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Abstract

In image compression technologies, fractal image compression/decompression has the ad-
vantages of a high compression ratio and a low loss ratio. However, it requires a great deal of
computation, which limits its applications, and so far, no parallel processing technique has been
designed and implemented, In this study, we use neural networks to perform a large number of
computations in fractal image compression and decompression in parallel. The simulation
results show that the quality of images generated by neural networks is similar to that produced
using traditional methods, which verifies the high value of our research, which has shown that
the neural network technology is useful and efficient when applied to fractal image compression
and decompression. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, graphical representation in computers has been widely applied in many
applications because such representations are meaningful to human beings. However,
this approach requires large storage and long transmission time.

The technique of image compression/decompression is useful and important for
reducing the storage space and transmission time. In general, these compression
technologies can be divided into two types — lossy compression and lossless compres-
sion — whether the decompressed image is the same as the original one or not. If the
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proper loss ratio is allowable, the lossy compression methods can achieve higher
compression ratios [11]. o

Three technologies are usually used in lossy compression: vector quantization (VQ),
discrete cosine transformation (DCT) and fractal image compression. The VQ method
partitions an image into numerous sub-images and finds some representatives as
a codebook from them [6,23]. The DCT method converts the gray levels of an image
into other coordinates (e.g., frequency), and then quantizes and stores them [11,24].
By the self-similarity characteristics in an image, an image will converge to an
acceptable status after fractal image decompression [3,9].

Unlike VQ, fractal image compression does not require a codebook for the
decompression procedure [6]. Fractal image compression is also attractive because of
its high compression ratio and low loss ratio properties [24]. Some results have been
obtained using this technique: the Hutchinson metric has been proposed to prove the
condition of convergence [1,8,21], and Mandelbort has generated images based on
fractal theory [217]. By developing a collage theorem and iterated function system
(IFS), Barnsley produced a high compression ratio (10*:1-10°%:1) fractal code, and
this motivated many related researches [1-3,7,10,19]. However, [ractal code cannot be
generated automatically using IF'S [4,14,15,19,24,33]. Jacquin proposed a partitioned
iterated function system (PIFS) to improve IFS so that the fractal code can be
determined automatically [14,15]. However, a great deal of computation is also
required.

Neural network technology is new and useful, and has been successfully used in
many scopes [5,12,13,16-18,20,22,25,27-32]. Stark was the first to propose applica-
tion of the neural networks to IFS [5,27,28]. His method, based on the Hopfield
neural network, solves the linear progressive problem and obtains the Hutchinson
metric quickly [27,31]. However, his neural network approach only works with the
IFS decompression procedure.

In this study, we applied neural network technology in PIFS so that the fractal code
could be generated automatically. In our method, a neuron is used to represent a pixel
in an image, and the weights and thresholds are used as the fractal code, In this way,
proper weights and thresholds can be obtained in the compression (training) proced-
ure, and the original image can be constructed in the decompression (retrieving)
procedure. In Section 2, we will introduce PIFS theory and the idea of compres-
sion/decompression using neural network technologies. In Section 3, the image
compression applied to two different models using neural networks will be introduc-
ed. Then, the decompression method will be explained in Section 4. Section 5 will
present some simulation results. Finally, a brief conclusion will be given in Section 6.

2. Review of research on the partitioned iterated function system

2.1. Basic concepts of fractal image compression

The basic idea of fractal image compression is to use the characteristics of self-
similarity in an image. In Fig, 1(a), the triangle can be divided into three sub-images, as
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Fig, 1. Th%‘ee transformation functions show self-similarity in an image. (a) The original image. (b) Partition
into 3 similar sub-images after one iteration. (c) Partition into 9 similar sub-images after two iterations.
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Fig. 2. The decompression procedure for a fractal image. (a) The initial image. (b) After one iteration, (c)
After two iterations. (d) After fifteen iterations.

shown in Fig. 1(b). All of these sub-images are the same as the original image except
that the size has been reduced 75%, and they can be partitioned into still smaller parts
as shown in Fig. 1(c). The smaller parts are also similar to the sub-images. These
relationships exist continuously between sub-images as partition operations are
performed repeatedly. Then, we only determine the transformation functions which
we need in order to map the original image to the sub-images. For example, in Fig. 1,
three transformation functions are used to reduce an image into three sub~images with
one quarter the size of the original image. And then one sub-image is put on the upper
side, one on the lower right-hand side, and one on the lower left-hand side of the
original image, respectively. Therefore, the original image (the triangle) can be decom-
pressed using these transformation functions. _

When the transformation functions have been obtained, any image can be
used as the initial image for the decompression procedure, and then the original
image can be generated after many decompression iterations. For example, we can
use the “fern” image as the initial image, and the triangle (original image) can be
generated after 15 iterations by applying the transformation functions {shown in

Eq. (1) and Fig. 2).
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Three mapping transformations for Fig. 1 are shown in Eq. (1), and this procedure is
called the iterated function system (IFS)

X" [x] 0.5 07[x N 0]
T\ T Lo osllyl Lo
X" x] 0.5 07 x] [05

= Tz( - )= + } M)
Ly |y 0 05]Jlyl LO
[ x"] —xﬂ) 0.5 0 [ x] . —0.25]
Ly 1T\l Lo osllyl " Los
Here, (x,y) is the coordinate of the original image, and (x',y’) is the coordinate of

the transformed image. As a result, only three transformation functions, (71,72,73}
(also called fractal code), are stored instead of the image data.

2.2. Partitioned iterated function system (PIFS)

For Fig. 3(a), it is almost impossible for finding the fractal code of IFS. However, we
can find some similarities between blocks of sub-images. There are two pairs of blocks,
which are similar to each other, as shown in Fig. 3(b). One pair is part of a hat and part
of a shoulder, and the other pair is the smaller part and a large part of the face.

When we consider the gray level of an image, an additional dimension is added. The
transformation function will become that in Eq. (2)

x' X a; b; 0\/x e;
Vi=ullyil=la d O|y|+]|fi} (2)
Z’ Z 0 0 S,' zZ 0;

where z and z'are the gray levels, a;, b, ¢; and d; are coordinates of this transforma-
tion, (e;,f;) is the offset of the transformation, and s; and o; represent contrast and
brightness, respectively.

(a) )

Fig. 3. There are some similarities between the sub-images in the image Lena. (a) The original image of
Lena. {b) Two pairs of blocks similar in shape. :
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Fig. 4. The coneept of PIFS, (a) Overlapping and larger sub-images. (b) Nonoverlapping and smaller
sub-images.

Fig. 4 shows the concept of PIFS. Two identical images are partitioned and
compared. Each non-overlapping sub-image in 4(b) will need a 7; to transform a larger
and similar sub-image from 4(a) to 4(b).

If we choose a size for the sub-images in Fig. 4(a) that is 4 times (two times the
length of height and width, respectively) of the sub-images in Fig. 4 (b), then Eq. (2) wilk
become Eq. (3):

x' X 05 0 0\/x e;
yi=z/lyl|=10 05 Oy|+|fi} (3)
z' 0 0 S§i/\z 0;

These transformation functions are the fractal codes that are used to represent
the compressed image and will be used in decompressing process. Based on the
concept of quadtree partitioning [9,26], the steps in the PIFS method [14,15] are as
follows:

(1) Set a threshold value e, for the error and a minimum size i, for ranges. (This
error is defined as the average of the absolute difference of gray levels of pixels
between the range and the corresponding domain. In the domain, the gray levels
of every four pixels are averaged and compared with the gray level of the
corresponding single pixel in the range. The lower the value of e, the higher the
similarity.)

(2) Divide the whole image into 4 non-overlapping sub-images (ranges) with one
quarter the size of the original image.

(3) For each range i, a domain j (4 times the size of i) with the least error ( < e.)is
found from all domains. Then, a transformation function t; is determined for the
range i. By computing the differential equation for the transformation function,
the contrast s; and brightness o; can be determined so as provide a minimum
error for the transformation function ;.
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(4) If the range i cannot provide a similar domain j (i.e., the error between i and j is
greater than the threshold value e.), then the range i is divided into 4 equal sized
sub—images; and the size of each one is greater than or equal to ry;,. Go to step (3)
to find the transformation function for each divided sub-image (range).

(5) If the size of range i is equal O Fuia, and if no similar domain can be found, then
the range i is not divided continuously, and a domain j with the least error is
selected. In this case, the transformation function 7; is also determined even if the
error between i and j is greater than the threshold value e..

Using the concept of quadtree partitioning, the PIFS can effectively find the
transformation functions for image compression. However, this is a sequential
approach to solve the differential equation for the transformation function. In
this paper, we will propose a neural network approach that can generate a com-
pressed image that is similar quality. This approach is very attractive to the parallel
processing,

3. Applying neural networks to fractal image compression

We propose use of two different neural network models to implement fractal image
compression and decompression. The architectures of these two models are similar
except for the transformation functions, as illustrated in Fig. 5. Each pixel of an image
is processed by a neuron, and the gray level of the pixel is represented by the state of
the neuron. An image is duplicated, creating two images, each one is divided into
many sub-images, called domains and ranges, each pixel in a domain corresponds to
an input neuron, and each pixel in a range corresponds to an output neuron, To each
output neuron, four input neurons are connected. Therefore, each output neuron j is
connected to four input neurons i, i + 1, i + 2 and i + 3. The output value z; of

Range 1
Range 2
Output
layer
AN
Domain 2 Input
) layer
Domain 1

Fig. 5. The architecture of the proposed neural network for implementing fractal image compression,
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neuron j is determined by the values Z;, Z;.. 1, Z;+1, Z;+3, the corresponding weights
Wi, Wiis 1s Wit 2, Wy s and the threshold 0;.

Two different activation functions, the linear model and nonlinear model, of
neyrons are defined in Egs. (4) and (5), respectively ’

i+3
zy = Oj( Z Wi X 2 — Gj) linear model, (4)
k=i
. 1 i+3
z) = O'j( 5 kgi Wy %z, — 0 j> nonlinear model, (5)

where B is the maximum value of the gray levels (e.g, B is assigned to 255 in this
paper).

The learning procedure in the neural network approach is based on quadtree
partitioning [9,26], which is also used in PIFS. The detailed steps are as follows:

(1) Set a threshold value e, for the error and a minimum size r, for the ranges.

(2) Divide the image into many non-overlapping sub-images with 32 x 32 set as the
initial size of the ranges. '

(3) For each range i, find a domain j (4 times the size of i) where the error between
i and j is less than or equal to the threshold value e.. Then, determine a trans-
formation function ¢, for the range i. Update the weights wy;, ¥ pixels e range
i and V pixels € domain j, of the neural network using the delta learning rule to
tune the contrast s; and brightness o; in the transformation function 7; so that the
error can be reduced.

(4) If the range i cannot provide a similar domain j (ie., the error between i and j 18
greater than the threshold value e.), then divide the range i into 4 equal sized sub-
images (ranges), where the size of each one is greater than or equal to Fpin. Go to
step (3) to find the transformation function for each divided range.

(5) If the size of range i is equal t0 ¥min, and if no similar domain can be found, then
the range i is not divided continuously, and a domain j with the least error is
selected. In this case, the transformation function 7; is also determined, even if the
error between i and j is greater than the threshold value e..

Using the delta learning rule of neural networks, a set of transformation functions can
be obtained for each range, and they ‘provide a high PSNR value for image compres-
sion.

3.1. The linear model

Comparing Egs. (3) and (4), the value Z, in Eq. (4) can be viewed as the gray level
Z of a pixel in Eq. (3). The weight W), and the threshold §,in Eq. (4) can be also viewed
as one quarter of the contrast S; and the negative value of the brightness O; in Eq. (3),
respectively. Then, the linear neural network approach (Eq. (4)) can be used to
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Fig. 6. The activation function of neuron in the linear model,

perform computation of PIFS (Eq. (3)), and the activation function O, is defined in the
following equation:

x when0 < x < 255,
0;(x) =

0 otherwise.
Fig. 6 shows a graphic representation of Eq. (6).
According to the output values of the neurons and the original gray levels of the
pixels, we can compute the difference 6; between them for each neuron J using the
following equation:

9 = zf** — 2, (7)

where z'; is the output value of the activation function and zj™° is the original gray
level of pixel j. Then, the updated weight AW ;, between the output neuron j and the
four corresponding input neurons k, k =i ~ i + 3, can be derived by Eq. (8)

AVij =X Sj/zk, k=1i~i —+ 3, (8)

where # is a learning rate parameter, which can be used to speed up the converging
rate and find a better solution. The updated value of the threshold, Af, is then defined
as

(6)

A9j=11><5j. : 9)

The learning procedure is repeated until the output values of the proposed neural
network are acceptable, ‘

3.2, The nonlinear model

In the nonlinear model, the activation function O’ ; is defined as in Eq. (10), which is
a composition function

O'i(x) = DeNor(Sigmoid(x)), (10)
where
Stgmoid(x) = E—1—~_:16:—_?), (11)

DeNor(x} = K x (x — ). ‘ (12)
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Fig. 7. The activation function of neuron in the nonlinear model.

The values of K and o in Eq. (12) are constants and are defined as

B
K =
(Sigmoid(U pper) — Sigmoid(Lower))’

(13}

o = Sigmoid(Lower). (14)

We define an input range, 2R, in order to prevent the output of Eq. (11) from being
trapped into saturation states. Then, the difference between the maximum value and
the minimum value of x is 2R (ie., Upper-Lower). Therefore, the output range of the
sigmoid function is equal to [Sigmoid(Lower), Sigmoid(Upper)). Fig. 7 shows these
relationships.

For each neuron j, we define the difference between the output of the proposed
neural network and the original gray level of the pixels in the following equation:

Z’ B . Z’ true z’_ :

In Eq. (15), all the values of zj, B and z'"® are in the range [0, 255]. Then, Eq. (15) can
be divided by B? to keep the output value in the range [ — 1,17 Similarly, the updated
weight AW j can be derived by Eq. (16)

HX(SJXZ,C
B 1

The steps for learning weights are repeated until the output values of the neurons
are acceptable.

Awy, = k=i~i+3 (16)

4. Applying the neural network to fractal image decompression

The architecture of our neural network for performing image decompression is
shown in Fig. 8, which is similar to Fig. 5 except that the outputs of the neurons in the
output layer will feed back to the corresponding neurons in the input layer. The
trained weights and threshold (ie., the fractal code of PIFS) were determined during
fractal image compression.
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Range 1
Range 2 Output layer
E
Next
, AN
yTl
Input layer
d
®
Domain 2
Domain 1

Fig. 8. The architecture of the neural network for fractal image decompression. The output of cach neuron
in the output layer feeds back to the corresponding neuron with the same position index in the input layer
at the next iteration.

The output state z{? for image decompression is defined in Eq. (17).

i+3
0 j( Y Wixz) —0 j) defined in linear model,
2 — ’1‘;+ , (17)
O}( 5 kZi Wy xz? — 0 j) defined in nonlinear model.

At the next time ¢ + 1, the state z{' *") of neuron j in the input layer can be obtained
from the output value z®) of neuron j in the output layer, This is defined in Eq. (18)

) (18)

Then, the states of the neurons are changed repeatedly until the system reaches
a stable state.

5. Performance evaluations

Some images were compressed and decompressed using our neural network ap-
proach. The threshold value e, for the error between two sub-images was set to 2. To
find the similarity characteristics in the sub-images, the sizes of the sub-images are
ranges from 64 x 64 to 8 x8 in the domain and 32x32 to 4 x4 in the range (ie.,
Imin =4 % 4). The maximum complexity of the neural network was (64 x 64) (input
layer) x (32 x 32) (output layer). The value of PSNR was calculated and used to
evaluate the system performance. The value of PSNR was defined as

B ‘
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where B is the maximum value of the gray level (set to 255 in this paper), and rms is the

root mean square of the distance between the original image and the decompressed
image. rms is defined as

N frue "2
=1 \Z&} — Z;
S = \/Zi-l( i I) :

N (20)

where zi™° is the gray level of pixel i in the original image, z'; is the gray level of pixel
i in the decompressed image and N is the total number of pixels in this image. Then,
the larger PSNR is, the better is the quality of the image.

5.1, The linear model

The attributes of the Lena image are shown in Table 1. Different learning rates were
selected to evaluate the quality of compressed image using a linear model. The
experimental results are shown in Fig. 9 and Table 2.

According to the results shown in Fig. 9 and Table 2, we obtained the better quality
and smaller compressed images when the learning rate of the neural network was 0.1.

5.2. The nonlinear model

The values of the input range and learning rate affect the quality of images during
image decompression in the nonlinear model. Four different input ranges (0.1, 0.2, 0.5,

Table 1
The attributes of the Lena image

Attributes Lena

Image dimension 512%512

Size of image data
(Byles)

262144

PR

0.05 0.08 0.l 0.15 02 0.3 04 05 0.6 07 0.8 09
Learning rate

Fig. 9. The relationship between the learning rate and PSNR in the linear model.
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Table 2 , ,
The decompressed images, sizes, and values of PSNR under different learning rates for the linear model,

(1) The decompressed image. (2) The value of the learning rate. (3) The size of the image after encoding
(compressing) (unit: byte). (4) The value of PSNR,

0.05 145639 11940 | 4 08 |aseas [1942 | 01 | 44370 | 2759 | 015 (45634 | 27.67

(2) (3) {4)

02 145642 | 25.59 0.3-145651 | 2412 | 04 |45651 | 23,17 0.5 | 45651 | 22.59

0.6 (45651 [22.09 | 0.7 45651 | 21.55 } 0.8 | 45651 [21.13 | 0.9 |45651 |20.80

0.9) and various learning rates were selected for simulations and results are shown in
Fig. 10.

Fig. 10 shows that better quality of images were obtained by selecting learning rates
between 0.2-0.3, and that the PSNRs of images were less sensitive when the input
ranges are smaller (ie., 0.1 or 0.2).

5.3. Comparison of the linear model and nonlinear model

Basically, the linear model is similar to TFS (or PIFS) mapping (shown in Eq. (3)).
For each transformation function t;, the linear model finds the contrast s; and
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Input
range

0.05
0.08] 1 ™
0.15

Learning rafc

Fig. 110. The relationship of the learning rate and PSNR under different input ranges for the nonlinear
model.

Table 3
The computation time (second) for image compression and decompression for the Lena image (Table 1)

using the linear model, nonlinear mode! and traditional method (executed on a Pentium II-166 PC with
64 M RAM)

Linear method Nonlinear method Traditional method
Compression 579 | 3542 36
Decompression 1.81 192 1.26

brightness o; by updating the weights using the linear gradient descent method, which
is less flexible and robust than the nonlinear gradient descent method. In addition, the
linear model provides lower PSNR values relative to the nonlinear model. Figs. 9 and
10 show that the nonlinear model generated higher PSNR (i.e., better image quality)
value due to its flexibility and robustness. However, the linear model is simpler than
the nonlinear model, and the linear model required less computation time (as shown
in Table 3). Table 3 shows that the time needed for image compression by our method
was much greater than that needed by the traditional method, but that the time
needed for image decompression by the different methods is similar. However, the
traditional method finds the minimum error by applying the differential equation to
the transformation function for the whole sub-image, but the neural network ap-
proach updates the weights to find a good transformation function. Therefore, the
traditional method performs computations in a sequential mode, but the neural
network approach does so in parallel. As a result, for a 32 x 32 sub-image in a given
range, the computation time can be speeded up 32 x 32 times using the neural network
approach if there are enough computing elements in the parallel processing system. In
this way, the compression time can be greatly reduced using our method. Six different
images were compressed and decompressed using these two proposed approaches and
the traditional PIFS method [15]. The results are shown in Table 4. The sizes of the
compressed images using the proposed nonlinear model are approaching to that using
the traditional PIFS method. This verifies that our methods are useful for the image

compression and decompression.
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Table 4

Comparison of three fractal image compression methods

K.T. Sun et al. | Neurocomputing 41 (2001) 91-107

Linear model

Original image

a

Nonlinear model

Traditional methaocd

Image

* |Byes | Byws | PSNR | Bytes | PSNR | Byws | PSNR
dimension
640x480 | 307200 42326 26.87 39381 27.27 ag022 30.61

640x480 | 307200 44574 23.38 35220 26.46 32034 28.77
640x480 | 307200 32799 23.58 49918 20.46 51580 33.25
524x524 | 274576 37310 20.56 36283 28.79 37594 31.25

6363432

274752

640x480

307200

50080

27.30

29.33

40453 30.89
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6. Conclusion

In image compression and decompression, fractal theory can obtain a high com-
pression ratio and a low loss ratio. However, it is limited by the tremendous number of
computations required to determine the fractal code needed to perform image decom-
pression. In this paper, we have proposed neural network approaches to apply PIFS
to image compression and decompression. Experiment results show that our neural
network approaches can obtain high-quality decompressed images, and that the
compression ratio is as good as that obtained by the traditional PIFS method. In
addition, the proposed neural nework approaches can be operated in parallel. As
a result, image compression and decompression can be performed quickly on a paral-
lel computing system. Our methods can be very useful for image compression and
decompression using parallel processing techniques.
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