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Adaptive Approximate Nearest N eighbor
Search for Fractal Image Compression

Chong Sze Tong, Member, IEEE, and Man Wong

Abstract—Fractal image encoding is a computationally inten-
sive method of compression due to its need to find the best match
between image subblocks by repeatedly searching a large virtual
codebook constructed from the image under compression. One of
the most innovative and promising approaches to speed up the en-
coding is to convert the range-domain block matching problem to a
nearest neighbor search problem. This Paper presents an improved
formulation of approximate nearest neighbor search based on or-
thogonal projection and Pre-quantization of the fractal transform
parameters. Furthermore, an optimal adaptive scheme is derived
for the approximate search parameter to further enhance the per-
formance of the new algorithm. Experimental results showed that
our new technique is able to improve both the fidelity and com-
pression ratio, while significantly reduce memory requirement and

encoding time.

1. INTRODUCTION

NUMBER of papers on fractal image encoding have been
A published since the pioneering idea of Barnsley and Sloan
in 1988 (see [1] for the latest survey). It has since been used
for special image archive applications such as MR, ECG, and
space images [2]—[4], feature extractions i3], image signatures
[6], image retrievals [7]-[10], texture segmentation [11] and
many other image processing applications. Although it suffers
from long encoding times, it has the advantage of very fast de-
compression as well as the promise of potentially very high
compression ratios. These properties made it a very attractive
method for applications in multimedia: for example, Microsoft
adopted it for compressing thousands of images in its Encarta
multimedia encyclopaedia.

The basic fractal compression scheme partitions an image
into range blocks, the encoding of each range block consists
of finding the best affine transformation by searching a global
domain block pool (its own virtual codebook). Specifically, for
each range block B = (7:;), we search the domain pool to
find the domain block D = (d}j) and a transformation 7 such
that (D) provides the best matching for 1. The mean square
error (MSE) is the usual distortion criterion. The transformation
7 consists of a spatial contraction map C followed by massic
transformation 7" that is the composition of a contrast scaling s
and a luminance shift g, viz. 7 = T o C, T'(x) = s*z + g. For
convenience, the domain blocks can be pre-contracted to form a
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pool denoted by 2 = {D = C(D)}. Thus, the fractal encoding
problem is

min F(R, D) = min min ||sD + g/ — R||?
e De s.g
> o (s"diz +g—ri)? (1)

= min min
DC) s,z

where [ is a matrix whose elements are all ones.
The optimal affine parameters can be obtained by the method

of least squares and are given by

,_ (R—71,D— d1)

’-:';_(2 2
D—arz 7T )

where 7,  are the average of the pixel intensity of the range
block It and the contracted domain block 2, respectively.

However, it is well studied that such a least square solution is
undesirable since the solution takes no account of the constraint
on scaling as required by the condition of contractivity and that
the post-quantization of the parameters often lead to poorer re-
sults as compared with pre-quantization [12]. Thus, because the
scaling coefficient must be constrained and both transformation
parameters must be quantized, the quantity that we actually want
to minimize is the collage error E(R, D)

.= . . . . 2
min E(R, D)= min min [ls: D + gxd — R|| 3)

Q si.gxn

where s;, gi. are pre-quantized levels of the scaling and offset
parameters.

The minimization problem posed by (3} is the so-called full
search problem and is computationally intensive. Let N be
the size of the domain pool Q. Many time complexity reduction
methods have been proposed, but most of them can only reduce
the factor of proportionality in the O(Np) compiexity, while
only the tree search approach is able to fundamentally reduce the
order of encoding time from O(Np) to O(log Np). The idea of
tree-structured search to speed up encoding has long been used
in the related technique of Vector Quantization (see e.g., [13]).
And many formulations of tree-search for fractal encoding have
been proposed, e.g., by Caso er al. [14] and Bani-Egbal [15] (see
[1] for recent survey). But perhaps the most elegant and general
formulation is that proposed by Saupe [16], which also has the
advantage of incorporating a small set of fixed basis blocks (a
real codebook) to improve compression quality. In this paper,
we shall discuss some of the drawbacks of Saupe’s formulation
and propose a new modified formulation that is faster and with
better coding performance.
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This paper is organized as follows. In Section II, Saupe’s
nearest neighbor search approach is reviewed and its drawbacks
are examined. A new formulation based on orthogonal projec-
tion and pre-quantization of the fractal transform parameters is
given in Scction I11. Enhancements to the new algorithm are de-
scribed in Section 1V, followed by experimental results and dis-
cussion in Scction V. Finally we summarized our findings in the
concluding Section VI.

II. SAUPE’S NEAREST NEIGHBOR SEARCH

A. Review

One of the most innovative and promising approaches in
speeding up fractal image coding was proposed by Saupe [16].
Starting from (1) and (2), Saupe proved the theorem

E(R, D) = ||R—71|]* g(A(R, D)) @
where ®(.) is a normalized projection operator,
g(A) = AL/1—A2%2/4 and A(R, D) = min

(I + (D), | B(R) — B(D)).

The essence of the new form for the distortion in (4) is
that since the function g(A) is monotonically increasing in
the domain of interest, the minimization of E(R, D) over
all domain blocks D in the domain pool £? is equivalent to
minimizing A(fZ, D). This is in turn equivalent to finding the
nearest neighbor of ®(RR) in the set of {£®(D) : D € Q}.
The domain-range matching problem is now converted to the
necarest neighbor searching problem between a transformed
range block ©(/?) and the transformed domain blocks ®(.D).

There are a number of nearest neighbor search data structure
and algorithms which perform significantly better than the
brute force linear search, which requires O(Np) operations.
Saupe adopted a variant of the kd-tree algorithm by Arya et al.
[17]. Before the search, a tree data structure is built to store the
transformed domain blocks, which requires O(Nplog Np)
operations. The running time for each query then takes
O(log Np») operations on average. The time complexity of
the encoding step for cach range block is thus reduced from
O(Np) to OQlog Np).

B. Drawbacks

The approach described in Section II-A suffers from two
drawbacks. Firstly, there is a very large memory requirement for
storing the tree. For the 64K-size domain pool of a 512 x 512
image (using 8 x 8 range block size), we need two bytes to
store the position of the domain block and 256 bytes (8 x 8 x 4,
assuming four bytes for one floating point number) to store the
coordinates of in one leave node of the kd-tree. So, 16 MB of
memory is required just to store the leave nodes of the tree.
For larger images or when multiple domain pools are required
(e.g., In quadtree encoding, see Section IV), the memory
requirement may be prohibitive for a personal computer or
even a workstation.

The second and more serious drawback is that Saupe’s the-
orem is only valid when continuous and unconstrained values
of the scaling and luminance coefficients could be used. In prac-
tice, however, the coefficients are quantized to a small number of
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bits in order to obtain a reasonable compression ratio. Further-
more, for the affine transformation to be contractive, the scaling
coefficient s is usually restricted to the interval between — 1 and
+1. As a result, the domain block found in the nearest neighbor
search may not be the one that yields the minimum E(R, D)
when the transform coefficients are quantized and clipped.

To deal with the problem, Saupe proposed to search for not
only the nearest neighbor, but also the next five or ten nearest
neighbors. However it is still possible that the optimal or near-
optimal domain block is not obtained in the list of nearest neigh-
bors [16]. As discussed in Section I, the real issue is that Saupe
has solved the minimization problem in (1), when we actually
want to solve the full search problem in (3). In the next section,
we present a modified formulation that is based on full search.

I1I. NEW APPROXIMATE NEAREST NEIGHBOR
SEARCH ALGORITHM

A. Solving the Full Search Problem

We start with the full search problem in (3). As advocated by
Jien & Lepspy [18] and by Tong & Pi [19], we subtract the DC
component of all the image blocks (i.e., we project the image
block vectors onto the orthogonal complement of the subspace
spanned by the vector ). The full search problem becomes

si(D —dI) — (R - &0

)
Note that the fractal parameters are now parameters s and 7,
instead of the conventional scaling s and luminance offset g.
Let {s;}, {7} be the quantized levels of the fractal parameters
s and 7 respectively. The collage error using these quantized
parameters is

min E(R, D) = min min |
De DcQ s;, T

E(R, D;s;,7%) = ||s: (D — dI) + 71 — R||?
=52 ||D —al||® + |R — 71|
—25;{(D —dI,R— 7.I). (6)

Noting that D’ = D — [ is orthogonalt to the subspace spanned
by I, using (2), we have

(D—dI,R— Iy = (D —dI,R—#I) =s||D—dI|>.

Substituting this back into (6) and subtracting the expression for
E(R, D) in (1), we have

E(R,D;s;,7) — E(R,D) = (s; —s)2 || D — dI||?
+N(T — )% (D

Equation (7) gives the additional error caused by the pre-
quantization of the fractal parameters. In [19], Tong and Pi an-
alyzed this quantization error and derived an optimal quantiza-
tion and bit allocation scheme for the fractal parameters s and
7, which is henceforth adopted. Returning to (5) and noting that
the quantization level 7z depends only on the range block R and
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is independent of the domain block D, the full search problem
is now reduced to

min
DeQ

E(1, D) = min min ||s; (D —dI) — (& - 7D
= min S'f (lnin
BN De2

(8)

Equation (8) means that for each fixed quantized level for
the scaling s;, the best matching domain block can be found
by searching for

(D —di) — )]

crr = min

(R—mD)||?
Dc 53

which can also be converted to a nearest neighbor search similar
to the steps outlined in Section II. The overall best matching
block is then obtained by minimizing the weighted err over
the quantized levels for s;. Thus, (8) leads to the following new
algorithm.

Build a kd-tree to store the normalized
domains {DY : D' =D —dI, D e Q};
FOR each range block R' =R —7+#1,
set min_err — infinity;
FOR each s,
Search the tree for the DD such that
| D'~ R /5;]? is minimum (by nearest neighbor

search). Return the corresponding domain
D and err = |D' — R'/s;|%:
err = err = s7;
IF err < inin_err
min _err — err; min _D = I, min _si = s;;
ENDIF
END
END

The new algorithm returns the optimal domain block DD and
its associated quantized scaling coefficient s;, which minimizes
the value of E(R, D).

Although the running times for each range block is roughly
proportional to the number of quantization levels for s, the
search time is still comparable to that of Saupe’s algorithm.
This is because in order to compensate for the effects of
quantization error, Saupe’s algorithm searched for, say, the
top five to ten closest neighbors. From [17], we know that the
running time of the algorithm for each query is O(klog Np),
where k£ is the number of nearest neighbors to be returned.
On the other hand, a small number (usually four or cight) of
quantization levels of s are often sufficient to give good results
[19], the actual running times of the two algorithms should be
comparable.

B. Saving Memory Space

The problem of large memory requirement for the data struc-
ture in conventional ncarest neighbors search approach is ad-

Joo—an -z ).
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dressed in the implementation of our new algorithm, borrowing
auseful programming trick from Fisher [12]. Before running the
new algorithm, the image is first pre-decimated into four lower
resolution subimages. Each pixel in the first subimage is the av-
erage value of four neighboring pixels in anonoverlapping 2 x 2
block starting from position (0, 0) in the original image. The
other three subimages are generated in a similar manner, using
nonoverlapping 2 x 2 blocks starting from positions (0, 1), (1, 0)
and (1, 1) of the original image respectively. An &V x N subblock
in any of these subimages is then just the pre-decimated version
of a 2N x 2N domain block in the original image. By doing so,
we save a lot of time otherwise used for repeated spatial con-
traction of the domain blocks. Moreover, this trick allows us to
save memory in the kd-tree construction.

For the kd-tree, data points are stored in the leave nodes. In
our implementation, instead of storing the coordinates of each
DY in a leave node, we store only the identity of the subimage
that contains the corresponding domain block DD and its posi-
tion in the subimage, as well as the value of d. We extract the
pre-decimated domain block D from its subimage and calcu-
late D’ only when the leave node is encountered in a search. In
this way the memeory requirement is substantially reduced. In
Section I1-B, we have already noted that the space for a leave
node is 258 bytes if coordinates of DD’ are stored. On the other
hand, our scheme only takes six bytes (two bytes for position
and four bytes for d). Each internal node stores a pointer to
each of the left and right children and several other fields for
recording the space splitting parameters. Roughly it takes about
20 bytes for an internal node. As the kd-tree is a balanced bi-
nary tree, the number of internal nodes is almost the same as the
number of leave nodes. Hence, the memory saving is

(20 + 6)
(20 + 258)

The memory saving allows the processing of a larger image
or allows a larger domain pool to be used in the search. The
tradeoff for the memory saving is the extra processing time of
data points in leave nodes. The overhead in the processing time
will not be too significant because the computation of each data
point involves only an additional vV x /N floating point minus
operations, which should be relatively small in comparison with
other operations in the search (e.g., calculating Euclidean dis-
tance, which accounts for most of the running time).

1 == 90%.

C. Approximate Nearest Neighbor Search

It is known that for a d-dimensional key, when 2¢ is compa-
rable to the number of keys in the kd-tree, the algorithm works
poorly (for a 4 x 4 range block, d equals 16). Arya et al. [17]
partially solved the problem by relaxing the requirement of
finding the nearest neighbor to that of finding an approximate
nearest neighbor. The method introduces a search parameter, ¢,
to the kd-tree query, which is the maximum allowable relative
error of the approximate nearest distance that will be found to
that of the true minimum distance. That is, the distance of the
query point to the approximate nearest neighbor is

d<(1+e)d

where d is the distance to the true nearest neighbor.
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Fig. 1. Scatter plot of the RMSE versus standard deviation of range blocks for
LenaS12.

Arya et al. reported that empirically a seemingly large £, say
three, returns the true nearest neighbor about 50% of the times
and the average relative error is within 10% of the true min-
imum distance, while the searching time is reduced by orders
of magnitude [17]. As with Saupe, we have incorporated this
enhancement to our new algorithm and gained significant im-
provement in speed at negligible degradation of search quality.
As a further enhancement to the algorithm, we have derived an
adaptive method to determine the best value of £ that should be
used for each range block. The adaptive epsilon scheme and the
incorporation of quadtree encoding into our new algorithm are
discussed in the next section.

1V. ADAPTIVE SCHEME

A. Motivation

Let RMSE(R) = minpea / E(R, D)/ N2, where N is the

dimension of R and D. This quantity is the root-mean-square
error between the range block and the best matching trans-
formed domain block. There is theoretical and empirical
evidence that RMSE(R) of a range block is positively corre-
lated to the standard deviation of the range block [19]. Fig. 1
shows a typical scatter plot of the RMSE versus the standard
deviation [denoted by std(Z?2)] for the ranges blocks in the Lena
image.

The plot shows that range blocks with smaller standard devi-
ation usually have smaller RMSE. Since ¢ is the upper bound of
the relative error in approximate nearest neighbor search, the re-
sults suggest that range blocks with smaller standard deviation
can rolerate a larger value of €. Thus, we propose to adapt the
value of & for each range block based on its standard deviation.
It is anticipated that such an adaptive-& scheme can speed up the
search while maintaining the image quality.

B. Error Modeling

In the last section, we argue why the value of £ should be a
function of the standard deviation of the range block. For each
range block, there are two aspects of the encoding that are af-
fected by the value of £: i) time to find the best matching domain
by approximate ncarest neighbor search and ii) the matching
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Fig. 2. Total running time versus epsilon.
error, ARMSE(R, ¢), between the range block and the domain
block that is found by the approximate nearest neighbor search

ARMSE(R, &) = 1/ E%QE)

Since the search is approximate, this error depends on the
value of € and is in general larger than RMSE(R).

Our criteria to construct £ as a function of the standard devi-
ation of range block is to minimize the average matching error

Ngn T.(e) = / E[ARMSE(R, )| X (R) = z| p(z)dz
Jo (10)
subject to the constraint on average encoding time
o0
Ti(e) = /0 t(e)p(z)dr = to an
where p{x) is the probability density function for the standard
deviation, X () = =z, of the range blocks; ¢(¢) is the searching
time using the approximate nearest neighbor search with the
corresponding € parameter; and E[.] is the expectation operator.
Note that RMSE(R), ARMSE(R, ) and X (R) are here treated
as random variables with the sample space being the set of range
blocks R over a certain class of images to be specified later.

In order to solve the above optimization problem, we have to
find accurate models for ¢(e) and E[ARMSE(R, )| X (R) = x].
These models should also be simple enough to facilitate anal-
ysis. To find #(¢), we fixed the value of &, ran our approximate
nearest neighbor search algorithm for all the range blocks and
measured the aggregate running time. The experiment was re-
peated for values of € ranging from one to ten. The total running
time is plotted against the value of € for the Lena image in Fig. 2.

A curve of the form k/e is fitted to the data points using re-
gression analysis. It can be seen from Fig. 2 that this simple
model fits the data point fairly well. Hence, the following equa-
tion is used to model t(e):

k
t(e) = ?1 (12)
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The modeling of E[ARMSE(1Z, )| X (R) = x] requires more
work as the quantity depends on the approximate searching al-
gorithm as well as on the fractal transform. To isolate the effects
of the searching algorithm, we first consider the quantity

ARMSE(R,e)

1
RMSE(R)

RE(R, ) ==

which measures the rclative error of the approximate nearest
neighbor search and hence should only depend on the search
algorithm. For each fixed value of £, we ran our approximate
nearest neighbor search algorithm and calculated the mean value
of the relative error for all the range blocks, which should be a
good estimate for E[RFE(e}]. The experiment was repeated for
values of £ ranging from 1 to 10 for the Lena image. The plot of
the mean value of RE(I, ) against € is given in Fig. 3, which
showed that a linear regression model fits the data quite well.
This is consistent with the findings of Arya er al. [17]. We thus
use the following equation to model E[RE(R, )]

E[RE(R,e)] = kae. (13)
Next, we need to consider the collage error RMSE( ) and how
it varies with the standard deviation of the range blocks K. The
plotin Fig. 1 clearly showed that the RMSE is tightly bounded
by linear functions of the standard deviation of the range blocks.
This suggests (and is confirmed by empirical plots of many test
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TABLE I
CORRELATIONS FOR THE LENA IMAGE

E=5 e=10
P(RE(g), X) -0,1078 -0.0478
p(RE(€e), RMSE) -0.0987 -0.0406

images) that the mean value of RMSE can be modeled by the
linear model

E[RMSE(R)|X(R) = z] = kax. (14
Lastly, we further assume that
RE(R, £} is independent of RMSE(/2) and X (RR). (15)

Assumption (16} is intuitively plausible because the relative
error made by approximate nearest neighbor search should only
depend on the search method and its search parameter €. There
are no obvious reasons why this should have anything to do with
the position of the query point in the Euclidean space or the dis-
tance to the true nearest neighbor. Nevertheless, some evidence
of the validity of this assumption is given in the following.

Given two independent random variables X and Y, their cor-
relation coefficient p(X, Y} should be zero. Although the con-
verse is in general not true, this scrves as an evidence for the
independence between the two random variables. The estimates
of these correlation coefficients are calculated from the sample
of range blocks taken from the Lena image and are tabulated in
Table I. As the correlation coefficients are quite low, they pro-
vide statistical support for assumption (15).

We now derive an expression for EJARMSE(R, )| X ([R) =
x] [see the equation at the bottom of the page].

C. Optimal Search Parameter
We first consider the constant £ case. Let ¢ be the solution
of the problem. From the constraint (I 1) and model (12)

k
ﬂ(é‘n)ztoi“&:tn@&"o:ﬁ. (16)
£0

to

Now, let the search parameter ¢ = £(x) be a function of
the standard deviation, x, of range blocks. The problem can be
solved by the method of Lagrangian multiplier and calculus of
variations. The constrained optimization problem (10)—(11) be-
comes
Il'(lil)l / (E[ARMSE(e, 2)| X (R) = x]

(=) Jo
+At{e))p(x)dr

ARMSE(R, )

E[ARMSE(e)| X (R) = z] =E l:

RMSE(R)

RMSE(R)| X (IR) = x}

=E[(RE(s) + 1)RMSE(R)| X (R) = x]
=E[(RE(¢e) + 1)]E[RMSE(R)| X () = x]

=(1 + koe)kzx

(by assumption (15))
(by models (13)—(14))
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where A is the Lagrangian multiplier. The solution to this opti-
mization satisfies the Euler-Lagrange equation:

dg d Bg) —0

de  dx \ d¢’
where ¢’ denotes de/dx and
g(x,€) =(E[ARMSE(s, )| X (1) = z] + Ai(e))p(x)
_ ((1 ko )it + %) ()

(from models in Section I'V-B).

Since g is independent of £/, the Euler-Lagrange equation re-
duces to

‘g Ak
% =0 = (kag.’B — P )p(.’lﬁ')

Ak1 \/T
k2k3 xr )

Substituting the expression of () into the constraint equa-
tion T,(€) = tg., we solve for A
kaks

(= o) k (e o}
/0 ?130(:1:)(1;1: =y = /0 k1 —)\-]{—:I-\/:Ep(m)dm

o /B [ ]

e[vx]

to

=0 = e{x) = (17

2

—tg = A = ki1 koks

Substituting the result back into the expression of (&) in (17)
and noting that £qg = kj /#o for the case of constant €, we finally
obtain

This adaptive scheme for the search parameter ¢ is optimal for
the class of images for which our models and assumptions in
Section I'V-B hold.

(18)

e(x) = €o

D. Quadtree Partitioning

To improve compression ratio while maintaining the decom-
pression quality, we incorporate the well-known technique of
quadtree partitioning [12], allowing up to n, number of quadtree
levels. Hence there are n, domain pools for the different range
block sizes. Although there are several new split-decision func-
tions (see [20] and references therein) that can speed up the con-
ventional quadtree encoding, we shall not consider these so that
we can concentrate on studying the effect of our adaptive ap-
proximate search. We thus adopted the usual split-decision func-
tion based on the collage error and split when ARMSE(Z, £) is
larger than a given tolerance 75, or when the highest quadtree
level is reached (i.e., when the smallest allowable range-block
size is reached).

It was mentioned in Section II1-C that the kd-tree algorithm
does not work well for points in high dimensional space. Thus
in our gquadtree implementation, we will run into problem at
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low quadtree levels (i.e., large range-block sizes). To cope with
the problem, domain blocks which are larger than the smallest
allowable size are down-tiltered to the smallest allowable size
before inserting inte the kd-trees. The down-filtering is per-
formed by the averaging of 2 x 2 blocks of neighboring pixels.
Range blocks which are larger than the smallest allowable size
are also down-filtered before querying for its nearest neighbor
in the kd-trees. Recall that in order to save memory space we
do not store the coordinates of transformed domain blocks in
the kd-tree. Instead, we store only the identity of the subimage
which contains the domain and its position in the subimage. The
down-filtering of domain blocks is processed by a pre-decima-
tion scheme similar to that described in Section II1-B.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Implementation Details

All the results in this paper were obtained from experiments
performed on a PC with an Intel Pentium 11 450 MHz CPU and
128 MB memory. We tested our algorithms on six well-known
512 x 512 gray level images, namely, Lena, Baboon, Peppers,
Bridge, Gold Hill, and Couple obtained from the City University
IPL image database (http://www.image.cityu.edu.hk/imagedb/).
However, only results for L.ena are shown.

The range block mean is quantized uniformly between zero
and 255. The scaling coefficient was restricted to values be-
tween zero and one and was quantized uniformly with quantiza-
tion levels equal to i /2% for i = 1to 2%, where b, is the number
of bits for s. A total of nine quantization bits for the transforma-
tion parameters were used and were allocated by the optimal
allocation scheme [19] referred to in Section II: the scaling
parameter was allocated two bits and the parameter {7} was
allocated seven bits. The smallest allowable range block size
is 4 x 4. Additional results were generated using a total of ten
quantization bits for Section IlI-B below; the optimal alloca-
tion scheme then assigns three bits for the scaling in our new
algorithm.

B. Performance of the New Algorithm

First of all we examine the performance of our new algorithm
with constant search parameter g and no quadtree (or equiva-
lently, ng, = 1). Fig. 4 summarizes the PSNR at different run-
ning times between our new algorithm and Saupe’s. Since Saupe
uses the conventional scaling and luminance offset parameters,
we cannot apply our optimal bit-allocation scheme as given in
[19]. Thus we tried out various bit-allocation schemes as sum-
marized in Fig. 4(a). Note that there is a wide variation of perfor-
mance between the different bit allocations. The optimal alloca-
tion of five bits (i.e., 32 levels) for scaling and four bits for the
luminance offset is used for comparison with our algorithm [see
Fig. 4(b)]. Similarly, we repeated the calculations using a ten-bit
quantizer: Fig. 4(c) shows the results of the different bit-alloca-
tion schemes for Saupe’s method and the best allocation scheme
is used for comparison with our algorithm, as shown in Fig. 4(d).

Each curve in Fig. 4(b) and (d) may be considered as a para-
metric curve with parameter €. The point €5 = 1 starts at the
far right of each curve and moves toward the left. As the value
of parameter £g increases, the encoding time drops substantially
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Fig. 4. Plots of PSNR versus encoding times nine-bit quantization: (a) bit-allocation schemes for Saupe’s method, (b) comparison with our new algorithm; ten-bit

quantization, {c) bit-allocation schemes for Saupe’s method, and (d

while the PSNR decreases slowly at first but gradually the ef-
fect on PSNR becomes more marked at large g, forming an
upside down L-curve. Consider the top curve in Fig. 4(b) that
represents the results of our new algorithm in the nine-bit quan-
tization case. When 3 = 3, the encoding time is 21 s while
the PSNR is 36.81. For comparison, the linear brute-force full
search required 1717 s and the PSNR achieved is 37.08 dB. This
represented a speed-up factor of over 80 at the expense of a
slight drop of PSNR of 0.27 dB. When =g is increased to nine,
the speed up is more than 280 times while the PSNR decreased
by less than 1 dB only. This shows that the performance of the
our algorithm is excellent compared to brute-force linear search.
For Saupe’s algorithm, there is one more parameter that is
adjustable, namely the top n nearest neighbors returned by the
approximate nearest neighbor search (see Section 1I-B). Each
value of n traces a separate curve. From the curves in Fig. 4(b)
and (d), it can be seen that a smaller n is favorable for small
running time, while a larger n is favorable for higher PSNR.
Comparing the results with Saupe’s, our new algorithm out-
performs the conventional algorithm, regardless of the value of
n.. At small running times, our algorithm performs especially

) comparison with our new algorithm.

well and obtains a PSNR which is more than 1 dB better than
the conventional algorithm. Moreover, our new algorithm can
meet very high decompression requirement (e.g., 37 dB in the
nine-bit quantization case), which the conventional algorithm
cannot meet. Similar results were obtained for other test images.

C. Effects of Adaptive Epsilon e

In this scction, we investigate whether the use of adaptive
epsilon could further enhance the new algorithm. Fig. 5 shows
the plots of the PSNR against running time for our algorithm
using both constant £ and adaptive epsilon as given by (18).

From the figure, it can be seen that the adaptive epsilon
scheme is able to give a better PSNR with the same running
time, especially at small running times. The gain in PSNR
roughly ranges from 0.2 to 0.4 dB. The improvement is much
more impressive if we consider the gain in encoding time
at a fixed PSNR level. For example, at PSNR of 36.6 dB,
the adaptive epsilon scheme required 7 s versus 13 s for the
constant epsilon scheme, a speed up factor of almost two. The
speed up factor continues to increase as the PSNR increases.
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At PSNR of 37 dB, the adaptive epsilon scheme required 29 s
versus 73 s for the constant epsilon scheme, the speed up factor
reaches 2.5,

Furthermore, in the adaptive scheme, the coding performance
is more robust to the choice of g5, as reflected by the fact that
the points for the adaptive epsilon case were more clustered
on the curve than the respective points on the constant epsilon
case. Specifically, for the constant epsilon case, the ten values of
€0 = 1 to 10 lead to wide variation of performance: the PSNR
ranged from 36 dB to 37 dB and the encoding time ranged from
7 s to 138 s. By comparison, the adaptive scheme was much
more robust, with the PSNR ranging from 36.4 dB to just over
37 dB and the encoding time ranging from 7 s to 102 s. Other
test images exhibited similar behavior. Nevertheless, we discuss
how an appropriate default value of o can be determined in the

next subsection.

D. Default Value of ¢

In our approximate nearest neighbor search algorithm,
different values of ¢, give rise to different running times and
PSNR. Thus gg serves as an adjustable parameter to balance the
tradeoff between encoding time and fidelity. We would like to
find an optimal default value of 4 that users can start with. We
borrow the idea of the method of L-curve, which is commonly
used in solving ill-posed least square problems. The L shape of
the PSNR versus encoding time curve suggests that the turning
point gives the best tradeoff since at the other two extremes, the
curve flattens and hence changing the paramcter cannot give
appreciable improvement in performance. This turning point is
optimal in the sense that small deviation from this parameter
lead to sharp deterioration of one aspect of performance while
the other aspect of performance does not have appreciable
improvement.

Referring back to Fig. 5 and focusing on the top curve (corre-
sponding to the adaptive epsilon case), we see an (upside down)
L-curve for the PSNR versus encoding time plot. The corner of
the L-curve corresponds to £ = 3 to €0 = 4. Slightly larger
€0 leads to sharp drop of PSNR while encoding time only de-
creases slightly. Similarly, slightly smaller £¢ increases the en-
coding time enormously while the PSNR only marginally in-
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Titiwa

st 5 0
Fig. 6. Relationship between PSNR, CR, and encoding timne for a fixed value
of n,.

TABLE 11
RELATIONSHIP BETWEEN THE INPUT PARAMETERS AND DIFFERENT
ASPECTS OF THE PERFORMANCE

Parameter/Performance t PSNR CR
€0 large -ve large -ve very small -ve
ny large +ve large -ve large +ve
To small -ve large -ve large +ve

creases. Hence, the default value of g should be set to a value
around three to four. Results from the other test images also sug-
gest a similar default value. This is consistent with the findings
by Arya et al. for a wide range of problems {17].

E. Resuits of Quadtree Partitioning

In this section, we discuss the results of incorporating
quadtree encoding into our new algorithm. In addition to the
€o parameter, we now have two more, namely i) the number of
quadtree levels n, and ii) the split-decision function tolerance
To. The results are also three-dimensional (3-D), namely
i) encoding time ¢, ii) compression ratio CR, and iii) PSNR.

The values of n, are discrete and in the experiments four
values of n, were used: 1, 2, 3, and 4. If we fix the value of
ng and vary the values of e, and 16, the set of points (t, CR,
PSNR) will form a surface in the 3-D space as shown in Fig. 6.
For each value of n, there is one such surface and the surfaces of
different n, may cut one another. We would like to investigate
how the input parameters affect the performance of the encoder
and hence find a heuristic for choosing the default values for
these parameters.

From experimental results on Lena, we summarized the effect
of each parameter on the three aspects of coding performance
in Table II. Each cell describes the significance and the sign of
correlation between a particular aspect of performance and an
input parameter (keeping the other two parameters fixed). These
results are intuitively plausible and were found to be true for the
other test images.

Note that £ has a very small effect on CR. Therefore, if we
fix the value of ng and 75 and varies £ only, we will be able
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to trace the graph of PSNR against encoding time for a constant
CR. Geometrically, it is a cross section of the surface shown
in Fig. 6 when viewed along the CR-axis. The PSNR-encoding
time graphs for different values of n, and 75 are shown in Fig. 7.
These PSNR-encoding time graphs look similar to those when
no quadtree partitioning is used. By the L-curve argument of

Rate distortion curves for different number of quadtree levels n
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¢ and £q. The average encoding time is shown in each subplot.

Section V-D, we should choose the default value of 4 to be
around three and four.

Similarly, because Ty has little influence on the encoding
time, if we fix the value of g and n, and varies 7 only, we
will trace the graph of PSNR against CR for a constant encoding
time. It is a cross section of the surface in Fig. 6 when viewed
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TABLE 1II
COMPARISON WITH SAUPE’S RESULTS
Saupe’s Algorithm Our Algorithm
Images .
Adjusted
PSNR CR Time(s) PSNR CR Time(s)
35.80 8.31 60 35.83 .04 17
Lena 512 3540 8.39 60 35.40 10.55 21
34.57 8.45 39 34.57 11.87 8
26.69 4.16 168 26.73 5.21 25
Baboon 512 26.13 4.43 90 26.14 5.87 10
25.19 4.75 60 25.82 6.03 8

along the {-axis. Such rate distortion curves for different values
of eg and n, are shown in Fig. 8. Comparing the three curves of
any subplot in Fig. 8, we found that the rate distortion curve is
best when n, = 3. Results for the other test images were sim-
ilar, with the exception of the Bridge image, for which n, = 2
is slightly better.

Finally, in Table ITI, we compared our results to those of the
conventional nearest neighbor search approach that were re-
ported in the original paper by Saupe [16]. It should be noted
that the results on running times reported in Saupe’s paper were
measured on a SGI Indigo2 running an R4000 processor, a ma-
chine that is about three times as fast as our PC. Thus for fair
comparison, we adjusted Saupe’s times by a factor of three to
compare with our times. It can be seen from the table that our
new algorithm is able to achieve better compression ratios for
the same or better PSNR and, moreover, were achieved at a
much shorter running time.

V1. CONCLUSIONS

In this paper, we have examined Saupe’s nearest neighbor
search approach of fractal image compression and sought to im-
prove it by reformulating the search approach in the discretized
parameter space. We have adopted an alternative parameteriza-
tion of the affinc transformation and have shown how it could
be combined with approximate nearest neighbor search to yield
a superior algorithm. Experiments showed that our algorithm
ts able to obtain a better reconstruction PSNR with smaller en-
coding time. We have also described a simple modification to
the data structure that can significantly reduce the memory re-
quirement of storing the search tree.

Furthermore, we have proposed an adaptive approximate
nearest neighbor search scheme and derived an optimal formula
to determine the value of the search parameter epsilon « that
should be used in the approximate nearest neighbor query for
each range block. Empirical results have confirmed that the
adaptive scheme was able to yield further improvement to the
algorithm.

We have also incorporated the quadtree partitioning to our
new algorithm so that the compression ratio can be adjusted,
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with the reconstruction PSNR as a tradeoff. Results showed that
our new algorithm Icads to better rate distortion curves than the
conventional nearest neighbor search. Moreover, our superior
results were achieved at much better encoding times.

Lastly, many existing time complexity reduction techniques,
such as the classification of range and domain blocks by Fisher
[12] and domain pool reduction schemes (see survey in [1]),
can be incorporated into our algorithm. Other interesting and
useful future enhancements to our work include using different
partitioning schemes and entropy encoding for the fractal codes
to further improve the compression ratios.
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