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Abstract

There has been tremendous progress in fractal compression since the pioneer work of Barnsley and Jacquin in the late
1980s. As the encoding time complexity issues are gradually being solved, there is a steady growth of applications of
fractals, especially in hybrid systems. However, such fractal hybrid systems tend to be rather difficult to analyze, and
part of that difficulty lies in the quantization of the scaling and luminance offset parameters adopted in most fractal
compression schemes. In this paper, we present theoretical and empirical justification for a well-known but underused
alternative parametrization for the fractal affine transform. In particular, we shall present a detailed analysis of a hybrid
fractal-LPC (linear predictive coding) compression scheme using the aforementioned alternative affine transform

parameters.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fractal image encoding has generated much
interest due to its promise of high compression
ratio at good decompression quality. Although it
suffers from long encoding times, it has the
advantage of very fast decompression. These
properties made it a very attractive method for
applications in multimedia: e.g. it was adopted by
Microsoft for compressing thousands of images in
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its Encarta multimedia encyclopaedia [3]. More-
over, fractal encoding is much more than just
another compression method since the encoding is
capturing the self-similarity of the image and such
fractal structures can be further exploited for
value-added image processing. Thus fractal encod-
ing has been widely used in, e.g. special image
archive applications ranging from MR, ECG, to
space images [21,22,30], feature extractions [25],
image watermarking [23], image retrievals
[1,6,16,26], texture segmentation [13] and many
other image processing applications.

The basic implementation of Fractal Image
Compression was pioneered by Jacquin [11,12]
based on the theory of iterated functions devel-
oped by Hutchison [10] and Barnsley [4,5]. The
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essence of Jacquin’s fractal compression is to
exploit block-self-similarity. The image is first
partitioned into n x n blocks called range blocks.
A pool, Q, of spatially contracted domain blocks
D is generated from the image by sliding a 2n x 2n
size window through the image in fixed step size
(domain block skip size), then spatially contract
such 2n x 2n domain blocks into the same size as
the range blocks by spatial averaging of 2 x 2 sub-
blocks. For each range block, R, we find the best
matching domain block D such that [|[R — T(D)|| is
minimized. The affine transform 7T'(D) is (usually)
of the form:

T(D) = sD + oI, 1)

where the affine parameter s is the scaling
coefficient, o is the luminance offset. D is the
spatially contracted domain block, and I is a
block of the same size as D, but with all entries
equal to 1. In many fractal compression schemes,
additional isometric operations are also applied
after contraction. However, such isometries in-
crease the encoding time with little gain in

compression quality [24] and we shall not consider

their use in this paper. Following Fisher [8], we
shall adopt even value domain block skip size
so that the contracted domain blocks can be
directly obtained from the pre-decimated image
for efficiency.

Although many enhancements to Jacquin’s
basic scheme have been proposed (see [29] for the
latest review), virtually all of them use the same
affine transform as in Eq. (1). There are of course
attempts to generalize the transform, but most still
adopt the same form while imposing extra
structures on the affine parameters. For example,
Oien et al. [20] suggested that the luminance offset
assumes a linear function in the position indices,
while Monro and Dudbridge [17] generalizes to
third-degree polynomials.

Here we advocate replacing the luminance
offset by an alternative affine parameter g.
Specifically, the alternative affine transform takes
the form:

T(D) = s(D — dI) + g1, 2

where d is the mean intensity of the (contracted)
domain block and I is an identity block where

every entry is 1. In fact, other researchers have
implicitly made use of this mean-removing trans-
form. For example, Bani-Eqgbal [2] carried out all
the computations in an orthogonal complement
sub-space, which is mathematically equivalent to
using the transform in (2). Gien and Lepsey also
used orthogonal projection to improve decoder
convergence [19]. Tong and Pi [27], and Tong and
Wong [28] explicitly adopted this alternative
parametrization, which considerably simplified
the mathematical analysis. In this paper, we
further discuss the properties of this parametriza-
tion and how it can facilitate analysis of a hybrid
fractal-LPC compression scheme.

The idea of hybrid fractal compressions has
been explored in a number of papers including
[31,15,18]. The connections of fractal compression
with wavelet transform was discussed by Davis [7],
and successful hybrid system has been proposed by
Kim et al. [14] that demonstrated superior rate-
distortion performances over state of the art
wavelet compression scheme. However, since such
hybrids are essentially conventional encoders with
enhancement provided by fractal codes, they are
not fractal compression schemes as such and hence
we would not be able to exploit the fractal (or self-
similar) nature of the images for value-added
image processing as discussed at the start of this
section. In this paper, we shall discuss how a
hybrid compression scheme that is built around
the fractal encoder can be analyzed by adopting a
non-conventional fractal parametrization. To de-
monstrate our approach, we shall construct a toy
hybrid encoder and present a full analysis of the
hybrid. The advantage of this approach is that we
shall maintain the fractal encoder at the heart
of the hybrid and hence will be able to exploit the
fractal nature of the image as captured by the
fractal codes.

In Section 2, we review our mathematical
analysis of an alternative parametrization and
show its superiority over the conventional affine
transform. In Section 3, we describe how the new
parametrization can be exploited to yield a
hybrid compression scheme that combines fractal
with linear predictive coding (LPC). A mathe-
matical analysis is carried out to provide theore-
tical justification for preferring the alternative
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transform to the conventional one. Experimental
results are presented in Section 4. Finally, conclu-
sions are discussed in Section 5.

2. Mathematical analysis of the alternative
parametrization

2.1. Unconstrained fractal compression

We begin with no constraints imposed. That is,
we wish to minimize the matching error for each
pair of range and domain block:

arg nslign E(R,D) = ||R— s(D —dD) — gl
= (ryg—g—sldy— ) )

The optimal solution is easily obtained by least
squares:
2T _

g = 2 =F, &

_(R-7L,D-dI)
D -dlp

4)

where F is the average pixel intensity of the range
block. Here ¢.,.) is inner product, and || || is the
usual 2-norm. In this alternative affine transform
parametrization, we have the same scaling para-
meter as in the conventional case, while the other
transform parameter, g, is now shown to be the
range block mean 7. This parameter is only a
property of the range block and therefore can be
encoded separately. We shall hereafter refer to
this alternative affine parameter as 7. Note
that this alternative parametrization is the same
as that derived by Qien and Lepsey [19], but
our formulation simplified the derivation consid-
erably.

By comparison, the unconstrained least squares
result for the conventional affine transform
method gives

_(R-7LD - dl)
1D — 1P

g="F—sd ©)

Note how the luminance offset mixes the range
block mean with the scaling coefficient. This
mixing is inefficient and is the main reason for its
inferiority to the alternative affine parameter (see
justification in Section 3).

The minimal distortion for the alternative affine
transform method can be simplified to

(R LD - dI)’
D — dIj?
— IR - A|? = $*1D — dIlP, (6)

E(R,D) =||R —I|I* -

which is, of course, the same as in the conventional
transform case.

So far, this unconstrained formulation gives a
simple basis for fractal compression; namely, we
seek minimizing the distortion over Def by
maximizing the normalized inner product

[{(R—7I,D—dly
\D-dl

The corresponding optimal scaling parameter
can then be quantized.

However, in practice, this scheme is unsatisfac-
tory since we mneed to impose constraints on
the scaling in order to ensure contractivity. It
is better to work with a set of quantized
fractal parameters {s;} and {f} and then to
consider the minimization of the best matching
error [8].

™

2.2. Full search fractal compression

Let & = {5;} and & = {Fy} be sets of quantized
fractal parameters, then the full search scheme
considers the minimization of

B(R, D) =||R — si(D — L) — Fl|?
=|IR - FI)? + s2(|D — 1|

— 25i(R — 7], D — dI). (8)
But
(R-7L,D—dy = (R-7,D—dl)
= —s||D — dl|f*. )

Let us define Eguant to be the additional
matching error due to the quantization of the
affine parameters. Using Egs. (5), (7) and (8), we
have

Equant = E(-R) —E (R>
=(si — HID — dl|? + n*(F — 7). (10)



486 C.S. Tong, M. Pi/ Signal Processing: Image Communication 18 (2003) 483-495

Egq. (10) tells us how to choose the discretized
values of & = {s;} and & = {Fx}, namely, by the
separate Lloyd-Max quantization of the two affine
parameters. Moreover, by minimizing Eq. (10)
with the constraint of using a specified number
of bits for the quantization of both parameters, we
have derived the optimal bit allocation scheme
in [27]:

biotal + 1085 <d;/ var (D))

b1: 2 3

by = broral — b1 (11)

where b; is the number of quantization bits
allocated for the range block mean, and b, that
for the scaling; by is the total number of
quantization bits used. var(D) is the average
variance for the domain blocks in the pool. For
example, for the Lena image, when eight bits are
used, then the optimal allocation is two for scaling
and six for range block mean. By contrast, there is
as yet no such optimal bit allocation scheme for
the conventional affine transform parameters. The
best result in this direction for the conventional
transform case is that due to Hartenstein et al. [9],
which assumes an elliptic shape for the error
functions with a constant ratio between the lengths
of the major and minor axes. But this result is sub-
optimal as different error functions have different
shapes [9].

3. Hybrid fractal-LPC compression

There has been tremendous progress in fractal
compression since the pioneer work of Barnsley
and Jacquin in the late 1980s. As the encoding time
complexity issues are gradually being solved (see,
e.g. [28]), there is a steady growth of applications
of fractals, especially in hybrid systems, e.g.
[14,15,31]. However, such fractal hybrid systems
tend to be rather difficult to analyze. Here, we
shall consider a relatively simple hybrid system
and show how the analysis of such a hybrid can be
facilitated by the adoption of the alternative
parametrization as discussed in Section 2.

For natural images, the range block mean
intensities are highly correlated spatially, and this
observation forms the basis for the LPC of the DC
component in JPEG’s DCT transform coding.
Indeed, our range block means are precisely the
DC component in DCT compression. Thus we can
expect to achieve further compression by entropy
encoding the prediction error of the range block
mean intensities, yielding a hybrid fractal-LPC
scheme. Note that this scheme differs from the
hybrid LPC-IFS scheme proposed by Nappi and
Vitulano [18]. In their case, the coding scheme is
primarily an LPC followed by further fractal
compression of the prediction error, whereas our
scheme is primarily a fractal compression, fol-
lowed by LPC compression of the DC component.

One of the advantages of our hybrid scheme is
that the LPC part can be implemented using the
JPEG DC compression protocol, which has been
well developed for general applications. Moreover,
this hybrid scheme may be used for thumbnail-
based retrieval systems, with the DC component
used for thumbnail display, and which can be
improved to yield the fully featured image by
iterating the fractal codes on the thumbnail as the
initial image.

To test the feasibility of this hybrid and to
facilitate theoretical comparison to the conven-
tional affine transform parametrization case, we
consider the simple previous-pixel LPC. That is,
the prediction of each range block mean is given
by the previous range block, viz. 7(i, /) = F(i,j — 1),
where F(i, /) is the predicted mean intensities for the
(i,/)th range block. The histogram for the predic-
tion error (i.e. the difference between successive
range block means) is plotted in Fig. 1. Similarly,
we apply the same predictive coding to the
luminance offset in the conventional affine trans-
form case. The corresponding histogram is given
in Fig. 2.

Clearly, the predictive error for the range block
mean intensities are much more concentrated at
zero than that for the luminance offset, which is
closer to a triangular shape than to the Laplacian
distribution that the range block means appear to
exhibit. Similar differences in distributions are
observed for the baboon image, as given in
Figs. 3a and b. We can understand the difference
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Fig. 1. Histogram of difference of range block average intensity, s-bits =2, r-bits =38.

by referring to the relationship between the affine
parameters in Eq. (5), which gives the relationship
in prediction error as follows:

g—@:F—Sa?—(?wﬁ?D:f—?—(sc?—ﬂ)
= var(g — §) = var((F — ) — (sd - sd). (12)

But from Egs. (5) and (7), we see that the search
for the optimal matching domain block and its ass-
ociated scaling depends only on the respective blo-
cks normalized to be zero-mean, namely, R— 7l
and D — dI. Thus we may reasonably assume that
the range block mean (and its prediction error) is
statistically independent of the scaling and the
domain block mean (and their prediction errors).
Thus Eq. (12) leads to the inequality:

var(g — §) = var((F — ) — (sd — 5d)
= var(g — §) = var((F — ) + var(sd — 33))
= var(g — §) > var(F — 7). (13)

Thus the variance of the prediction error for the
luminance offset is always greater than that for the
range block mean. With reference to the comment
after Eq. (5), the mixing effectively broadens the
distribution of the error considerably.

We now attempt to characterize the broadening
by making the following reasonable assumptions
about the distributions of the above parameters:

1. the scaled domain block mean sd is uniformly
distributed (from 0 to D, since we only consider
positive scaling)

9 7 and sd are statistically independent (as
remarked above)

3. the prediction error y = (F — #) has a Laplacian
distribution (1/20)e~MV/°

Assumptions 1 and 3 are supported by empirical
results, while assumption 2 is plausible since in our
formulation, the search for the best matching
domain blocks is made independent of the block
means. Moreover, we have calculated the correla-
tion for 7 and sd for various images, and their low
values (e.g. for the Lena image, the correlation is
0.0951) are consistent with our assumption of
independence.

Using the above assumptions, we now proceed
to analyze the distribution of the predictive error
x = g — § via the following two lemmas.

Lemma 1. We first note that since 5d is just the
translated copy of sd, it has the same uniform
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Fig. 2. Histogram of difference of the luminance offset, s-bits=2, g-bits=38.

distribution as sd, namely,
fHx) = -115 for xe[0, D).

Thus —&d has the distribution
frx) = % for xe[-D,0].

If we further assume that sd is white (i.e. no
spatial correlation), then the distribution for
z = (sd— §d) is given by the convolution of the
two uniform distributions:

p2) = / fi(z = x)f2(x) dx.
-0
Consider the case z> 0, then we have
0
. 1
p:(z) = / filz = JC)-E dx.
-D
Now
. 1
fiz—x) = B©0<z —x<D
«wz—D<x<zand z<D.

Hence, combining the upper limit of x at 0,
we have

0 11
pz(Z)— _/;_DBde’
1 D—z
=pl == Dl="5r

z<D.
The case for z<0 is similar, yielding the final
result

D —|z|

pA2) = 57 for |z| < D. (14)

Lemma 2. Now consider the prediction error for
the luminance offset

x=g—§=(F—F—(sd-3d).

The first bracketed term on the right is assumed
to have the Laplacian distribution g(y) =
(1/20)e™"/%, while the second term has the
triangular distribution found in Lemma 1. Assum-
ing the two terms are independent, then the
distribution for the prediction error for the
luminance offset is given by the convolution

px(x) = _[_ : g(x — 2)p(2) dz.
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Fig. 3. (a,b): Histograms of the difference of the second affine parameter (s-bits=2, g-bits=8) for the Baboon image. The first
corresponds to the results for the range block mean, while the second corresponds to the conventional luminance offset.

Consider the case for x< — D, we have

o 0 1 D4z D 1 D—z
= —_ — —lx-z|/o —|x—zl/o
Ppx(x) /;DO g(x — z)p,(z)dz . /_ , 206 —5—dz+ /0 »—Zae ——dz

p—d 1 /0 e(x—l)/ﬂ'(D _|_ Z) dZ + /D e(x-—z)/a(D _ Z) dZ — _1_ [—O'(D + Z)e(x—z)/a]O_D _ [O_Ze(x_z)/a_](lD
20-D2 -D 0 ZO'D?‘ +[—O'(D — Z)e(x—z)/U]OD + [o.ze(x-—z)/o']OD

fa D
_ O Do, D)o _ pgxley _ T _
= 2D2(e +e 2e¥7) = Foy cosh = 1.

And for —D<x<0, we have

0 0 D _
px(x) = / g(x — 2)p.(2)dz = / _l_e‘|x“‘zl/‘72.j__z dz + / _l_e—lx—zl/a%z_z dz
J -0 J0

-D 20 D2 20
1 x 0 D
= (/ e~ *=I/7(D + z)dz+ / e¥=A/9(D + z)dz + / e*=/9(D — z) dz)
20D+ -D X 0
[o(D + z)e= =/ | — [ge~=D/]* o(D + x) — a*(1 — e"~ D))
=5-55| tlro@+ 2)et= Y, — [?e | =5 —oDe*/® + o(D + x) — 0X(e"/° — 1)
+[—O‘(D _ Z)e(x-z)/a](l)D + [0.26(x-z)/a]([)) +O_Dex/a + GZ(e(x—D)/cr _ x/cr)
1 D .
= W(ZO‘(D + x) + o?(e"P/*2 cosh(x /o) — 26*/7) = D+2x + —gi(e'D/"cosh(x/o*) — /%),
The two corresponding cases for x>0 are
similar, yielding the final result
D—
D2|x| + ;;(e“”/" cos h (;) - e""'/") for |x|< D,
px(x) = —|xl/o (15)
oe

—b—z—(cos h(D/a)—1) for |x| > D.
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In practice, the standard deviation for the
prediction error y = (F — 7) is usually much smaller
than the dynamic range for the scaled domain
block mean = o <D. Thus the distribution in (15)
reduces to

D — |x|
p()=q D?
0 otherwise,

for |x|< D,

(16)

which is a triangular distribution as remarked
earlier in this section.

The Laplacian distribution for the prediction
error of the range block mean has variance 202,
while the triangular distribution (Eq. (16)) for the
prediction error of the luminance offset has
variance D?/6. Hence in terms of variances, the
prediction error for the luminance offset is about
(1/12)(D/ o)* times that for the range block mean.
Thus for images for which the assumptions hold,
we now have theoretical justification for the
superiority of the alternative transform over the
conventional transform.

4. Experimental results

All the programmes were implemented in Visual
C+ + 5.0 on a Dell Pentium II 233 MHz PC, and
most of the experiments were carried out on the
ubiquitous Lena image (256 x 256). Some addi-
tional results were generated from the baboon
image. The range block size is 4 x4, and the
domain block skip is 4. The allocation of bits to
code the two affine parameters follows the formula
given in Eq. (11).

In Section 4.1, we compare the decoding
performance of the two affine transform parame-
trizations. Then in Section 4.2, we evaluate the
performance of our hybrid Fractal-LPC compres-
sion scheme.

4.1. Fractal decoding

In Section 2, we have provided theoretical
justification for preferring the range block mean
to the luminance offset for encoding. However,
it may be argued that the alternative affine
transform in Eq.(2) would lead to a slower

decoder since the domain block mean needs
to be calculated at each iteration: the alternative
transform takes about 30% more computation
per iteration for the decoding. However, in this
sub-section, we shall see that the alternative
transform still leads to better overall decoding
performance because it has better convergence
properties.

In this experiment, we used two bits for the
scaling parameter, eight bits for the range block
mean intensity, and nine bits for the luminance
offset for the Lena image. In Figs. 4 and 5, we see
the effect of the alternative affine transform
parametrization on the convergence rate of the
fractal decoding. The curves showed the PSNR of
the decoded images after various iterations. In
Fig. 4, we used a blank image as the initial image,
and the conventional affine transform required
about 10 iterations before convergence whereas
our alternative affine transform converged after
just three iterations. Since each iteration is about
30% faster in the conventional case, the decoding
time for the alternative transform works out to be
about 40% that for the conventional case. This
result is consistent with the faster convergence
property of @ien and Lepsey’s decoder based on
orthogonal projection [19].

In Fig. 5, the initial image is now a gray image
with intensity of 128. This difference in the initial
image lead to an improvement in the convergence
for the conventional affine transform, achieving
convergence by about five iterations. For our
alternative affine transform, there was virtually no
change in the fractal decoding. These results
showed that our alternative affine transform
parametrization leads to superior decoding that
is robust to the initial image used, even when more
bits were being used in the conventional affine
transform case!

The first three decoded images using the
conventional and the alternative affine transforms
are shown in Figs. 6a—f. The superiority of the
alternative affine transform is obvious, and its
independence to the initial image can be explained
as follows. In the first iteration, the range block
mean intensities already provide a coarse level
approximation for the original image and this is
true for any initial image: the coarse level



C.S. Tong, M. Pi | Signal Processing: Image Communication 18 (2003) 483-495

35

30+

25+¢

PShR
N
o

15

10F

Il

-&~ s-hits=2 r-bits=8

-8B s-bits=2 g-bits=0

i

5 10
iterating No.

15

20

26

Fig. 4. Convergence of [ractal decoding using a blank image as the initial image.

32

30r

e
(w3
T

1]
o
T

—
2}
T

£

-&- s-bits=2 r-bits=8

-B- s-bits=2 g-bits=8

Fig. 5. Convergence of fractal decoding using a uniformly gray image (at intensity of 128) as the initial image.

description is already encoded by one of the affine
parameter in the alternative affine transform. On
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form, no such coarse level description is contained
in the luminance offset, which mixes the range
block mean intensities with the scaling.
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@

Fig. 6. (a—): First three decoded images using the conventional affine transform; and (d-f): first three decoded images using the

alternative affine transform.

In all subsequent experiments, the PSNR results
will be derived from fractal decoding using the
uniformly gray (intensity=128) image as initial
image and iterated for eight times.

4.2. Entropy-encoding

The sharp peak at zero prediction error for the
range block mean in Figs. 1-3 suggests that we
may obtain further compression by entropy
encoding the prediction error. We thus implemen-
ted the basic fractal compression scheme as
outlined in Section 3, with additional entropy
encoding of the range block mean intensity. That
is, we apply arithmetic coding (AC) to the
prediction error of this alternative affine para-
meter. We shall refer to this scheme as LP+AC
(Linear Prediction followed by AC). Similarly, we
implemented the same LP+AC scheme for the
luminance offset in the conventional affine trans-
form case. The results are summarized in Tables 1
and 2. In terms of encoding time, there is
practically no difference to the basic fractal
scheme. The additional entropy encoding is very

Table 1
Results of LP+ AC using the alternative affine transform
Number of bits used for quantization of affine PSNR
parameters
Total Scaling Range Range block
block mean (using
mean LP+AC)
7 2 5 3.83 30.79
8 2 6 4.75 31.29
9 2 7 5.68 31.44
10 2 8 6.58 31.46

fast and is negligible in comparison to the fractal
encoding part. The compression quality of course
remains the same since the LP+AC coding is a
lossless compression scheme.

As expected, the alternative affine transform
outperformed the conventional affine transform.
The third column in Tables 1 and 2 denote the
number of bits allocated for the quantization of
the range block mean/luminance offset in the basic
fractal compression scheme, while the fourth
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column denotes the average bits required in the
LP+ AC scheme. The average savings in quantiza-
tion bit for the range block mean ranges from 1.17
to 1.42 bits per range block, increasing linearly
with the number of bits used. For the luminance
offset, the savings ranged from 0.67 to 1.01 bits per
range block. The difference is graphically illu-
strated in Fig. 7, which shows that the alternative
affine transform parameter consistently yields
higher savings of about 0.5 bit per range block,
while achieving better PSNR decompressions!

Table 2
Results of LP+ AC using the conventional affine transform

Number of bits used for quantization of affine PSNR
parameters

5. Conclusions

We have conducted theoretical and empirical
comparative studies between the conventional
affine transform used in fractal compression with
an alternative affine transform parametrization.
We showed that the range block mean intensity is
a superior affine transform than the conventional
luminance offset. Specifically, we showed that
using the alternative affine transform parametriza-
tion leads to faster convergence of fractal decoding
that is robust to the initial image used in the
decoding. This is particularly important in fractal
compression applications such as the multimedia
encyclopaedia Encarta [3] which would include
images of all types and thus would benefit from the
improved decompression speed without worrying

The alternative affine transform parametriza-
tion facilitated a new bit allocation theory, which
yielded better compression quality in terms of

adopted in all existing fractal compression

Total Scaling Luminance  Luminance about which initial image to use.
offset offset (using
LP+AC)
7 2 5 429 30.86
g 3 3 é;i 31.16 PSNR at the same compression ratio. Moreover,
2 . 31.34 : ;
the alternative affine t
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enhancement at the negligible cost associated with
the simple task of modifying the affine transform
codes.

Finally, the alternative affine parameter facili-
tated analysis of a simple hybrid system made up
of a fractal compression and a simple previous-
pixel predictive coding followed by AC on the
range block mean intensity. This hybrid fractal
compression scheme achieved the same PSNR
with lower bit-rate at essentially the same encoding
time. Clearly, we can expect to do better still by
carrying out more sophisticated predictive-coding
schemes. However, since the optimal predictor for
the range block mean is not necessarily the optimal
predictor for the luminance offset, thus the
theoretical comparison for such schemes for the
two different parametrizations become much more
complicated, and will be the focus of our future
research.
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