6.3.

Another variation on this idea is to generate the z[n]| data as suggested previ-
ously, create an IFS to model the z[n| data, use this IFS to recover z[n], and finally
use Z[n] when the map parameters are determined for x[n]. This method offers the
advantage that Z[n], which is used in determining the z[n] map parameters, can be
reconstructed without error. This method did not show any improvements over the

others and will not be discussed further.

o1

Non-Iterative Method

All of the aforementioned methods rely on iteratively calculating z[n] and the map
parameters in order to find a solution to the nonlinear system of equations. The
computational requirements can be greatly reduced by avoiding these iterations. The
system was tested after one iteration of the independent hidden variable method as
described previously and the results are provided in the next section. The single
iteration was set up by first solving for the map parameters, then determining the

z[n] data and finally with this new z[n] data, recalculating the map parameters.

4.6.3 Results

Table 4.5 shows results for the different methods discussed. The tests were con-
ducted with the test files as described in Section 4.4.1. Again, in order to facilitate

comparisons, exhaustive searches were conducted with a fixed number of maps.

4.6.4 HVIFS Conclusion

Each of the methods provided similar results, which suggests using the simplest
method to reduce the computational requirements. It turned out that the selection
for the initial z[rn] made a difference and in general the best results were obtained
with a constant value of 0.01, when the z[n]| data was normalized prior to modeling.

The simple method for calculating z[n] with independent hidden variables and
initial z[n] = 0.01 gave the best results of all the methods presented. Of all the
iterative approaches, this method also requires the fewest computations for solving a
particular map. The non-iterative version of the independent hidden variables method
also provided very good results with significantly fewer computations required. The
difference in the results of these two methods is so small that the non-iterative method

is probably the better approach overall.

52

Table 4.5: HVIFS model performance

File | Method 2 Maps | 3 Maps | 4 Maps
SNR SNR SNR
1 Regular IFS 20.0 23.2 24.5
Optimal 20.2 23.7 25.2
Quick: z[n] 20.3 23.3 25.1
Quick: z[M; + 5] | 20.3 22.9 25.1
Independent z[n] | 20.3 23.7 25.2
Non Iterative 20.3 23.7 25.2
2 Regular IFS 22.6 25.6 26.8
Optimal 22.7 26.4 28.1
Quick: z[n] 22.8 25.2 27.5
Quick: z[M; +j]| 18.0 24.9 274
Independent z[n] | 22.9 26.3 28.2
Non Iterative 22.4 26.3 28.2
3 Regular IFS 254 31.0 33.3
Optimal 254 31.3 33.4
Quick: z[n] 25.3 30.9 33.1
Quick: z[My +j]| 25.2 31.1 33.6
Independent z[n] | 25.4 31.3 33.6
Non Iterative 25.4 31.2 33.6
4 Regular IFS 26.4 30.4 33.0
Optimal 26.4 304 33.0
Quick: z[n] 26.2 30.4 33.1
Quick: z[My +j]| 24.8 30.1 32.8
Independent z[n] | 26.2 30.4 33.3
Non Iterative 26.3 30.4 33.3
5 Regular IFS 11.9 15.6 16.9
Optimal 14.0 17.0 19.8
Quick: z[n] 14.0 17.3 19.6
Quick: z[My +j]| 13.6 16.8 18.9
Independent z[n] 14.3 17.3 19.9
Non Iterative 14.2 17.0 19.9

53

It is important to compare these results to the regular affine IFS of equa-
tion (3.2a), and these results are also given in Table 4.5. While the HVIFS method
did improve the SNR of the reconstructed data, the storage cost of the additional

coefficients weighs heavily against using this method in this application.

Complex Data

Another possible application of the HVIFS method that was evaluated is modeling
complex data. The real and imaginary portions of a signal were used for the z[n] and
z[n] data respectively. The motivating idea being to take advantage of any similarities
between these two parts of the data.

In modeling real data, another approach evaluated for determining the hidden
variables for the HVIFS was to take the FFT of the data, then use the imaginary
portion of the frequency representation as the hidden variable, and then model the
transformed data using an HVFI function. The data was then recovered by using an
inverse FFT of the reconstructed data. Both of these ideas were implemented without

positive results.

4.7 One-Dimensional Conclusions

In this chapter two different types of IFS models have been presented, the normal
IF'S where the maps are constructed to interpolate in two-dimensions, and the HVIFS
approach, which constructs a three-dimensional model and uses a two-dimensional
projection. In order to facilitate comparing the various models introduced here, the
SNR gains were averaged over the complete set of test files, as well as over the
complete set of exhaustive tests with two through four maps, using the data from
Tables 4.4 and 4.5. The average gain for each of the methods is given in Table 4.6.
In comparing the results between the two approaches, it is clear that more SNR gain

is seen through the addition of nonlinearities. For the HVIFS case, the greatest gain

54

over the standard IFS was 3.0 dB for test file 5, the remainder of the gains were closer
to a fraction of a dB. In fact, most of the gain seen in the HVIFS approach can be
attributed to the relaxation of the boundary conditions. The second column of results
in Table 4.6 gives the SNR gain over the standard affine IFS with relaxed boundary
conditions. It is interesting to note that the largest performance gain was achieved
by just relaxing the boundary conditions. The only cost associated with this change
was the additional computational cost of determining more parameters through least

squares. There was no increased storage cost for this approach.

Table 4.6: 1D IFS model average gains

Method Average Gain | Over Relaxed Method
Relaxed Affine 2.1 -
Simple Quad. 0.14 -
Full Quad. 3.3 -
Relaxed Full Quad. 3.8 1.7
Relaxed Nonlinear Addressing 3.2 1.2
Relaxed Condensation Maps 3.3 1.2
HVIFS: Relaxed Optimal 2.4 0.3
HVIFS: Relaxed Quick z[n] 2.2 0.086
HVIFS: Relaxed Quick z[m-j] 1.6 -0.52
HVIFS: Relaxed Independent 2.5 0.38
HVIFS: Relaxed Non Iterative 24 0.31

Because of the large number of parameters required for the HVIFS model, and
the relatively small increase in SNR, it is not a favored approach for increasing model
performance. The largest SNR gain was seen with the relaxed full quadratic maps,
which also have the largest number of parameters. On the other hand, using nonlinear
addressing, which has a very small incremental storage cost per map, resulted in only

0.5 dB less SNR than the relaxed full quadratic maps. In evaluating all of these

5]

options, it is also important to consider using a larger number of maps instead of a
more complicated map. In order to allow all of the methods to be evaluated fairly,
comparisons were made with each of the methods and using a range of number of
maps. Figure 4.3 shows the compression ratio versus SNR for test file 1 using from
two through four maps. This figure allows all of the methods discussed so far to be
compared. Those points represented by an x are from the methods which gave the
best results in the sense of maximizing SNR for a given compression ratio.

These points represent the three methods:
e Relaxed boundary conditions with affine maps
e Nonlinear addressing
e Condensation type maps

It turns out that the various polynomial nonlinear maps, while achieving higher
SNR values, do so at a cost of greatly decreasing the compression ratio, which ef-
fectively neutralizes the gain, as compared to using additional maps. In addition to
separately indicating the points from the superior methods with an x symbol, a line
was fitted through these points to indicate the trend in the SNR as the compression
ratio is changed. A straight line would be the proper curve for a memoryless, zero
mean, Gaussian signal when plotting the bit rate versus SNR [34]. While the data
here arguably does not fit this description very well, we are only interested in seeing
the trend for these models, thus a straight line approximation works well. The results
shown here are typical for each of the test files, and a composite plot of all of the
files, using only the three methods above, is given in Figure 4.4, which illustrates the

trade—off between compression ratio and SNR.

26

27 T T T T T T T T

+ = Affine and Polynomial Nonlinear Maps
26 X x = Relaxed Affine, Nonlinear Addr and Condensation 7
+
251 .
+
24t -
e
Z 23 N
22 .
21 .
201 n
+ +
19 | | | | | | | |
4 6 8 10 12 14 16 18 20 22

Compression Ratio

Figure 4.3: SNR versus compression ratio for test file 1 with two through four maps

with all methods

57

In this comparison of the different methods introduced in this chapter, we have
seen that the three methods which provide significant improvements over the standard
affine maps are the relaxation of the boundary condition with affine maps, nonlinear
addressing, and the condensation type maps. The use of the HVFI method and the
addition of various quadratic terms to the map did not perform as well. Next these
three types of maps were used in the two algorithms introduced in Section 4.5, and
the results are given in Table 4.7. Included in this table for comparison are the results
from using the exhaustive search for each of the three types of maps tested. Because
it is difficult to discern a trend, the average SNR cost for each of the two algorithms
with each of the three types of maps is given in Table 4.8. From this table it is
seen that the nonlinear addressing method does not work well with these algorithms.
Further, it is interesting to note that the geometric algorithm performed better on
average than the fixed point algorithm. This is in part due to the poor performance
seen with an occasional file using only two maps. For example, the reconstructed
data for file 2 with relaxed affine maps achieved only 8.2 dB SNR. For this reason,
the average SNR costs were also calculated for three and four maps. On average, the
method which performed the best was the geometric algorithm using condensation
type maps. However, as with any of the nonlinear maps, there is a cost associated with
the nonlinear terms. Determining which type of map to use for a specific application
would depend on the desired compression ratio and SNR values. As was seen, any of
the three types of maps discussed here: relaxed affine, relaxed nonlinear addressing,
and relaxed condensation type maps, will perform better than the standard affine

map typically used in an IF'S model.

28

40 T T T T T T T

- = Test File 1

o = Test File 2

x = Test File 3
35 v + = Test File 4]

* = Test File 5
30F .
Z 25 N
20 .
15 5

10 | | | | | | |
6 8 10 12 14 16 18 20 22

Compression Ratio

Figure 4.4: SNR versus compression ratio for all test files with two through four maps

using only relaxed affine, nonlinear addressing and condensation type maps

99

Table 4.7: 1D IFS model algorithm comparison with nonlinear maps

File | Method 2 Maps | 3 Maps | 4 Maps
SNR SNR SNR

1 Exhaustive Relaxed 20.0 23.2 24.5
Fixed Point: Relaxed 14.0 20.7 21.2
Geometric: Relaxed 18.2 19.8 21.6

Fixed Point: Nonlinear Address 14.0 21.4 21.9
Geometric: Nonlinear Address 18.2 20.4 21.7

Fixed Point: Condensation 17.5 22.3 22.8
Geometric: Condensation 20.4 22.2 23.8
2 Exhaustive Relaxed 22.6 25.6 26.8
Fixed Point: Relaxed 8.2 18.9 22.3
Geometric: Relaxed 22.6 21.0 22.9
Fixed Point: Nonlinear Address 8.2 18.9 22.4
Geometric: Nonlinear Address 22.6 21.1 23.0
Fixed Point: Condensation 9.9 24.0 24.6
Geometric: Condensation 23.7 22.1 24.5
3 Exhaustive Relaxed 25.4 31.0 33.3
Fixed Point: Relaxed 22.8 27.2 32.9
Geometric: Relaxed 24.0 25.7 27.0

Fixed Point: Nonlinear Address 22.8 27.4 32.9
Geometric: Nonlinear Address 23.9 26.1 27.2

Fixed Point: Condensation 23.8 28.9 34.5
Geometric: Condensation 25.5 28.1 31.0
4 Exhaustive Relaxed 26.4 30.4 33.0
Fixed Point: Relaxed 11.9 22.8 31.0
Geometric: Relaxed 25.1 27.3 31.1

Fixed Point: Nonlinear Address 11.8 22.9 31.3
Geometric: Nonlinear Address 25.0 27.2 31.1

Fixed Point: Condensation 16.3 23.5 34.3
Geometric: Condensation 31.8 33.9 34.6
5 Exhaustive Relaxed 11.9 15.6 16.9
Fixed Point: Relaxed 11.8 14.9 15.5
Geometric: Relaxed 12.9 14.6 15.1

Fixed Point: Nonlinear Address 11.8 14.8 15.7
Geometric: Nonlinear Address 14.3 15.6 16.3
Fixed Point: Condensation 13.9 18.1 17.9
Geometric: Condensation 15.9 16.5 18.5

60

Table 4.8: 1D IFS algorithm average SNR costs over exhaustive search

Algorithm Average SNR Cost
2 -4 Maps | 3 — 4 Maps
Geometric Algorithm: Relaxed 2.51 3.42
Geometric Algorithm: Nonlinear Address 3.86 4.72
Geometric Algorithm: Condensation Type Maps 1.19 2.18
Fixed Point Algorithm: Relaxed 4.70 3.29
Fixed Point Algorithm: Nonlinear Address 6.22 4.73
Fixed Point Algorithm: Condensation Type Maps 3.57 2.11

61

62

CHAPTER 5

BACKGROUND FOR
TWO-DIMENSIONAL MODEL

The main thrust of research efforts in applying IFS theory to signal modeling has
been in the area of image coding. This is a natural application for IFSs as we have
seen from the spectral characteristics of images and of IFS attractors. In light of this
fact, all of the efforts of this research with regard to two-dimensional modeling have
been geared towards image coding and the remainder of this dissertation concentrates

on this area also.

5.1 Early IFS Coding Efforts

The initial work with fractals and with IFSs was in generating pictures that looked
‘realistic.” These efforts resulted in many images and scenes which contained amazing
realism and detail. Because they were constructed by hand, using IFSs to generate
the objects in the images, the coded versions of the scenes were extremely compact
with compression ratios on the order of 10,000:1 [10]. Early efforts at coding arbitrary
images centered around the use of libraries of images and a pattern matching type
of algorithm to find the various objects in the image. From this object oriented
approach, the necessary maps for the IFS were gleamed. Consequently, initial reports
spoke of the tremendous potential of this new technique. Unfortunately, the creation
of an image which is realistic in appearance and the coding of an arbitrary image are

different problems entirely. Aside from one U.S. Patent [35], detailing the concept and

describing a hardware system for implementing the algorithm, little of the results from
these early efforts has been published. Presumably the complex task of segmenting
the objects in an image combined with the new IFS technique gave poor results. A
block-oriented approach was introduced in [36] and all subsequent efforts have been

based on this method.

5.2 Search-Based Block Coding

In order to provide a common notation for comparing the different approaches to the
IF'S block coding problem, a standard framework for the problem will be presented.
Following this overview, each of the different proposed variations and algorithms will

be covered.

5.2.1 Block Coding Background

Given an image, V', of size L x L pixels, divided into a set of
Ng = (L/Lg)? (5.1)

range blocks of size Lr X Ly, the goal is to code each range block with a transformation

of a domain block. The basic affine map can be written as

x a; b 0 T €;
W; Y = C; dZ 0 Uy + fz ’ (52)
2 0 0 s z bi
for ¢ = 1,2,..., Ng, where = and y are the coordinate addresses in the image, and

z corresponds to the image intensity. Essentially the image is coded with a three-

dimensional version of the piecewise maps given in Section 3.1.1. The submatrix

a; b

¢ d;

(5.3)

63

Figure 5.1: Two-dimensional IFS mapping

in the above equation along with the variables e; and f; control the mapping of the
domain block pixels to those of the range block in a contractive fashion, as shown in
Figure 5.1. The map is only defined over the pixels in the range block, and does not
alter neighboring pixels outside of the range block.

In order to insure a contraction in the spatial domain, the domain blocks are of
size 2Lp X 2LpR, and are then decimated to form blocks the same size as the range
blocks with Lr x Lp pixels. By fixing the contraction factor in each of the spatial
directions at 0.5, the issue of sampling is avoided as discussed in Section 3.2. The set
of potential domain blocks is not restricted to a non-overlapping tiling of the image as
the range blocks are. Instead, the domain blocks can overlap one-another. Therefore,
there are many more potential domain blocks than range blocks. With this potential

overlap in the domain blocks, there are
Np = (L —2Lg+1)? (5.4)

domain blocks to choose from for each range block. The two remaining terms in
equation (5.2), s; and b;, provide scaling for the domain pixel intensities, and a bias
value for the data as it is mapped, respectively.

For notational convenience, the image will be addressed with V[0,0] being the
upper left corner, and each range and domain block referenced by the upper left
corner of the block. Thus a typical domain and range block address would be written

as (zp,yp) and (zg,yr), respectively. Using this notation, the 7 domain and range

64

blocks for the image V' can be written as d..,, ,, [¢,y] and r.p . [2,y], respectively,

where
dep yp, [,y = Vi]zp, + ,yp, +y], for z,y=0,...,2- Lg, — 1, (5.5a)

Top w0, Y] = VIzr, + @, yr, +yl, for a,y=0,...,Lp — 1. (5.5b)

The domain blocks have been decimated from 2Lp x 2Lp pixels to Lr X Lg
pixels in one of two ways. In [36] the decimated pixels were taken as the average of

the domain pixels. Thus for a decimated domain block, ‘Zzpi D, [z, y],

1 1

5 1
dIDz"yDi [z,y] = 4 (Z Z deivyDi 2-z+m,2-y+ n])) (5.6)

m=0n=0
and in [37] no averaging was performed,

A

dl‘Di’yDi [:C7 y] = dl‘Dinyi [2 : '177 2 ' y] (57)

The transformation of the image data in equation (5.2) can be written as

Fapyam, [0, Y] = bi 8 dap, yp [2,7], (5.8)

for x,y =0,...,Lr — 1, where 7, ,. 1s the transformed domain data. In order to
satisfy the contraction mapping requirement, the scaling factor, s;, must be strictly
less than one in magnitude. A more complicated map was used in [38], which included

terms for tilt in the x and y directions as follows:

A

This modification corresponds to replacing the two zeros in the last row of the matrix
in equation (5.2) with the variables g;1 and g;s.

Each potential map can be evaluated by calculating the distance between the
range data and the transformed domain data. By selecting the map which minimizes
this distance, the accuracy of the model should be improved based on the Collage
Theorem. Typically the Ly distance is used:

Lp-1Lgp—1

fi = Z Z (fIR,‘ YR, [m7 n] ~ T'zg,,yr, [m7 n])2 (510)

m=0 n=0

65

With this basic overview and notation, the proposed approaches can be reviewed and

compared.

5.2.2 Initial Approach

In [6, 36] the fundamental method for a block coding IFS was introduced. A range
block size of 8 x 8 was used with corresponding domain blocks of size 16 x 16. In
order to reduce the search to find acceptable domain blocks for each range, both the

range and the domain blocks were classified into one of the following types:
1. Shade block
2. Edge block
3. Midrange block

After classification, a search was performed to find the best domain block for each
range block based on minimizing equation (5.10). In decimating the domain block, the
four pixels corresponding to every address were averaged to arrive at the downsampled
version of the domain block as in equation (5.6). In addition to searching over the
domain blocks, each domain block was transformed by each of the eight isometric

transformations shown in Figure 5.2 in evaluating equation (5.10).

%
1 _ l
0° 90° 180° 270°
%
l |

Flip & 0° Flip & 90° Flip & 180° Flip & 270°

Figure 5.2: Eight isometries for 2D maps

66

Once the best domain block was determined for each range block, the error from
equation (5.10) was evaluated for each quarter of the entire block. If the error for
any 4 x 4 subblock was greater than some threshold, then that subblock was coded
separately. In this manner, each 8 x 8 block was coded with from one to four blocks.
If two or three blocks were required, then there would be one larger 8 x 8 block in
addition to one or two 4 x 4 blocks. Using this approach, the eleven ways that 4 x 4
subblocks can be appended to an 8 x 8 block are shown in Figure 5.3.

2 1 1 2
1 _—
1 2 2 1
2 1) 2.3
3 2:3 3 1
2:1 1:2 1:2
S ..3..;..1.. o

Figure 5.3: Eleven ways to append subblocks to a larger block

The parameters for the domain blocks were quantized prior to evaluating the
error equation (5.10). The shade blocks were quantized with six bits, representing
a constant value over the entire block. The edge blocks used seven bits for the bias
value, three bits for the scaling, and three bits for the isometry used. Midrange blocks,
which could not be classified as shade or edge, used seven bits for the bias and three
for the scaling factor. The transformation for the midrange block was of the form of
equation (5.8), using a decimated domain block from equation (5.6). For the edge
block transformation, appropriate index changes in equation (5.8) were made for the
eight isometries.

Using this approach, the 256 x 256 six-bit gray scale version of the LENA image
was coded at 0.68 bpp and the reconstructed image had an PSNR of 27.7 dB. In order

67

to reduce the number of domain blocks to search over, the image was first divided
into four 128 x 128 sub-images which were each coded independently, thus reducing
the search to 12769 potential domain blocks. While the quality of the reconstructed
image was quite good, there were still some artifacts from the blocking technique
used, as well as a smoothing of some of the finer textures in the image. In addition,
this method still suffered from the computational complexity of the search.
Following this introduction to image coding with a block-based IFS, several
authors have proposed enhancements to this method to improve the performance,
both in reconstructed image quality and in the computational cost of coding an image.

Each of these modifications is discussed below.

5.2.3 Improvements to the IFS Block Coding Method

In [24], the search was greatly reduced by only using nonoverlapping domain blocks,
thus for a 512 x 512 image with 8 x 8 pixel range blocks, there are only 1024 nonover-
lapping domain blocks of size 16 x 16. In addition, each range block was first ap-
proximated by a quadratic polynomial. If the error was below some threshold, then
the block was classified as smooth and coded with the coefficients for the polynomial.
Otherwise the block was classified as rugged, and coded with a transformed domain
block. In addition to reducing the search time, the smaller set of domain blocks also
reduced the storage for the maps because only 10 bits were required to store the ad-
dress of the domain as opposed to 18 bits for the complete address. This method also
took advantage of the eight isometries as before. Using this approach, the 512 x 512
eight-bit gray scale version of LENA was coded at 0.5 bpp and the reconstructed image
had a PSNR of 30.8 dB.

It is difficult to compare results between different sizes of the same image because
the reconstructed image SNR will typically be higher for a larger image. There is also
a difference of several dB between the SNR and the PSNR values for a given image.
Going from the 256 x 256 to the 512 x 512 version of LENA, typically the SNR will

68

increase by about four dB. In addition, there is approximately a four dB increase in
going from the SNR to the PSNR for this image. Finally, the original work used a
six-bit gray scale image, which further complicates any comparisons between it and
subsequent works using eight-bit gray scale images. For this reason, comparisons will
be avoided unless the same image was used and the reconstruction error is reported
in equivalent forms.

A series of Naval Ocean Systems Center Technical Reports and correspondences
discuss numerous enhancements to the block coding approach [39, 40, 41, 42, 37, 43],
culminating in a journal paper [25]. The basic square domain and range blocks were
expanded to a Horizontal-Vertical (HV) partitioning scheme, where each block is
divided either horizontally or vertically and also at a variable location. Thus the
resulting block sizes are completely variable. In addition, a triangular partitioning
method was proposed, however, neither one of these ideas were carried to the imple-
mentation stage [41].

In [43] a quadtree approach was used with block sizes ranging from Lp = 4 to
Lp = 32 pixels. The quadtree method begins with the largest block size and divides
those blocks which do not meet a set error threshold into four equally sized subblocks.
Each subblock is recursively examined until either the error threshold is met, or the
minimum block size is reached.

In addition, the domain and range blocks were grouped into a fixed number of
classes [40]. Prior to grouping the blocks, they were first transformed based on using
the previously given eight isometries to place the brightest corner of the block in the
upper left hand corner. Then the next brightest corner was placed, if possible, in
the upper right corner. Thus, during all comparisons, every block was prealigned
in the same orientation with respect to image intensities over the four quadrants of
each block. The blocks were then classified based on the amount of variation in the
brightness of each quadrant. The total number of classes was also varied from 1

through 72 classes.

69

Another significant contribution of this work was the use of what was termed
“Eventual Contraction Mappings” in the IFS [37, 43]. By taking advantage of the
fact that often the domain for a given range is located in another part of the image, it
was determined that some of the maps do not have to be contraction mappings. As
long as the composite transformation of all of the maps is a contraction, then the IF'S
will converge. Using the definition for a contraction mapping given in Section 2.1, an
IF'S is defined as Eventually Contractive if there exists a positive integer m, such that
W°™ is contractive [43]. To understand how W°™ can be contractive when some of the
individual maps, w;, are expansive, it is instructive to recall that W°™ is composed

of a union of the individual maps,
W™ = w1 OW;0...0 Wy, (5.11)

thus as long as the net effect of all of the maps is a contraction, then W°™ will be
contractive. By allowing the constraint on the scaling factor to be loosened, the
reconstructed image fidelity was increased. Using rectangular maps, with the relaxed
restriction on the scaling factor magnitude, resulted in coding the 512 x 512 version
of LENA at 0.5 bpp. The reconstructed image had a PSNR of 32.1 dB.

An extremely fast coder was created in [44, 38] by eliminating the search for
the domain for each range block. By taking each group of four range blocks as a
domain block for those ranges, the search was avoided entirely. In addition to the
map equation (5.9), the eight isometries were also utilized to allow some permutations
to the fixed domain block. In using least squares to solve for the map parameters,
the relaxation of the boundary conditions introduced in Section 4.1.1 was extended
to two dimensions by this work. Results were given for a 576 x 720 GOLD HILL image
coded with 8 x 8 range blocks at 1.0 bpp resulting in a reconstructed image with a
PSNR of 31.8 dB.

In [45] a novel approach to determining the map parameters was introduced.
In this paper, the range block size was fixed at 8 x 8 pixels and the selection of the

domain blocks was restricted as in [24] to nonoverlapping blocks. Each range block

70

and decimated domain block was interpreted as a vector in a 64-dimensional vector
space. The transformation equation (5.9) was used, and the three terms, b;, ¢;1 -« and
gi2 -y were interpreted as a set of three orthonormal basis vectors and their respective
weights. The task of determining the best domain block, or vector, to use could then
be viewed as that of finding the domain vector whose component orthogonal to the
three a-priori basis vectors best represents the orthogonal component of the range
vector. By performing a Gram—Schmidt procedure on these three fixed vectors, and
then on each of the domain vectors individually, a four element orthonormal basis

was generated for each of the domain vectors. With this set of four orthonormal basis

4

vectors, {v;}._,, the weights, w;, for each range vector, r;, could be determined with

a simple, and fast, inner product,
w; =< T, V; > . (512)

Therefore the encoding process was reduced to two main steps, first, determining the
Gram—Schmidt orthonormal basis vector for each domain vector, and second, deter-
mining the weights for each orthogonalized domain vector and keeping the domain
vector with the largest weight. The computational cost of the search over the do-
main blocks was reduced to a single inner product calculation for each domain block.
Using this method, the 512 x 512 version of LENA was coded at 0.66 bpp and the
reconstructed image had a PSNR of 32.0 dB.

5.3 Conclusion

In this chapter the basic two-dimensional IF'S model was reviewed for coding images,
in addition, several search-based techniques to find the necessary domain blocks for
each range block were discussed. Two basic approaches were taken to reduce the
search time for the appropriate domain block for a given range block. The first was
to classify the domain and range blocks, then restrict the search over similarly classi-

fied blocks and the second involved reducing the number of potential domain blocks,

71

somewhat arbitrarily, by restricting the domain blocks to be nonoverlapping. In ad-
dition, the performance of the IFS model was improved with the use of “Eventual
Contraction Mappings” by allowing the scaling factors to be larger than one in mag-
nitude, and by the use of the quadtree approach of allowing the range blocks that
were difficult to model to be divided in size until either a minimum size was reached,
or some error threshold was achieved.

While much progress has been reported on image coding with IFSs, the results
still involve long searches for the domain blocks. In addition, the quality of the
reconstructed image seems to reach an upper limit of around 32 dB PSNR for the
512x 512 LENA image. This trend was illustrated in a recent report comparing the IFS
image coding technique to the JPEG standard [46]. In this comparison, it was seen
that the IFS coding technique seems to have a limit in the accuracy that an image
can be coded. Lowering the compression ratio does not increase the reconstructed
image quality significantly. This has also been noticed in our research. This is due
to the nature of IFS coding methods, in contrast to the JPEG standard, which is a
DCT based approach, the affine IFS is not a paradigm for an arbitrary waveform.
A typical SNR versus compression ratio curve is shown in Figure 5.4. In the next
chapter, several new search-based techniques and modifications to the affine map are
introduced, as well as a new type of IFS model based on using multiple domains in

each map.

72

PSNR

34

33

32

31

30

29

28 | | |
0 0.5 1 15
Bits Per Pixel

Figure 5.4: Typical SNR versus compression ratio for IFS coded image

73

74

CHAPTER 6

TWO-DIMENSIONAL MODELING

Because the added dimension dramatically increases the problem of searching for
the map domains and ranges, the two main thrusts of the two-dimensional model
development have been, first, to increase the flexibility of the maps without increasing
the search requirement, and second, to eliminate portions of the search in a manner
which enhances the odds of finding good maps. In attempting to improve the model’s
performance, those modifications which worked well for the one-dimensional case were
extended to the two-dimensional model. In particular, relaxation of the boundary
conditions, nonlinear addressing maps, and condensation type maps were converted
and tested. In addition to these modifications to the map structure, several new
search techniques were developed, based on characteristics of the image being coded.
Finally, an entirely new approach to IFS modeling is introduced, which is based on
allowing a variable number of domain blocks to be used in each map. This method

also eliminates the search for the domains for each range block.

6.1 Extension of 1D Approaches

The basic affine two-dimensional map from equation (5.9) is repeated below for con-

venience.

A

The one-dimensional modifications which provided superior results: relaxation of

the boundary conditions, nonlinear addressing, and condensation type maps, were

implemented in this equation, and are discussed below.

6.1.1 Relaxing the Boundary Conditions

As mentioned in Chapter 5, concurrent to our implementation of not imposing the
boundary conditions, it was reported in [44]. As with the one-dimensional implemen-
tation, the map parameters are determined by minimizing the L, distance between
the range block data, rz, 4. [z,y], and the transformed domain block data, Fon un,
as given in equation (5.10). For the case with the map from equation (5.9), the error
equation can be written as
Lr-1Lg—1 X

§i = W;O 7;) (Fongwm, [mon] = (b + giv - m+ giz - 1+ si - dup yp, [mym]))% (6.2)

Taking the partial derivatives of §; with respect to each of the four variables, and

setting these partials to zero results in the following set of four linear equations to

solve for the parameters:

Lr—1Lg-1 Lr-1Lg-1
ST A=Y S Kk (6.3
m=0 n=0 m=0 n=0
where
A=K K7, (6.4)
K= [CZIRWZ/RZA [m7n]) 17 m, n]T7 (65)
X = [Si) bz y Gia1 giQ]Tv (66)
and

](0 = T'/Z?Ri 7sz‘ [m7 n]' (6‘7)

Because this method resulted in consistent improvements, it was used for all of

the two-dimensional methods discussed in this chapter.

75

6.1.2 Condensation Maps

Following the form of the condensation type map used for the one-dimensional case,
the map equation (6.1) was modified with the addition of sinusoidal terms in both z
and y:

A

T VR, [z,y] = bitga-x+gin-y+si dep. up, [z, 9]

+h41 - sin(

)+ hiz - sin(ﬂL Y). (6.8)

T

s
Lp—1 rR—1

The parameters were again determined through the solution of equations (6.3)

and (6.4) with the new variables:

K = [depn, lmon] s 1o sin(rg——) sin(rg)" (69)
and
X=1[s,0b, 91, g2, hir, hi2]T- (6.10)

The coefficients for the sinusoidal terms do not affect the contractivity of the
map, therefore the s; term is the only variable which needs to be examined in per-

forming the contractivity check.

6.1.3 Nonlinear Addressing

Because the two-dimensional domain block data is already permuted via the eight
isometries, the same eight nonlinear addressing functions as in Table 4.1 were not used
for the two-dimensional case. Instead a subset of these functions was implemented,
eliminating the redundancies generated because of the isometries. The new set of
four functions is given in Table 6.1.

The nonlinear addressing function, ¢(-), is inserted into the map equation (6.1)
to get:

A

Forym, [T Y] = bi+ gin - @ + giz -y + 8i - dopyp [9(2), 9(y)], (6.11)

where each ¢(-), can use a different function number. Thus, four bits are required to

store the function indices for each map.

76

Table 6.1: Two-dimensional nonlinear addressing functions

g(n)

0 n

1 Lg-sin(x/2 n/Lg)

2 | Lp- (1.0 — sin(x/2 -n/Lg))
3 Lg - sin(x -n/Lg)

With the addition of the nonlinear addressing function to the two-dimensional
maps, the number of ways that each domain can be permuted increases dramati-
cally. The four functions implemented in each of the two axes, combined with the
eight isometries, results in 128 different transformations to test. This computational

expense may need to be taken into consideration in evaluating this approach.

6.2 Other 2D Maps

In addition to the previously mentioned extensions from the one-dimensional case, it

is also possible to use other modifications to the basic affine transformation.

6.2.1 Multiscale Maps

All of the methods to date have restricted the domain blocks to be fixed at twice
the size of the range blocks in both = and y. By changing this scaling factor, and
keeping it integer to avoid the sampling issues discussed in Section 3.2, a variety of
domain sizes can be used. With this modification, and using a scaling factor of 5,

equation (5.7) can be written:

A

dez"yDi [x’ y] = dﬂ?Di,yDi [S T, y]- (6.12)

Because no performance increase was seen with the use of averaging in the

decimation stage of transforming the data from the domain blocks, this method was

7

only implemented for the non-averaged case.

6.2.2 Multiple Domain Maps

As was seen in the previous chapter, the IFS coding technique seems to be limited
in terms of how accurately an image can be coded. In coding a more complicated
range block, it would be beneficial to be able to combine more than one domain
block, because each additional domain block would increase the dimensionality of the
map and therefore its ability to model the range block accurately. A transformation
allowing multiple domain blocks can be written as a modified version of equation (5.9),
N A

Fon, i, [, y] = bi + g - x + gia -y + ; Siy - deij p,, [x,y], (6.13)
where N is the number of domain blocks used, and (xpij,ypij) is the address of the
4% domain block for the i** map. The parameters can again be determined through
least squares as before. While this approach should certainly improve the accuracy
of the maps, the search becomes absurdly long for as few as two domains. What is
needed is an alternative approach to selecting the domains, which will be covered in

Section 6.4.

6.2.3 Adaptive Block Size Coder

Concurrently with [25] we developed a coder which used adaptive block sizes, with
range block sizes from 16 x 16 down to 4 x 4 pixels. This range of block sizes was
found to provide the best looking reconstructed image. Using larger 32 x 32 range
blocks resulted in objectionable blocking artifacts.

The image was initially divided on a uniform grid of 16 x 16 pixel range blocks,
then each range block was coded and the error was determined based on equa-
tion (5.10) for each block. If the error for any range block exceeded a predetermined
threshold, then that block would be divided. The decision to divide a block was

determined based on the Mean Squared Error (MSE) for each of the four quadrants

78

Figure 6.1: The three ways that a range block was divided into two through four

blocks. With all possible rotations, there are seven distinct divisions.

in the range block. If two quadrants whose error was below the threshold error were
adjacent, then they were grouped together to form a larger block, while the subblocks
which had a larger error were coded separately. In addition, in subsequent divisions,
the smallest created block was 4 x 4 pixels. This differs from the standard quadtree
algorithm in that each block is not always divided into four smaller blocks. Therefore
if just half of the block contained data which was difficult to model, it could be sepa-
rated and coded independently. Thus, for example, a 16 x 16 block could be divided
into a 16 x 8 and two 8 x 8 blocks. Figure 6.1 illustrates how one range block can
be divided into three different configurations using two through four blocks. With
the various rotations, there are seven possible ways to divide a range block using this
approach. In Figure 6.2, the LENA image has been partitioned using this method and
the concentration of smaller blocks can be seen around the more complex portions of

the image.

6.3 Search Strategies

In addition to improving the accuracy of the maps in the IFS, it is also beneficial to
examine other ways to search for the proper domains for each range block. The search

has been the most computationally intensive portion of the IFS coding technique.

79

5
=
[EH
E — T
RN (= H
I e e e]
S A T
T EmNiEs
e = =Rl
FreF T TR PR [e
=i =il T
TITHH 5 S E -
FEH AT TIH i |
EiH BT I i Sais
iy ET Do iz .
P R H H
o7 ImEmazis s g = T -
R S ial=nE==ul EHIH
R e W S]]
FEea e e it e
SERRIEE e i 1 =1
T EE=1i i
TOEEFEE Ein== Smum
i £
B FE T .
i I
Al ARSI s
2 = T
i: | q L] I
i = e ==t
8% G RRIE:
§ T = = [
! I
— I ‘ I __i
nmm I I
st i Bz
=mi =

Figure 6.2: Adaptive block size partitioning of LENA image

6.3.1 Proximity Maps

In an image there is significant correlation between adjacent pixels, and also between
adjacent blocks of the image. In an effort to take advantage of this correlation, the
search was limited to the immediate area around the map’s range block. In these
tests the search was implemented over the closest 256 domain blocks. In addition,
the address storage requirements are reduced to a total of only eight bits for each
map because the domain address can be stored as an offset from the range address.
One disadvantage of the proximity map is that it is not possible to use the eventually
contractive mappings as discussed in the previous chapter. Because the domains and
ranges for each map are all spatially close, any expansive map will most likely prevent

the attractor from converging.

80

6.3.2 Fractal Dimension

In coding an image with an IFS, we are modeling the image with a deterministic
fractal. One characteristic of a fractal is that the object will exhibit the properties of
self-similarity or scale invariance [1]. This measurable quantity, the fractal dimension,
was used as the basis for classifying the domain and range blocks. First some back-
ground on the fractal dimension is given, followed by a description of the algorithm
used to compute the local fractal dimension of the range and domain blocks.
Mathematically the properties of self-similarity and scale invariance are mani-
fested by a non-integer dimension, and a fractal is therefore defined as any set for
which the Hausdorff-Besicovich (HB) dimension is greater than the topological di-

mension [1]. The HB dimension of an object, £, is defined:

Definition 6.1 (Hausdorff-Besicovich Dimension)
D(E) =sup{0 <d<oo: Hy(E) >0}
with
Hy(E) = lim (i%f Z |Ui|d)
where the inf is taken over all countable covers U of F such that |U;| < e

and |Ui| = sup{|z —y[: 2,y, € Ui}.

The HB dimension is difficult to work with and is not generally used for the determi-
nation of fractal characteristics of data. Because it is also not an intuitive definition,
a more useful definition can be derived from our conceptual notion of the dimension
of an object.

When an object is described as being one-dimensional, this means that the object
may be divided into N equally sized parts, each of which is r = % of the size of the
entire object. Figure 6.3 illustrates this for several objects with integer dimensions.
A two-dimensional object may similarly be divided into N pieces, each of which is

r of the entire object. The final example is a three dimensional object, again

_ 1
— N1/2

divided into N parts, each of which is r = ﬁ of the original.

81

Divide object into N = 5 parts

Each scaled by ratio r = %

5
NrP = 5(3)' =1

1-D

Divide object into N = 4 parts
Each scaled by ratio r =
NrP = A1) =1

2-D

|~

1

2

o=

4

/ / Divide object into N = 8 parts
3-D / Each scaled by ratio r = :
/ NrP =38(1) =1

/

|~

1
2

o=

Figure 6.3: Example of intuitive definition of dimension for objects with D = 1,2 and

3. Concept can be extended to fractional dimensions.

The trend is that a D-dimensional object can be divided into N equally sized

parts that are
1

" N3p
of the original. The relationship between the ratio of the size of the part to the whole,

r

(6.14)

r, the number of blocks, NV, and the dimension of the object, D, can be written as

NrP = 1. (6.15)

82

Solving for D gives:
_ log(NV)

- log(1)
This equation can be applied to the Cantor Middle Thirds set seen in Section 3.3.

(6.16)

The Cantor fractal was characterized by replacing the object by N = 2 smaller
objects, each of which is r = % of the whole. Thus the fractal dimension for the

Cantor Middle Thirds set can be determined to be:

log(N) log(2)
D= Tog(D) ~ log3)

The dimension equation (6.16) is the basis for many fractal dimension mea-

= 0.631. (6.17)

surement algorithms, and is the basis for the Box-Counting Algorithm which was
implemented to calculate the local fractal dimension for comparing potential domain
blocks for each range block.

By interpreting the 512 x 512 eight-bit gray scale image as consisting of a grid
of 512 x 512 x 256 cubes, it becomes a simple task to count the number of cubes
intersected by the image and determine the fractal dimension using equation (6.16).
This idea can be extended to compute what is referred to as the local fractal dimen-
sion. By restricting the counting of the cubes to a fixed size neighborhood around
each point, a measure of the fractal dimension in the proximity of each point can
be determined. Because we are interested in matching domain and range blocks, the
fractal dimension was computed for Lr X Lr and 2Lr x 2Lg sized blocks.

It is instructive to look at the synthesized image consisting of the local fractal
dimensions scaled to the range of [0, 255]. Figure 6.4 shows this image for the 512x 512
version of LENA. The edges in the image have a higher fractal dimension than the
smooth areas, and from this image it is easy to see why the local fractal dimension

has been used as the basis for edge detection algorithms [4, 47, 48].

83

Figure 6.4: Local fractal dimension of LENA image

The local fractal dimension was used as a basis for the domain block search by
first computing the local fractal dimension for each range and domain block. Then
for each range block, a search was performed over the 256 domain blocks whose local
fractal dimension was close to the range block’s local fractal dimension. The range of
the local fractal dimension used for each range block was adjusted to ensure that the
pool of domain blocks contained at least the desired 256 blocks. In this manner, each
range block had the same size pool of potential domain blocks to choose from, and
these blocks were similar in a fractal sense. Additionally, because these domain blocks
were selected from all over the image, it is possible to use the eventually contractive

mappings as discussed previously.

6.3.3 Hierarchical Block Matching

Typically in an image there are regions where the texture will be similar. A Hierar-

chical Block Matching (HBM) type of approach was implemented to look iteratively

84

for a region similar to the range block being coded. This method proceeds by initially
checking a widely scattered collection of potential domain blocks, then the domain
block which has the smallest error is taken as the center for a smaller collection of
potential domain blocks, and the search is repeated. In this manner, a number of
domain blocks are examined, which are progressively focused in an area where the
closest match was found in the previous search.

For each range block, sixteen surrounding domain blocks were tested in a grid
fashion, as is shown in Figure 6.5. The initial distance between horizontal and vertical
test points was set to 128 pixels. Each inter—testpoint distance was divided by four to
avoid any redundant tests. A typical series of center points for the domain maps to
test is shown in this figure. By starting with an initial step size of 128 in both z and
y and performing four iterations of this algorithm, one quarter of the total number of
domain blocks are reachable, with the unreachable domain blocks being those with
odd numbered rows and columns. This allows far more domain blocks to be addressed
with a minimal number of checks than the proximity maps discussed previously.
Whereas the proximity maps were implemented with 256 domains examined, the
HBM approach, as specified here, requires only 64 domains to be evaluated. In
addition, because the domain block may be located far from the range block, the use

of eventual contraction mappings is also possible.

85

Figure 6.5: Hierarchical block matching example. Each point represents the center

of a domain to be tested.

6.4 Searchless Based Approach

As noted previously, occasionally it is desirable for some maps in the IFS model to
contain more information. Presently there are two ways to address this problem. The
first is to use a quadtree type of approach and reduce the size of the block until the
block is able to handle the amount of information to be coded, and the other method
is to use a more complicated map in transforming the domain block. Both of these
methods suffer from the additional complexity and overhead of having to evaluate
several different types and sizes of maps in modeling a range block. It would be nice
to have a method which allows a rapid determination of the necessary parameters

to model a block. In addition, it would be advantageous for the method to be more

86

flexible in modeling both simple and more complicated blocks.

The idea of multiple domain blocks offers the potential of using a larger variety
of information in modeling the range block, however the implementation of such an
idea is not computationally feasible as it was presented in Section 6.2.2. In this section
a new type of IFS is introduced which attempts to alleviate this limitation of the IFS

model.

6.4.1 Orthonormal Basis Approach

All of the previous approaches to creating maps are search-based and require a set of
domain blocks be evaluated for each range block. In this orthonormal basis approach,
a set of orthonormal basis vectors will be created by the Gram—Schmidt procedure
and the range blocks will be coded by projecting the blocks onto this basis. The
advantage of using an orthonormal basis is two-fold. First, there is only one search
for a set of domain blocks. Thus, once a suitable collection of domain blocks have
been chosen, the actual encoding of the range blocks is based on using this fixed
subset of the domain blocks. The second advantage is that the actual encoding
process is relatively fast because the encoding of the range blocks only requires a
simple projection onto the orthonormal basis. As with all compression techniques,
we are concerned with reducing the dimensionality of the data to be stored. Thus
we wish to find a smaller subspace in which to accurately represent each range block.
The goal in determining the orthonormal basis will be to create a basis which allows
each range block to be accurately represented with a minimum number of the basis
vectors. By reducing the dimensionality of each of the range blocks, compression can
be achieved. In addition, the amount of compression will vary automatically with the
complexity of the range block. More complicated range blocks will require a higher
dimensional subspace to be represented. In this manner, this new model will be able
to accommodate widely differing range blocks.

First a discussion of how the range and domain blocks are viewed as vectors is

87

presented, followed by the method of generating the orthonormal basis vectors and
the encoding and decoding processes. Once the basic algorithm has been introduced,
several approaches are discussed for selecting a set of domain blocks to use.

It each of the elements in the range block, rup 4y [, y], are ordered sequentially

to form a vector of length L%,
T
r; = [TmRi,yRi [07 O] , TZ‘Rinyi [17 O] S TIRivyRi [LR — 17 LR — 1]] 5 (618)

then each range block can be interpreted as a vector in an L%-dimensional vector
space. A similar interpretation can be applied to the decimated domain blocks to
form domain vectors, d;. Thus, for the typical 8 x 8 block size, we are working in a
64-dimensional vector space. As with all compression techniques, we are concerned
with reducing the dimensionality of the problem. Thus we wish to find a smaller
subspace in which to accurately represent each range vector.

Because the domain blocks are decimated early in the process, we are assured
of a contraction in two of the three dimensions present in the block. To achieve a
contraction in all three dimensions, domain vectors will be chosen which are large in
an Lo sense.

The traditional map equation (5.9) may also be placed in this setting and viewed

as the linear combination of four vectors in this space,

S

Fi=0;-vi+ga-Vvx+gi2- vy + s -dj, (6.19)

where vy is a vector with all ones in it, vx and vy are vectors which provide the ‘tilt’

in each of the x and y axis respectively,
vx=[0123456701234567---01234567]", (6.20a)

vy=[0000000011111111---77777777]%, (6.20b)

and ai is the decimated domain block in vector form.
The advantage of viewing the problem in this manner, is that now we can take

advantage of well known vector space properties. In particular, we are interested in

38

forming an orthonormal basis from the domain vectors. With these vectors, the range
blocks can be encoded with a simple projection operation, and the map parameters
will be the weights for this orthonormal basis. The set of basis vectors will consist of
several which are known a priori, as well as those derived from the domain blocks.
As long as the maps form contraction mappings we are assured of convergence and
better control over the reconstructed image error.

For a range block of size Lr X Lg, let D = L% be the length of the range and
decimated domain vectors, which will be noted by {rz}f\;ﬁ for the range vectors and
{&Z}ﬁq for the decimated domain vectors. The set of three fixed basis vectors can be
orthonormalized to form the first three of the required D orthonormal basis vectors.
The remaining basis vectors will be chosen to span the Ng = (D — 3)-dimensional
subspace, S°, orthogonal to the space spanned by these three vectors.

A projection operator for the subspace spanned by a vector, v;, can be written:

Py, = vi(vivi) TVl (6.21)

Therefore the operator to project a vector into the desired subspace, S°, is given by
Pgo =1 — (Py, + Py, + Py,), (6.22)

where [is the identity matrix, and vy, vy and vs are the a prior: basis vectors. Using
this projection operator, the projected versions of the range vectors can be computed
as:
s) = Pgor;. (6.23)
Figure 6.6 illustrates this process for a simple one-dimensional a priori vector subspace
in a two-dimensional example.
The combination of the three fixed vectors, vy, vy, and vs with the Ng domain
vectors form a set of D vectors which will span the space of the range vectors. If the
selected Ng domain vectors are denoted as {b;}5, then this set of vectors can be

written as a matrix B, where

B:[Vl,VQ,Vg,bl,...,sz]. (624)

89

S? = PSO(I']')) SRR . r;

A
Y
Y
Y

Vi PV1 (I']')

Figure 6.6: Example of projection of a range vector onto a subspace orthogonal to an
a priori basis vector subspace. This example uses only one a priori vector, vy, for a

simplified two-dimensional example.

In order to allow rapid computation of the appropriate weights for these vectors to
represent each range vector, these basis vectors are orthonormalized with the Gram—
Schmidt procedure, resulting in a ¢) matrix containing the orthonormal basis vectors
for the space.

Once the set of basis vectors are determined, the coding process is straightfor-
ward. Thus, to represent a given range vector, r;, with a set of weights, w;, the
following is true,

r; = Qw,. (6.25)
Therefore, premultiplying by Q7 yields
w; = Q'r;, (6.26)

which is used to determine the weights. These weights can quickly be calculated for

each r;, and these two equations define the basic encoding and decoding process.

90

The remaining task to implement the coder is an algorithm to select the Ng

domain vectors to use. The desired characteristics are that the vectors should:
e provide contraction mappings,
e be as nearly orthogonal as possible, and

e form a set of basis vectors, which best allows each range vector to be represented

with as few vectors as possible.

Several methods were developed based on these three criteria and are discussed below.

Covariance Method

Rather than search through the relatively large set of domain vectors, the range
vectors were analyzed to determine the optimal basis vector directions, then the
domain vectors were searched to find the largest vector in each of these directions.
This approach has two advantages: first we are primarily interested in representing
the range vectors, thus the directions for the basis vectors should be based on the
range vectors themselves; secondly, there are far fewer range vectors than domain
vectors and the computational task of determining the basis vectors is reduced.

The range vectors were searched iteratively to find the “best” direction for the
next basis vector. After each direction was selected, the remaining range vectors
were projected into the subspace orthogonal to this vector. The algorithm begins by
projecting all of the range vectors into the subspace, S°, perpendicular to the subspace
spanned by the a priori vectors. At the k" iteration, the " projected range vector
will be noted by s which resides in a corresponding subspace, S*. The optimal basis
vector direction was determined by taking the s vector with the largest correlation
to all of the other s¥ vectors. Thus the vector, sf, which maximizes the equation,

Ngr
Ci= > |<stsh>] (6.27)

=1,

91

% s¥ > | is the absolute value of the inner product of S? and

was selected, where | < s7,s;

k.
Once each basis vector direction has been determined, then the remaining s¥
vectors are projected onto the subspace not spanned by s, using a projection operator

of the form:

T p_q T
Ps, =1 —sf(sf sf)™'sf . (6.28)

The chosen basis vector direction is saved as t; and the process is repeated until
the necessary Ng vectors are obtained. Essentially the Gram-Schmidt procedure is
performed on the range vectors. However, the vector used in each step is the vector
with the largest correlation with the other remaining vectors. In this manner, the
set of Ng selected vectors, or direction vectors, {t;}Y=, are determined which best
represents the subspace S°. In addition, these direction vectors are orthogonal. Thus
the last two criteria in the list above are satisfied. Figure 6.7 illustrates this process
for a simple two-dimensional, three vector case. In this example, s& was chosen as
the vector with the largest correlation. Therefore the remaining vectors are projected
into the subspace S**!. Effectively, the component of the remaining vectors which
can be represented by sf is removed.

However, domain vectors are needed for contraction mappings, and a search
must be performed through the domain vectors to find the best set of domain vectors
for these direction vectors. Because the order in which the t; vectors were selected
was important, with the most significant vector coming first, the same order was used
in finding the domain vectors. The domain vector with the largest component in the
direction of the direction vector was used, where the projection of a domain vector,

d;, onto a direction vector, t;, may be written as:

R d: -t
Pt(d]):| J |

z. : (6.29)
[It:]]

where || - || indicates the Ly norm. Because it is possible that one domain vector

has the largest component on more than one direction vector, each domain vector

92

A
Y

N ~ S

\ Sk+1

Figure 6.7: Example of choosing the vector with the largest correlation to the other
vectors and projecting the remaining vectors into the orthogonal subspace. After the

selection of tj, the remaining vectors are projected into the space S+,

was only allowed to be used once. Figure 6.8 shows how the domain vector with the

largest component in the direction of the direction vector, t;, is selected.

.~V’d1

A
Y

Figure 6.8: Selection of the domain vector with the largest projection on the direction

vector t;. In this example, d; is the selected domain vector.

93

In summary, this algorithm proceeds as follows:

1. Loop Ng times to find the direction vectors, t;

(a) Find vector with largest correlation using equation (6.27)
(b) Save vector as t;

(c) Project remaining into subspace using equation (6.28)
2. Loop Ngs times for each t; to find best domain vector

(a) Find domain vector with largest component in direction of t; using equa-

tion (6.29)

(b) Save vector and eliminate from list of domain vectors

The final result is the set of domain vectors to use for encoding the image. The

complete encoding algorithm is provided in Section 6.4.1.

K-Means Based Approach

The previous approach is optimal in an incremental sense, that is, the optimal addi-
tional basis vector is selected at each iteration. This does not provide the best set of
two, or n, vectors to represent the subspace S°. For example, if each of the vectors
were going to be coded with a single vector, then a K-means approach would be op-
timal, with & = 64. Essentially, K-means is a clustering algorithm which guarantees
convergence to a local minimum in grouping a set of vectors into k clusters. A com-
plete discussion of the K-means algorithm can be found in [49]. Better overall results
might be obtained by looking at the range vectors in groups. Thus, we will not try
and find the best single vector to represent the entire set of range vectors. Instead,
the range vectors will first be clustered into a fixed number of groups, then each of
these groups will be represented by a single range vector.

The K-means algorithm will group the vectors into clusters. Thus s; and —s;

are very different as perceived by this algorithm. However, because we are interested

94

in finding a set of basis vectors, it would be preferable to treat these two vectors as
equivalent. A simple modification to the data prior to running the K-means algorithm
eliminates this problem. All of the vectors were forced to reside in the same half-space.
The selected half-space was the one which included the positive axes, and any vector
which was outside of this half-space was set to its negative. This can easily be checked

by examining the sign of the sum of the elements in each vector,

If h; <0, then the negative of that vector was used.
Figure 6.9 illustrates this modification for a simple two-dimensional example. In
this example, vectors ¢ and d on the left side of the dashed line are changed to their

negative to form the corresponding vectors ¢ and d in the right half-plane.

d

Y
Y
A
Y

d Y

Figure 6.9: Example of moving vectors to the same half-space

In addition, the magnitude of each of the range vectors is not significant, there-
fore the vectors were normalized prior to running the K—means routine. Once the k
means have been determined, the domain vectors were searched to find the set which

match these direction vectors.

95

Search Method

While the covariance method is optimal in the sense that each additional basis vector
best represents the remaining subspace, there is a cost associated with this optimality.
Performing a Gram—Schmidt on the range vectors, and the ensuing search through
the domain vectors can be computationally expensive for large images. Similarly,
the K-means algorithm begins to be computationally taxing with larger numbers of
vectors. A sub-optimal approach was developed, which is based on finding a smaller
set of domain vectors, from which the basis vectors are selected.

The set of domain vectors was first reduced by discarding those vectors whose
magnitude of the projection in the subspace S° was less than a threshold, 7., to form
a set of projected “large” vectors {e;}. Once the domain vectors were reduced to this
subset, then the set of Ng vectors was chosen to span the subspace S°. The first Ng
vectors were selected,

for:=1...Ng, and a quality factor, defined by

Ns Ng

(=3 3 bi-byl. (6.32)

i=1 j=i+1
was determined for this set of basis vectors. Essentially the desired set of vectors
should be as orthogonal as possible. This was accomplished by finding the set of
vectors which minimize ¢q. Once an initial set was collected, each of the remaining
e;’s were substituted with the closest b;, and a new ¢ was calculated. If the quality
factor was reduced, then this new basis vector was kept, otherwise the next e; was
examined, until all of the e; were checked. The final set of e;’s is a set of nearly

orthonormal basis vectors for the subspace S°, which can be combined with the a

priori vectors to form the B matrix as in equation (6.24).

96

Searchless Method

Because any search over the domain vectors will tend to be time consuming for
large images, a searchless approach was implemented which simply takes the required
number of domain vectors from the domain blocks evenly spaced across the image.
While this method does not insure that the set of vectors will span the space, and
consequently the performance can be expected to be less than the other methods, it
is extremely fast for small blocks. In coding an image with 8 x 8 blocks, after the

Gram-Schmidt procedure is complete, there are 64 multiplies to code each pixel.

Encoding

The encoding method is based on equation (6.26), which provides the weights which
specify the vector in the rotated coordinate system. In order to achieve a compression,
the weights must be quantized. Ideally we would like to discard most of the weights.

The encoding algorithm consists of the following steps.
1. Determine the domain vectors to use by one of the above methods.
2. Form the B matrix and use the Gram-Schmidt procedure to get ().
3. Determine the map parameters, w;, with equation (6.26).
4. Save those weights which exceed a threshold T},

The final encoded image consists of the indices for the Ng domain vectors and the
quantized weights for each map which exceeded the threshold. By adjusting the
threshold, the accuracy of the reconstructed image can be controlled. In addition,
the quantization approach can be different for the a priori vectors, which will tend

to have a different distribution as compared to the weights for the b; vectors.

97

Decoding

In order to reconstruct the r;, which will provide the reconstructed image, equation
(6.25) is used. This requires the () matrix, which can be obtained by performing a
Gram-Schmidt procedure on the B matrix.

The reconstruction process is much simpler than the encoding procedure, and

begins with any initial image, V4, and iteratively performs the following steps.
1. Gather the basis vectors, d; from the image.
2. Form B as given in equation (6.24).
3. Perform the Gram-Schmidt procedure on B to get ().
4. Compute each r; = (Qw; and save in the image.
5. Go to step 1.

The image will converge in a few iterations.

Larger Block Sizes

The previous IFS coding model was limited in the size of blocks that could be used
and still accurately code each range block. When larger block sizes were used, the
maps were unable to represent the range blocks accurately and the reconstructed
image SNR rapidly decreased. Even the addition of the various nonlinearities was
unable to prevent the image from degrading excessively. By using an orthonormal
basis approach, a larger block size can be implemented. Those blocks which contain
more information will simply require more basis vectors to represent them.

In addition to 8 x 8 block sizes, both 16 x 16 and 32 x 32 were implemented.
However, several problems occur with the larger block sizes. With the 32 x 32 block
size, the vector space is now of dimension 1024, and the B matrix alone has over

one million elements. Performing the Gram-Schmidt procedure on a matrix of this

98

size is extremely computationally intensive because the Gram-Schmidt procedure is
of order N3. For comparison purposes, this was performed only for the searchless
method discussed previously. This larger block size also has the problem that there
are only 256 range blocks. Thus we no longer have a large enough set of range blocks

to determine an optimal set of direction vectors for the other algorithms.

6.5 Results

In order to compute the compression ratios for all of the possible combinations of
map types with the different [F'S models, the parameters need to be quantized for
each map. After the quantization of the map parameters, the implementation of the

different coders as well as a comparison of coding results will be given.

6.5.1 Quantization

Each of the maps for all of the methods consists of weights which must be quantized
for storage. In general, the parameters to quantize include the bias value, b;, as well as
the tilt variables, ¢g;; and ¢;2. A uniform quantization method was not always efficient
due to the distribution of these parameters, and therefore, a Lloyd-Max quantizer was
also implemented. The Lloyd-Max quantizer is basically a one-dimensional K-means
algorithm [50], which was discussed in Section 6.4. Because the scaling factor for the
domain block is limited in magnitude by the contraction requirement, a fixed decimal
point storage method was used for s;. With this method, typical storage requirements
were nine bits for b;, six for each ¢;; and g;2, and seven for s;.

In addition to the standard affine IFS map, the condensation type map coeffi-
cients were quantized with a uniform quantizer, and good results were achieved with
seven bits for each parameter h;; and h;;. The orthonormal basis approach was also
tested with both uniform and Lloyd-Max quantization, with a slight improvement in

using the Lloyd-Max approach. The other types of maps, nonlinear addressing and

99

multi-scale, require additional bits to describe their operation, however no additional
terms need to be quantized. The additional information required to complete the

coded image is covered in the next section.

6.5.2 Construction of Coders

Three basic coders were implemented with the techniques outlined in this chapter.
First was a basic, fixed block size coder, which used more complicated maps for those
range blocks which could not be coded accurately with simple affine maps. A second
coder proceeded by adapting the range block size to adjust for more complicated range
blocks — dividing the range blocks until an acceptable error threshold was reached.
The third coder used the orthonormal basis approach and included all basis vectors
whose weights exceeded some threshold.

For each of these coders, the address for the domain block for each map must
be stored. Depending on the search method used, the number of bits required will
vary. Those methods which search over the entire image will require the full address,
which is 18 bits for a 512 x 512 image. The proximity map with the closest 256 blocks
will require only 8 bits for each address. The Hierarchical Block Matching approach
required 16 bits for the four level — sixteen point method as discussed in Section 6.3.3,
since it requires four bits for each level to specify which point was selected. Only the
search over the fractal dimension requires that the entire address be saved. The
orthonormal basis approach has the added overhead of the full addresses for each of
the Ng domain blocks used to form the basis vectors. Then the weights in each map
only require an index into the D basis vectors.

In the following paragraphs each of the coders are discussed in detail. For each
of these methods, a threshold MSE is required to determine when the algorithm can

stop with each range block. For the tests performed here, a value of 10.0 was used.

100

Fixed Block Size Coder

For the fixed block size coder, the goal is to use as simple a map as possible for those
range blocks that do not contain much information. Because the more complicated
blocks will pose a problem if the block size is too large, a block size of 8 x 8 pixels
was chosen. Each range block was initially modeled with a constant value. If the
error from equation (5.10) exceeded the threshold, then a more complicated map was
used. If the constant block was inadequate, then a plane was used, followed by the
normal affine map of equation (5.9) and then multiple scaling factors. Finally the
nonlinear addressing and condensation type maps were used. In summary, the maps
in the order that they were tried are given in Table 6.2.

Each of the various modifications to the affine map will require a different number
of bits to code. As mentioned previously, the nonlinear addressing maps will require
an additional four bits per map, and the eight isometries require three bits. The
multiscale maps require enough bits to uniquely specify the scales available. In these
tests scales ranging from 2 through 9 were implemented, which requires three bits per
map. Finally, for each map a code is required to indicate which one of the six map

types was used. By entropy coding these indicators, the storage requirements were

minimized.
Table 6.2: Fixed block size coder — map functions
| Type Poprg [0 Y]
1 | Constant b;
2 | Plane bitga-r+g2-y
3 | Basic Affine bitga- v+ g2 y+si Cizzpl.,ypi [, y]
4 | Multiscale bit+gin a4 Ggioy+ i dep yp [5S-S5y
5 | Nonlinear Addressing bi+gin-x+giz-y+si Cixpi YD, [9(x), 9(y)]
6 | Condensation Type Maps bi+gin x4 gia-y+ s Cia:Di,yDi [z, y]
+hi - Sin(”#) + hiz - Sin(”TL;—1)

101

Adaptive Block Size Coder

The adaptive block size coder requires additional information to note which maps
were divided, and how. The maps were stored sequentially, and one bit was used
to indicate if the map had been split. Once a map was split, then an additional
bit would indicate whether the split was vertical or horizontal, and the other half of
the original map would follow immediately. If a map was divided, there would be a

recursive check to see if there were further divisions, and of which type.

Orthonormal Basis Coder

The Orthonormal Basis Coder was implemented with 8 x 8, 16 x 16 and 32 x 32
pixel range blocks. The coded image consists of the index for the domain blocks that
constitute the basis vectors, followed by the indices and weights for the basis which
are used in each of the maps. Because the weights for the first three a prior: basis

vectors are always saved, the indices do not need to be saved for these weights.

Coding Results

With the fixed block size coder and the adaptive block size coder, the method to
use to search for the domain block for each map is also a variable. The three search
algorithms, proximity maps, fractal dimension and hierarchical block matching, must
be evaluated also. Both the proximity maps and fractal dimension methods were
implemented with 256 potential source domains. Thus the results can be compared
fairly with regard to the computational cost. The HBM coder was implemented
requiring only 64 domains to check, and consequently was four times faster than the
previous two methods.

In implementing the various coders some characteristics were noticed. The use
of eventually contractive mappings did not consistently improve the performance of
the different models. This technique caused other problems as well. Because the

scaling factor, d;, could have a large magnitude, the range of bias values, b;, seen

102

for the maps with the relaxed constraint on d; was greatly increased. This, in turn,
caused problems in quantizing the bias parameters. In order to compensate for this,
d; was first quantized to get d;, then if |JZ| > 1.0, the bias parameter was adjusted
prior to quantizing to get b]-/cz-. This scaling effectively reduced the range of the bias
terms and reduced the required bits for quantization. In the reconstruction stage, b;
was recovered by checking if |JZ| > 1.0, then adjusting the quantized bias term, ZJ- to
Zj -d;. This compensation technique was found to reduce the required number of bits

by an average of five for the b; term.

Table 6.3: Image coding results

Search Method BPP | PSNR
HBM: Adaptive Block Size 0.55 | 30.5
with Eventually Contractive Maps 0.55 | 29.2
HBM: Fixed Block Size 0.81 | 31.5
with Eventually Contractive Maps 0.81 | 31.5
FD: Adaptive Block Size 0.62 | 30.5

with Eventually Contractive Maps 0.60 | 29.5
FD: Fixed Block Size 0.76 | 30.9
with Eventually Contractive Maps 0.85 | 31.7

Proximity: Adaptive Block Size 0.47 | 31.5
Proximity: Fixed Block Size 0.68 | 31.1
Orthonormal Basis: Covariance 0.44 | 30.5
Orthonormal Basis: K-means 0.47 | 30.2
Orthonormal Basis: Search Method 0.49 | 29.6

Orthonormal Basis: Searchless Method | 0.50 27.0

103

6.5.3 Comparison of Results

Each of the coders was tested with the standard LENA image and the results are given
in Table 6.3. While quantitatively the results are similar for each of the methods,
there are some differences in the coding artifacts. Figure 6.10 shows the original
512 x 512 LENA image which was used in these tests. In Figure 6.12 the orthonormal
basis approach results are given prior to quantizing. This illustrates the noise artifact
which is introduced with this method, as well as the extremely high quality of the
image. To see how this method is working, the basis vectors are shown in Figures 6.14a
and 6.14b. In the first figure, the blocks are shown prior to the Gram—Schmidt process,
and in the second figure the orthonormal vectors and their noise-like appearance is
illustrated.

The methods which required the lowest number of bits per pixel were the search-
based methods which used the adaptive block sizes as compared to the fixed block
sized approach. In addition, the use of eventually contractive mappings gave incon-
clusive results with regards to SNR improvements, with half of the tests resulting in a
lower SNR, and the other half having an increased SNR. The overall best performing
method was the use of proximity maps with adaptive block sizes. This approach was
also one of the faster methods implemented.

The orthonormal basis approaches also performed uniformly well with regard
to the compression ratios achieved. The SNRs were slightly less for these methods.
However it is important to visually examine the images for a subjective evaluation of
this method. The reconstructed image, prior to quantizing is shown in Figure 6.12,
and after quantizing in Figure 6.13.

It is interesting that the reconstructed image using all of the weights and with-
out any quantization is not perfect. As it turns out, examination of the weights in
the mappings shows that many are not contractions. While the existence of some
expansion maps does not necessarily cause a problem [43], the maps here apparently

have an excessive number. It is possible to look at the actual contraction factors for

104

the maps through the relationship between the B and () matrices. The matrix R
relates the orthonormal basis to the original domain vectors: B = (QR. Therefore

@@ = BR™', and equation (6.25) can be written
r, = BR_IWZ' = B(R_IWZ) (633)

Thus, the contraction factors are the elements of the vector R~ w;.

In viewing the reconstructed images, the error signal is concentrated around the
edges within the image, and is a “salt and pepper” type of high frequency noise, as
can be seen in Figure 6.12. In an attempt to attenuate this noise, the weights which
were not contraction mappings were scaled down to be contraction mappings during
the reconstruction process. Then just prior to the last iteration of the reconstruction,
the weights were restored to their full magnitude. Unfortunately, this reduced the
final PSNR even further.

To facilitate comparisons with other coding methods, several different images
were coded using the proximity map with the adaptive block size, as well as the

orthonormal approach with the covariance method. Table 6.4 provides these results.

Table 6.4: Coding results for several images

Image Proximity w/ Adaptive Size | Orthonormal Basis w/ Covariance
PSNR bpp PSNR bpp

PEPPERS | 29.0 0.367 30.8 0.551

Boar 29.6 0.575 28.4 0.622

BABOON 20.3 0.528 19.7 0.672

MOFFETT | 28.4 0.559 28.0 0.972

105

6.6 Conclusions

In this chapter we have seen several new types of maps for the two-dimensional
IFS model. In addition several new search-based techniques were introduced and
evaluated. Section 6.4 introduced a new approach to IFS modeling, the orthonormal
basis IF'S, which approaches the modeling problem from the perspective of considering
the range and domain blocks as vectors in a vector space, and creating an orthonormal
basis from which the range vectors are coded.

The different algorithms and models were evaluated using a standard test image,
and the results show that the proximity maps combined with the adaptive block sizes
produced the best overall performance. In addition the new orthonormal based ap-
proach with fixed basis vectors was the fastest coding method. However the resulting

SNR was reduced slightly.

106

Figure 6.10: Original 512 x 512 eight bit gray scale LENA image

Figure 6.11: LENA image coded with proximity maps and adaptive block sizes at 0.47
bpp, PSNR = 31.5dB

107

Figure 6.12: LENA image coded with orthonormal basis method prior to quantizing

Figure 6.13: LENA image coded with orthonormal basis method at 0.44 bpp, PSNR
= 30.5dB

108

EEEFIIEMNME
WA N R ME N R
Al & & X A M
Mo N & D e D
¥ & % & W W W =
WOk SN NN E
R E Y9 B & W
Bl & 3 v B E # L

Figure 6.14a: Basis vector blocks for covariance method: before Gram—Schmidt

Figure 6.14b: Basis vector blocks for covariance method: orthonormalized vectors

109

110

CHAPTER 7

CONCLUSIONS

In this dissertation, many aspects of the IFS model have been investigated. The
primary application area has been that of modeling image data, which is a natural
type of data to generate with an IFS due to the common spectral characteristics
between the attractors of IFSs and images. Many types of data were tested with a
one-dimensional IFS model, and it was experimentally verified that the best results
were obtained with image data.

For the one-dimensional model several new types of maps were examined. The
addition of a variety of nonlinearities was evaluated, with the most significant im-
provements coming from the addition of nonlinear addressing, and condensation type
maps. All of the different maps were tested and compared, taking into consideration
the additional storage requirements of the more complicated maps.

In addition to the new map structures, the method by which the parameters
were selected was investigated. It was determined that the performance of the model
was improved by relaxing the boundary conditions in the interpolation function, and
allowing the interpolation points to be determined with least squares along with the
other map parameters.

Other IFS models were investigated, such as the hidden variable IFS, which did
not yield significant improvements over the normal affine map IFS, as well as the use
of other nonlinear terms in the map. The best results were obtained with the relaxed
boundary conditions combined with the nonlinear addressing or the condensation

type maps.

The final improvement to the one-dimensional model was the introduction of two
new algorithms to determine the interpolation points on which to base the model.
These algorithms were based on the location of the local extremum of the data being
modeled.

For the two-dimensional model, the improvements to the one-dimensional model
were extended to the two-dimensional case. Because the two-dimensional model is
constructed differently due to the added complexity of the additional dimension, the
efficiency of the search for the map domains takes on greater importance. Several new
search-based strategies were introduced, including a proximity search, which takes
advantage of the correlation between adjacent blocks in an image. A hierarchical
block matching approach was also implemented, which allows a rapid search over
almost the entire image, and a search based on the fractal dimension of the range
and domain blocks was developed. Each of these search methods was evaluated for
all of the types of maps introduced, with the best results obtained with the proximity
searches.

In addition to the new search methods, several new maps were introduced for
the two-dimensional model. First the nonlinear addressing and condensation type
maps were extended to the two-dimensional case. Then a map with multiple scaling
factors was implemented. Previous two-dimensional maps had used a fixed scaling
factor of 2:1 in each coordinate direction.

As with the one-dimensional model, the boundary conditions were relaxed for
the two-dimensional case and the interpolation points were determined along with
all of the map parameters using least squares to minimize the map’s error. This was
found to improve the results of the model consistently by as much as several dB in
the reconstructed signal’s SNR.

In addition to the above changes to the standard affine IF'S, a new kind of IFS
model was introduced called the orthonormal basis IF'S, (OBIFS). The OBIFS is based

on interpreting the range and decimated domain blocks as vectors in a vector space

111

and finding a set of orthogonal basis vectors for the space spanned by the range blocks
from the domain blocks. The Gram—Schmidt procedure was used to generate an
orthonormal basis for the space, and the range vectors were then quickly decomposed
into weights for this basis. Several algorithms were introduced for determining the set
of domain blocks to use in forming the basis vectors, including a searchless approach
which resulted in an extremely fast coder.

Image coding has been the primary application area for IFS techniques, and a
major portion of this research was directed towards using image data. While much
progress has been accomplished by these efforts, there still remains work to be done

in this area.

7.1 Future Work

The selection of orthonormal basis vectors still is not optimal. The covariance method
succeeds in finding a set of optimal vectors in an incremental sense, however it is
apparent that the contractivity of the maps is more important than the approaches
introduced here allow. An algorithm which places more emphasis on the contraction
factor for each domain vector should improve the results significantly. In addition,
this problem would have to be solved in order to get satisfactory results with larger
blocks.

The key to achieving low bit rate coding is the use of large block sizes. While
the orthonormal basis approach offers the possibility of using larger blocks, the efforts
in this area have been less than satisfactory. There are two main problems with this
approach as it presently stands. The first is that of insuring that the maps will
be contractions. It was found that the larger block sizes were more susceptible to
problems in this area because of the large number of vectors involved. The second
hurdle involves the computational complexity of searching through the domain vectors

for an optimal set due to the increased dimensionality of the problem. An efficient

112

search method is crucial for this approach. Some sort of classification scheme might
prove effective here, as has been used in the search-based methods.

Unfortunately the coders which performed the best were still computationally
intensive. There is still a great deal of work to be done in reducing the time required
to code an image. In this work, the main emphasis has been in finding approaches to
improve the model’s performance in an SNR and compression sense, as opposed to
trying to optimize the algorithm for speed. This is an area where much rapid progress
is possible. The work of [25] has done much in this area, yet there is still room for
significant performance improvements. The times quoted are in the neighborhood of
four minutes to code an image, whereas the orthonormal basis approach with fixed

vectors was just under two minutes to code a 512 x 512 image.

113

[1]

[10]

[11]

[12]

[13]

114

Bibliography

B. B. Mandelbrot, The Fractal Geomelry of Nature. New York, N. Y.: W. H. Freeman
and Co., 1982.

H.-O. Peitgen and P. H. Richter, The Beauty of Fractals. New York, N. Y.: Springer—
Verlag, 1986.

W. C. Strahle, “Adaptive Nonlinear Filter Using Fractal Geometry,” Flectronics Lel-
ters, vol. 24, pp. 1248-1249, September 1988.

A. P. Pentland, “Fractal-Based Description of Natural Scenes,” IFEF Trans. on Pat-
tern Analysis and Machine Intelligence, vol. PAMI-6, pp. 661-674, November 1984.

D. S. Mazel, Fractal Modeling of Time Series Data. PhD thesis, Georgia Institute of
Technology, Atlanta, GA, 1992.

A. E. Jacquin, “Image Coding Based on a Fractal Theory of Iterated Contractive Image
Transformations,” IEEE Trans. on Image Processing, vol. 1, pp. 18-30, January 1992.

M. Barnsley, Fractals Everywhere. New York, N. Y.: Academic Press, Inc., 1988.
E. Corcoran, “Not Just a Pretty Face,” Scientific American, March 1990.

G. Zorpette, “Fractals: Not Just Another Pretty Picture,” IEFEFE Spectrum, October
1988.

M. F. Barnsley and A. D. Sloan, “A Better Way to Compress Images,” Byte, January
1988.

A. Jacquin, A Fractal Theory of Iterated Markov Operators with Applications to Digilal
Image Coding. PhD thesis, Georgia Institute of Technology, Atlanta, GA, 19809.

D. S. Mazel and M. H. Hayes, “Fractal Modeling of Time-Series Data,” in Proceedings
of the Twenty-Third Asilomar Conference on Signals, Systems and Compulers, 1989.

M. F. Barnsley and S. Demko, “Iterated Function Systems and the Global Construction
of Fractals,” in Proceedings of the Royal Sociely of London A, vol. 399, pp. 243-275,
1985.

[14]

[15]

M. Barnsley and L. P. Hurd, Fractal Image Compression. Wellesley, MA: AK Peters,
Ltd., 1993.

J. E. Hutchinson, “Fractals and Self Similarity,” Indiana University Mathematics Jour-
nal, vol. 30, no. 5, pp. 713-747, 1981.

M. F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster, “Solution of an Inverse Problem
for Fractals and Other Sets,” in Proceedings of the National Academy of Sciences USA,
vol. 83, 1986.

J. Elton, “An Ergodic Theorem for Iterated Maps,” Frgodic Theorems and Dynamical
Systems, no. 7, 1987.

M. Barnsley, “Fractal Functions and Interpolation,” Constructive Approzimalion,
vol. 2, pp. 303-329, 1986.

D. 5. Mazel and M. H. Hayes, “Using Iterated Function Systems to Model Discrete
Sequences,” IEFE Trans. on Signal Processing, vol. 40, pp. 1724-1734, July 1992.

M. F. Barnsley, J. H. Elton, and D. P. Hardin, “Recurrent Iterated Function Systems,”
Constructive Approxzimation, vol. 5, pp. 3-31, 1989.

M. F. Barnsley, J. Elton, D. Hardin, and P. Massopust, “Hidden-Variable Fractal
Interpolation Functions,” STAM Journal of Mathematical Analysis, vol. 20, pp. 1218—
1242, September 1989.

D. 5. Mazel and M. H. Hayes, “Hidden-Variable Fractal Interpolation of Discrete
Sequences,” in Proc. ICASSP, 1991.

M. H. Hayes, G. Vines, and D. S. Mazel, “Using Fractals to Model One-Dimensional
Signals,” in Proceedings of the Thirteenth GRETSI Symposium, vol. 1, pp. 197-200,
September 1991.

T. A. Ramstad, G. E. @ien, and S. Lepsgy, “An Inner Product Space Approach to
Image Coding by Contractive Transformations,” in Proc. ICASSP, vol. 4, pp. 2773~
2776, 1991.

E. W. Jacobs, Y. Fisher, and R. D. Boss, “Image Compression: A Study of the [terated
Transform Method,” Signal Processing, vol. 29, pp. 251-263, December 1992.

R. L. Devaney, An Introduction to Chaotic Dynamical Systems. New York, N. Y.:
Addison Wesley, 1989.

G. Vines and M. H. Hayes, “Nonlinear Address Maps in a One-Dimensional Fractal
Model,” IEFFE Trans. on Signal Processing, vol. 41, pp. 1721-1724, April 1993.

115

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

W. D. Withers, “Newton’s Method for Fractal Approximation,” Constructive Approz-
tmation, vol. 5, pp. 151-170, 1989.

G. Vines and M. H. Hayes, “Nonlinear Interpolation in a One-Dimensional Fractal
Model,” in Proceedings of the Fifth Digital Signal Processing Workshop, pp. 8.7.1-
8.7.2, September 1992.

H.-O. Peitgen and D. Saupe, The Science of Fractal Images. New York, N. Y.
Springer—Verlag, 1988.

R. Shonkwiler, J. Geronimo, and A. Deliu, “On the Inverse Fractal Problem for Two
Dimensional Disjoint Polyhulled Attractors,” 1992. Georgia Institute of Technology
Preprint.

G. Vines and M. H. Hayes, “Fast Algorithm for IFS Maps in a Fractal Model,” in Pro-
ceedings of the Visual Communications and Image Processing 92 Conference, vol. 1818,
pp- 944-949, November 1992.

G. Vines and M. H. Hayes, “Using Hidden Variable Fractal Interpolation to Model One-
Dimensional Signals,” in Proceedings of the FEuropean Signal Processing Conference

EUSIPCO, pp. 883-886, August 1992.

N.S. Jayant and P. Noll, Digital Coding of Waveforms. Fnglewood Cliffs, NJ: Prentice-
Hall Publishing Co., 1984.

M. F. Barnsley and A. D. Sloan, “Methods and Apparatus for Image Compression by
Iterated Function System,” U. S. Patent Number 4,941,193, July 10 1990.

A. E. Jacquin, “A Novel Fractal Block-Coding Technique for Digital Images,” in Proc.
ICASSP, vol. 4, pp. 2225-2228, 1990.

Y. Fisher, “Fractal Image Encoding: SBIR Phase [Final Report,” Report to Dr.
Michael Schlesinger, Office of Naval Research, pp. 1-26, November 1990.

9

D. M. Monro and F. Dudbridge, “Fractal Approximation of Image Blocks,” in Proc.

ICASSP, vol. 3, pp. 485—488, 1992.

Y. Fisher, B. Bielefeld, A. Lawrence, and D. Greenwood, “Fractal Image Compression,”
Netrologic Quarterly Report to Dr. Michael Shlesinger, Office of Naval Research, pp. 1—-
6, August 1991.

R. D. Boss and E. W. Jacobs, “Studies of Iterated Transform Image Compression and
its Application to Color and DTED,” Naval Ocean Systems Center Techincal Report
1468, pp. 1-40, December 1991.

Y. Fisher, “Fractal Image Compression,” SIGGRAPH ‘92 Course Notes, pp. 1-21,
1992.

116

[42] R. D. Boss and E. W. Jacobs, “Fractal-Based Image Compression,” NOSC' Technical
Report 1315, pp. 1-35, September 1989.

[43] Y. Fisher, E. W. Jacobs, and R. D. Boss, “Iterated Transform Image Compression,”
NOSC Technical Report 1408, pp. 1-31, April 1991.

[44] D. M. Monro and F. Dudbridge, “Fractal Block Coding of Image Blocks,” Electronics
Letters, vol. 28, pp. 1053-1055, May 1992.

[45] G. E. Qien, S. Lepsgy, and T. A. Ramstad, “Reducing the Complexity of a Fractal-
Based Image Coder,” in Signal Processing VI, Proc. EUSIPCO, vol. 3, pp. 1353-1356,
1992.

[46] K.-M. Cheung and M. Shahshahani, “A Comparison of the Fractal and JPEG Algo-
rithms,” TDA Progress Report 42-107, pp. 21-26, November 15 1991.

[47] C.-C. Chen, J. S. Daponte, and M. D. Fox, “Fractal Feature Analysis and Classification
in Medical Imaging,” IFEF Trans. on Medical Imaging, vol. 8, no. 2, pp. 133-142, 1989.

[48] J. P. Rigaut, “Automated Image Segmentation by Mathematical Morphology and Frac-
tal Geometry,” Journal of Microscopy, vol. 150, pp. 21-30, April 1988.

[49] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles. Reading, MA: Addison-
Wesley Publishing Co., 1974.

[50] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. on Information The-
ory, vol. 28, pp. 129-137, March 1982.

117

118

Vita

Greg Vines was born in Memphis, Tennessee, on June 13, 1960. He received his B.S.
and M.S. degrees in Electrical Engineering from the University of Virginia and the
Georgia Institute of Technology in 1982 and 1990, respectively. While at the Georgia
Institute of Technology, he was a Graduate Research Assistant from 1988 until 1993.
His research interests include signal modeling, image processing, and image/video
coding. Outside of school, when he scrapes enough money together, he can be found
at 3000 AGL punching holes in the sky doing wingovers and other stomach-churning

maneuvers.

Signal Modeling

With
Iterated Function Systems

Greg Vines

118 pages
Directed by Dr. Monson H. Hayes 111

A new method of modeling signals has been proposed through the use of Iter-
ated Function Systems (IFSs). Iterated Function Systems are capable of producing
complicated functions, many of which closely resemble images and other waveforms
that can be found naturally. The task of modeling a given data sequence with an IFS
is an ill-posed problem and methods proposed to date have relied on iterative algo-
rithms and using simple affine maps to determine an appropriate IFS. This research
focuses initially on modeling one-dimensional signals. Variations of the basic affine
map are explored, including the use of nonlinearities on the mapped data, as well as
on the addressing of the data in the map. In addition, a condensation type map has
been developed, as well as a non-iterative algorithm which is based on characteristics
of the data to be modeled. The method used to determine the model parameters
is improved through relaxing the boundary conditions which define the interpolation
points for the model. All of the enhancements are evaluated with a set of test files
and results are given quantifying the improvements with the new methods.

The second portion of this research concentrates on two-dimensional models,
specifically the application of image coding. The nonlinear addressing and condensa-
tion type maps were extended to the two-dimensional case, as well as the relaxation
of the boundary conditions. In addition, three new search techniques were developed

based on the local fractal dimension of pixels in the image, a hierarchical block match-

ing algorithm and the correlation between adjacent blocks in an image. An entirely
new orthonormal basis approach was introduced which allows multiple domains to
be used in each map. Several versions of this method are described, one of which is
faster than all previous approaches, at a slight cost in SNR. Slower methods are also

introduced, which offer higher reconstructed image quality.

