Fractal Compression of Single Images and Image Sequences using

Genetic Algorithms

Lucia Vences*
ITESM - CEM!

lvences@servdgi.cem.itesm.mx

Abstract

In this paper we present a method to encode a single
image by finding an Iterated Punction System (IFS)
that describes an approzimation to the image we want
to compress by using Genetic Algorithms (GA). The
search was restricted to IFS with a fired number of
maps, and a fired contractivity factor, like in Barns-
ley’s brute force method.

To tmprove the convergence for this problem, a modi-
fied mating operator was used in the genetic algorithm.
By doing this, the time needed to get an IFS is re-
duced by about 30% compared with Barnsley’s brute
force method if similar image quality s desired, but
more to the point, unlike with other algorithms, using
a GA we can vary the time the compression will last as
a function of the error we tolerate by varying parame-
ters such as population size and number of generations
we allow the algorithm to proceed.

The algorithm was extended to deal with image se-
quences by using the population that has evolved for
an itmage as the initial population for the next image
in the sequence. This did not increase the convergence
for those images as we had expected, but further studies
are needed before concluding that this will not work.

*Graduate Student in the M.Sc.
Science.

Program in Computer

tInstituto Tecnolégico de Estudios Superiores de Monterrey,
Campus Estado de México.
{Dissertation Advisor.

Isaac Rudomin?
ITESM - CEM

rudomin@journey.cem.itesm.mx

1 Introduction

The development of a wide range of multimedia appli-
cations has recently led to increased research attention
in data compression and particullary in image compres-
sion.

Among the techniques of image compression, the
fractal method based on the theory of Iterated Func-
tion Systems (IFS) has recently received a great deal
of attention. The basis of this technique, known as the
fractal inverse problem, is to find an IFS whose attrac-
tor is close to a given image.

The main difficulty with this method has been that
it takes a long time to compress even a single im-
age. Some methods to reduce the time required to
solve inverse problem of a single image have been pro-
posed. One way that has been succesfully used is to
apply genetic algorithms (GA). Vrscay [Vrs90] has used
GA for moment matching and for the discrete collage
method. The results obtained in the first method were
not very satisfactory, while the results of the second
method were very encouraging. Shonkwiler, Mendivil
and Deliu [SMD91] used GA successfully to solve the
inverse problem in 1-D and showed that their algorithm
can be parallelized making the convergence faster.

In order to use fractal compression on video image
sequences, it has been previously proposed that a IFS
for the first frame should be constructed, and that for
subsequent frames a transformation which takes the
previous image to the best possible aproximation to
the present image should then be found using other

methods [HGB92].

In this paper, we present a technique to compress
still images using GA. Due to the temporal and spatial
correlations between frames and the application of GA,
this method is extended to image sequences. GA are
used to obtain, from a randomly generated population,
the IFS whose attractor is the best aproximation to a
single image or the first frame in the sequence.

When dealing with a image sequence, once we have
obtained a code for the first frame, for the subsequent
frames we can use the last population generated for the
previous frame as the initial population for the present
frame; in this way, we hope to have an even faster con-
vergence for the compression of the following frames.

In the next section, we present the theoretical basis
for fractal image compression, the collage theorem wich
is the key for this technique, some of the algorithms
that have been used and general background about GA.

The third section is dedicated to the details of our al-
gorithm: the kind of genes used, the genetic operators
applied and some others improvements to the simple
genetic algorithm.

In the results section, we examine the performance
of our algorithm for both a single image and image
sequences.

In the conclusion section, we give some directions for
further work.

2 Theoretical Foundations

In this section we expose the theoretical basis for frac-
tal image compression and that the basis of genetic
algorithms.

2.1 Self-affine and self-similar transfor-
mations

The fractal image compression algorithm is based on
the fractal theory of self-similar and self-affine trans-
formations.

A self-affine transformation W : R? — R” is a trans-
formation of the form W(xz) = T'(z) + b, where T is a
linear transformation on ™ and b € R” is a vector. A

mapping W : D — D, D C R" is called a contraction
on D if there is a real ¢,0 < ¢ < 1, such that

d(W(z), W(y)) < cd(z,y)
for ,y € D and for a metric d on R". If
d(W(z), W(y)) = cd(z, y),

then W is called a similarity. The real c is called the
contractivity of W.

A family {wi,...,wn} of contractions is known as
iterated function scheme or system (IFS). If there is a
subset F' C D such that for an IFS {w1,...,wmn},

F= Uwi(F),

then F' is said to be invariant for that IFS. If F' is
invariant under a collection of similarities, F' is known
as a self-similar set.

Let § denote the class of all non-empty compact sub-
sets of D. The é-parallel body of A € S is the set of
points within distance é of A, i.e.

As={z €D |z —a| <bac A}.

Let us define the distance d(A, B) between two sets
A, B to be

d(A,B) = inf{6: AC Bs A B C As}.

This distance function is known as the Hausdorff met-
ricon St.

Given an IFS {wi,...,wy}, there exists an unique
compact invariant set F', such that

F = U wi(F).

This F' is known as the attractor of the system.
If £ is a compact non empty subset such that
wi(E) C F and

W(E) = Jwi),

1Other distance functions can be used.

we define the k-th iteration of W, W*(E), like
WOB) = B, WH(B) = W(WEL(1),

for k > 1, then we have that
F = whaE).
i=1

2.2 The collage theorem

At this point, we have that the sequence of iterations
W*(E) converges at the attractor of the system for any
set .

This means that, we can have a family of contrac-
tions that approximate complex images and, using this
family of contractions, they can be stored and trans-
mitted in a very efficient way. Once we have an IFS, it
is straightforward to obtain the image encoded by it.

If we want to encode an arbitrary image in this way,
we will have to find a family of contractions so that
its attractor is an approximation to the given image.
Barnsley’s Collage Theorem states how well the attrac-
tor of an IFS can approximate the given image.

Collage Theorem. Let {wy,...,wmn} be contractions
on R” so that

where ¢ < 1. Let £ C R™ be any non-empty compact
set. Then

d(E, F) < d(E, U wi(E))(1 i 3

where F' is the invariant set for the w;, and d is the
Hausdorff metric.

As a consequence of this theorem, any subset of R”
can be approximated within an arbitrarily tolerance (or
error) by a self-similar set; i.e., given 6 > 0, there exist
contracting similarities {w1, . .., wy, } with invariant set
F satisfying d(E, F) < é.

Therefore, the problem of finding an IFS

{wi, ..., wm}

whose attractor F'is arbitrary close to a given image [
is equivalent to minimizing the distance

(I, | wi(1)).
i=1
2.3 Fractal image compression algo-
rithms

These ideas were originally developed by M. F. Barns-
ley [BaSI88, BaHu92, HGB92] to encode real world im-
ages.

The algorithm he proposes works by dividing the
image into a grid of non-overlapping domain blocks
D = {D;} of B x B pixels and into arbitrary range
blocks R = {R;} of 2B x 2B pixels and finding the
IFS from a range block to a domain block. For each
R;, a search for the best D; over all the set D must be
performed.

One nice feature of fractal image compression is that
it is resolution independent in the sense that when de-
compressing, the dimensions of the decompressed im-
age are not required to be the same as those of the orig-
inal image because what is stored encodes the trans-
formations required to transform any image to an ap-
proximation of the original image.

The size of the transformed blocks is not part of
the encoding, and so can be changed. If the image is
decompressed to a larger size than that of the original
image detail is generated in a way that is acceptable to
the eye.

Barnsley’s algorithm works well when it is paral-
lelized or is encoded in hardware; but, in general, its
temporal complexity is very high, i.e. it takes a long
time to compress an image.

Jaquin [Jaq92] introduced a categorization of the
blocks in edge , midrange and shade blocks, so that
the search for a range block is done only on the do-
main blocks of the same category. This gives the al-
gorithm a much better performance by reducing the
search universe for each block. This has prompted
many other approaches to somehow reduce the search
space to blocks that can be thought of as similar in
some way:

m

Y
y

Domain blocks Range Blocks

Figure 1: Barnsley’s image compression algorithm

o Fisher et. el. [FiJB92] uses a variable number
of classes taking into acount variance as well as
intensity to classsify a block.

e Saupe [Saup94b] uses a multidimensional nearest
neighbour (kd-tree based search that runs in loga-
rithmic time instead of linear time.

Other methods have been published that increase the
performance of the fractal compression algorithms. A
recent review is given by Saupe [Saup94].

Other people have investigated the use of GAs for the
fractal image compression problem (or similar prob-
lems), although not necesarilly based on Barmsley’s
method.

e Vrscay [Vrs90] analized the problem for the mo-
ment method. It is known that the moments are
invariants of a measure; that is, two IFS have
the same measure if, and only if, they have the
same moments. Vrscay’s idea was to minimize
the distance between the moments of an IFS and
the image. To minimize this distance, simulated
annealing or gradient descent methods have been
used. Vrscay applied GA to the minimization of
moment distance functions with what he calls un-
satisfactory results. On the other hand, he also
applied GA to the discrete collage method with
very promising results.

e Around the same time, R. Shonkwiler, et al
[SMD91], reported good results when applying GA

to the solution of the inverse problem on 1-D with
parallel computation. They reported that the al-
gorithm was much faster when it was parallelized.

2.4 Genetic algorithms

Genetic Algorithms (GA) are search procedures based
on the principles of natural selection and natural ge-
netics [Gol89], that have proved to be very efficient
searching for approximations to global optima in large
and complex spaces in relatively short time.

A GA has as a basic components some genetic oper-
ators, an appropriate representation of the problem for
these operators, a fitness function and an initialization
procedure.

With these basic components, a GA works as fol-
lows. It starts using the initialization procedure to get
the first population. Each of the elements of the gener-
ation is evaluated, and, according with the fitness each
element gets, it is assigned a probability to be selected
for reproduction.

Using this probability distribution, the genetic oper-
ators select some of the individuals of the generation
to be applied on them and so obtain new individuals.

The populations’ elements with the worst fitness are
replaced by the new individuals. The algorithm contin-
ues working until some termination criteria is satified.

In fractal image compression, GA’s have been used
to find solutions to the minimization problems related
to the fractal inverse problem [Vrs90, SMD91].

3 Genetic Algorithm methods
for fractal image compression

In this section we describe the GA we used to solve
the fractal inverse problem. The basic structures are
explained, as well as how the genetic operators were
defined and how they work.

3.1 Genes

The encoding of the maps are to be used as the genes
of the GA, i.e. the IFS. The maps we use are like the

ones of Jaquin [Jaq92]. We store four parameters for
each block: the x,y coordinates for the corresponding
domain block, the isometry to be appied and a lumi-
nance shift.

We applied a fixed contraction factor to all the do-
main blocks; the isometric transformations were the
eight canonical isometries of a square block. They are
summarized in table 1.

In the algorithm that we have developed, algorithm,
we use (as Vrscay [Vrs90] and Shonkwiler et al [SMD91]
did) a population of IFS maps of fixed length. There-
fore the compression ratio is constant.

In fact since we use the same encoding scheme as
the one we use in our implementation of Barnsley’s
algorithm, the compression ratio of our method will be
exactly the one that we get for Barnsley’s method.

The image to be encoded was divided into non-
overlapping B x B domain blocks D = {D;}: the length
of the genes is therefore determined by the size of the

image.
| Isometry Formula
0 | Identity (fopt)i; = ti,j

1 | Orthogonal reflection
(vertical axis)

2 | Orthogonal reflection
(horizontal axis)

3 | Orthogonal reflection
(first diagonal)

(i =)

4 | Orthogonal reflection
(second diagonal)
(i+j=B-1)

5 | Rotation

(center of block)
+90°

6 | Rotation

(center of block)
+180°

7 | Rotation

(center of block)
-90°

(il u)m = Wi, B—1—j

(i2 u)m = UB-1—i,

(tap)iy =y

("4 u)w = HKB-1—j,B—1—j

(i5u)i,] = K3, B—1—:

(fep)i; = pB—1—i,B—1—;

(irp)iy = pB-1-i;

Table 1: Isometric transformations

3.2 Genetic operators

We applied two genetic operators: a mating operator
and a mutation operator. The mate is performed by
selecting two elements in the present population as the
parents of new elements. This election of the parents
is made according to a probability distribution that
is inversely related to the L£-2 distance between the
attractor of the IFS and the image?.

Since all the elements have the same length and the
same representation, the crossover point can be any-
where along the gene.

Crossover
Point
Parent 1
pl pl pl pl pl pl
Parent 2
p2 p2 pp p2 p2 p2
Chigl
pl p1 pl pl p2 p2 p? p2
Offspring
p2 p2 p3 p2 pl pl pl1 pl

Figure 2: Mating operator for the simple GA

When using a simple genetic algorithm, the two par-
ents combine the two parts in wich they are divided,
before the crossover point and after it, to create two
new elements: one with the first part taken from the

2The £-2 distance is defined as

Sc—alp, i) = Z (Bigs frig)-

0<i,j<B

first parent and with the second part taken from the
second parent, and the other in exactly the opposite
way. See figure 2.

In order to have a faster convergence, we changed
this mating operator. FEach of the maps forming a
gene in the population corresponds to a well deter-
mined block and its performace is independent of the
fitness of any other map in the gene. We took advan-
tage of this fact in the mating operation, so that when
a couple of parents are selected, we obtain an offspring
just by taking the best suited map for each block. See
figure 3.

Parent 1
b || i
Parent 2 ' ‘
o | les | ot | sl |
pl>ql o o o qgn;> pn
Offspring ' ‘
i | led | o | il |

Figure 3: Modified mating operator (here p; > ¢;
means that the image for block ¢ is better approxi-
mated by the IFS encoded by p; than by that encoded

by ¢;).

Notice that although mate selection is still somewhat
random, the modified mating algorithm itself is deter-
ministic. In our experiments with a single image we
observed that the convergence was significantly accel-
erated with this modified mating operator. The deter-
minism, however might cause premature convergence
thus reducing the variety in the population. This might
explain some of the problems with the extension of the

algorithm to image sequences3.

The mutation operator can be randomly applied to
any parameter of a gene while creating a new element
of the population.

We decided to modify the mutation operator as well,
by obtaining a random change around the previous val-
ues instead of a random value. This accelerated slightly
the convergence in our experiments.

3.3 Fractal image sequence compres-
sion

With the algorithm described in the previous sections
we obtain a procedure to encode still images.

Compression on image sequences can be achieved by
taking advantage of the the spatial and temporal cor-
relations that exist between consecutive frames.

To compress image sequences, it has been previ-
ously proposed [HGB92] that an IFS for the first frame
should be found. After that, a transformation mapping
the previous frame to the present frame is found (not
an IFS).

With the technique we are presenting, once we have
obtained the “best” IFS for a frame, in the rest of the
population we have a set of IFSs that can be used as
the initial population with a new target for the GA;
this new target is the following frame in the sequence.
We expected the convergence to this new goal to be
faster than if we were dealing with a random initial
population, but in fact this did not happen.

4 Results

All tests here described were performed on an IBM-
RS600 model 375. The test image was a 296 by 240
grey-scale image. For both the Genetic Algorithm and
Exhaustive Search, domain blocks were 8 by 8 pixels*

3Other mating schemes might be appropriate that avoid these
problems and should be studied, among them considering the
coding of each domain block separately (as in speciation) using
the standard GA for each of them.

4This was chosen arbitrarily. It seemed to us that it provided
decent quality and significant compression. Better images would
result from taking 4 by 4 blocks, but the compressionratio would

and , so the compression attained was the same for all
methods.

Differences in resulting images were therefore in
quality and/or time required to achieve the coding.
Error was measured as distance between the resulting
image and the original image.

4.1 Results for a Single Image

Several tests were made using the simple mating al-
gorithm, for a fixed number of generations using both
the £' and £? metrics to see which would be a bet-
ter guide for the GA. The £? metric appeared to give
smaller errors, so it was chosen for the following tests.

To select the population size populations of size 512,
256, 128 and 64 were tried. As we can see in figure 4,
it turned out that a size of 64 was slightly worse than
the others, among which no real differences were found.
Since the smaller populations give a faster algorithm,
the population size chosen was 128.

380%
S
00 g
aF u% = 512
§ Tme : : + 256
L d #‘w .
340 g : : + 128
= 64
320
300

0 20 40 60 80
Generations

Figure 4: Simple GA with different population sizes:
512, 256, 128, 64.

In the same figure you can see that convergence of

be smaller.

the algorithm is slow, even compared with Barnsley’s
exhaustive search method. Since Barnsley’s method
will find the best approximation possible with the par-
tition chosen, and since we are using the same parti-
tion for the GA, we can’t get a better approximation
or compression ratio, all we can do is to try to be faster
than exhaustive search.

The following tests were performed using the mod-
ified mating algorithm described above. As it can be
seen in figure 5 convergence was significantly acceler-
ated. Using similar time periods as that necessary for
Barnsley’s exhaustive search, we get similar quality.
The important fact, however is that to get a compa-
rable image quality we can use less time if so desired,
particularly since this figure shows that the error drops
rapidly at the beginning (in less than 20 generations)
to acceptable levels, and keeps on converging later, al-
though much more slowly.

This means that we don’t really have to use more
than 20 generations to get decent quality. For an ilus-
tration see figures 6, and 7.

400
ag,,\
h"’\ax_‘n
m\--’.‘w
o e P
300 TSI, it s
%
5 * Simple
£ 200 %
w + Mod. Mate (Mut1)

X Mod. Mate (Mut 2)

100} %

0
0O 20 40 60 80 100 120 140

Generations

Figure 5:
rithms.

Comparison between the different algo-

In table 1 the time and error for the GA methods
used are compared.

Figure 6: Images obtained by the G§ in generations 0, 6, 12, 18, 24, 30.

Figure 7: Images obtained by the GA in genergtions 36, 42, 48, 54, 60 and exhaustive search.

Time | Barnsley | simple | Modified | Modified
(min) GA Mating | Mutation
33 - - 358.03 82.33 80.37
82.5 - - 342.39 76.98 69.64
115 - - 321.48 71.94 66.01
247.5 - - 315.70 68.78 65.48

330 40.29 312.74 66.85 65.45

Table 1: Time and Error in the different methods.

Other tests used a modified mutation operator, but
the results did not change much.

In figure 8, we show the images obtained by the dif-
ferent algorithms used.

4.2 Results for Image Sequences

Several tests were performed in image sequences using
the modified mating operator and both mutation op-
erators. The algorithm compresses the first image of
the sequence as previously done for a single image, by
starting from a random population and looking for a
IFS for the image by using a GA.

When one is found, the population is stored and used
as the initial population for the second image, and so
on for subsequent images. The initial error obtained
when using the stored final population for the previous
image as the initial population is indeed smaller than
that found for a random initial population, but the
convergence is slower and the algorithm using a random
initial population overtakes the one using that stored
initial population.

This can be seen in figures 9 and 10. The second
mutation operator is better than the other, but the
convergence is still slower than that found in either
case by using the new random population.

This behaviour suggests that the stored population
is overspecialized. Several tricks were tried without
success to overcome this problem:

o We tried using a mixed initial population: partly
that which was stored, partly a random popula-

10

tion. At best it performed like a random popula-
tion.

e We tried increaing the probability of mutation.
This caused more variability as desired, but de-
creased convergence significantly.

The problem might have to do with the deterministic
nature of the modified mating operator and so must
be further studied. In any event even the algorithm as
used for a single image can be used to compress each
image in the sequence separately, and the performance
gains found for a single image will also apply to the
sequence.

400
300
j% * Frame 1
U%ZOO -% . + Frame 2
'jf* + Frame 3
L
. " Frame 4
100"

0
0 5 10 15 20 25 30 35 40 45 50 55 60
Generations

Figure 11: Errors for Image sequence of four consecu-
tive video frames. The second mutation operator and
stored initial populations were used.

5 Conclusions

We have presented a GA for fractal image compression
both with a simple mating operator and with a modi-
fied mating operator. The changes made to the simple
GA have improved the performance of the technique
leading to a faster convergence for the fractal inverse

Figure 8: Original Image (above left) compared with the images obtained by using Barnsley’s algorithm (above
right) and GA’s using modified mating operator (below left) and modified mating and mutation operators

(below right).

11

Figure 9: Image sequence: first two of four consecutive video frames, in compressed and original form. The
second mutation operator and stored initial populations were used.

12

Figure 10: Image sequence: last two of four consecutive video frames, in compressed and original form. The
second mutation operator and stored initial populations were used.

13

problem. For a single image, a 30% speedup compared
with the exhaustive search algorithm was found.

For image sequences the expected faster convergence
was not found, but it seems the population was over-
specialized. Further work must be performed to avoid
this overspecialization. However, even using the algo-
rithm that restarts with a random population for each
subsequent image, we will benefit from the performance
gains found for the algorithm for a single image.

Other results in fractal image compression that give
better results than exhaustive search could and should
be incorporated within this GA strategy: in particu-
lar, using different partitions (like quadtrees) and clas-
sification schemes (like edge/midrange/shade blocks)
within the GA framework could be useful. Incorporat-
ing some of the more recent ideas (hierarchical codi-
fication, more efficient data structures for the search)
might also prove useful.

References

[BaSI88] Barnsley, M.F., Alan D. Sloan, A Beiter Way
to Compress Images, BYTE, January, 1988.

[BaHu92] Barnsley, Michael, Lyman P. Hurd, Fractal
Image Compression, AK Peters, Ltd (1992).

[Fis92]

Fisher,Yuval, Fractal Image Compression,

SIGGRAPH 92, Course Notes.

[FiJB92] Fisher, Y., Jacobs, E. W., Boss, R. D., Frac-
tal image compression using iterated trans-
forms, in: J. A. Storer (ed.), Image and Text
Compression, Kluwer Academic Publishers,

Boston 1992.

[Gol89] Goldberg E.David, Genetic Algorithms in
Search, Optimization and Machine Learning,

Addison Wesley, Massachusetts (1989).

[HGB92] Hurd, L.P., M.A. Gustavus, M.F. Barnsley,
Fractal Video Compression, Digest of Papers,
COMPCON Spring 1992, 37th IEEE Com-

puter Society International Conference, p.41-

2, 1992.

14

[Jaq92] Jacquin, Arnaud E, Image Coding Based on
a Fractal Theory of Iterated Contractive Im-
age Transformations, IEEE Transactions on

Signal Processing, March 1992.

[MaMo92] Mazel, David, Monson Hayes, Using
Ttereted Function Systems to Model Discrete
Sequences, IEEE- Transactions on Signal
Processing 40, July 92.

[MoDu92] Monro, D.M., F. Dudbridge, Fractal Block
Coding of Images, IEEE Electronic Letters,
21st May 1992, Vol.28, No.11.

[Mon93] Monro, D.M. Class of Fractal Transforms,
IEEE Electronic Letters, 18th February,

1993, Vol.29, No.4

[Saup94] Saupe, D A Guided Tour of the the Frac-
tal Image Compression Literature, Techni-
cal Report, Institut fur Informatik, Uni-
versitat Freiburg, 1994, available from
ftp://fidji.informatik.uni-
freiburg.de/papers/fractal/Guide.ps.Z

[Saup94b] Saupe, D Breaking the Time Complez-
ity of Fractal Image Compression, Techni-
cal Report, Institut fur Informatik, Uni-
versitat Freiburg, 1994, available from
ftp://fidji.informatik.uni-
freiburg.de/papers/fractal /Saup94a.ps.Z

[SMD91] Shonkwiler, R, F. Mendivil, A. Deliu, Ge-
netic Algorithms for the 1-D Fractal Inverse
Problem, Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms,

San Diego (1991).

[Vrs90] Vrscay, Edward R. Moment and Collage
Methods of the Inverse Problem of Factal
Construction with Iterated Function Systems,
Proceedings of 1st IFIP Conference on Frac-

tals, FRACTAL 90, Lisbon (June 6-8, 1990).

