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ABSTRACT

Fractal and frequency decompositions lead to compa-
rable image compression results. However, these two ap-
proaches are not incompatible and it is possible to express
the operations performed by some fractal coders in the fre-
quency domain. The aim of this paper is to propose an
image representation technique combining both fractal and
frequential decompositions thanks to the use of the wavelet
multiresolution representation. This model takes into ac-
count a certain kind of self-similarity that can be translated
in terms of simple operations on the high frequency coeffi-
cients of a subband decomposition of the image. The way
to solve analytically the inverse problem is also described
in this context.

1. INTRODUCTION

The image compression problem can be solved in two differ-
ent ways. Either images are considered as a realization of
a stationary random process or as a combination of spatial
elements related to each other. In the first case, the image
content can be decorrelated thanks to the use of frequency
decompositions. This approach has lead to the well-known
DCT or subband decompositions. In the second case, spa-
tial models are used in order to describe the signal content.
These tend to identify local and global correlation within
the image and to express it in a compact form. However, as
it is shown in this paper, these two solutions can be applied
simultaneously in order to exploit the advantages of both.

Fractal coding methods are part to the second class of
techniques because these take advantage of the self-similarity
which is a spatial property of images. The self-similarity
models identify the relationships between the frequency com-
ponents of the signal at different locations and scales. It
ensues that the inverse transformation can be done by fol-
lowing these links in an iterative way under some contractiv-
ity condition to obtain the decoded image[1][4]. The main
fractal image compression algorithms [3] identify the self-
similarity in the spatial domain. However, Barthel has pro-
posed a method to combine the DCT and fractal image
representations [2].

The merging between frequency and fractal decomposi-
tions formalisms can be conducted further for some frac-
tal transformations. The relationships between the fre-
quency components of the signal can be expressed very sim-
ply thanks to wavelet multiresolution representation of the
signal. These elements have already been presented in pre-
vious articles for one-dimensional signals [6] [7].

In the present article, we apply and extend former re-
sults to images. The model that is described combines self-
similarity and frequency coefficients in order to offer a per-
fect reconstruction scheme if these coefficients are not quan-
tized. The potential applications of this model are related
to image compression, texture synthesis or signal zooming.

2. 1D MODEL

The model developed in this paper is derived from the study
of a self-similar model for one dimensional functions char-
acterized by a spatial contraction factor of two and by a
overlap between the self-similar components of the signal.
This study has lead to some important conclusions that
are synthesized hereafter. The functions are assumed to be
square integrable.

In the present context, a one dimensional function f(z)
is self-similar if it can be expressed by

f@) = (@) =>_all) f2z = 1) +r(x).

l

The function f (z) contains the high frequency information
of f(x) and is defined more precisely in the next paragraph.
The contractivity condition for 7(-) is given by

> la)] < V2.

We shall refer to the first term of the transformation as the
contractive term and to r(x) as the independent term.

Given an multiresolution analysis characterized by its
wavelet and scaling functions respectively denoted ¥(z) and



®(z), any function f(z) can be decomposed onto the mul-
tiresolution basis in the following way

F@) =" af(n) ®ou(z)+ Y df(n) W) (),

n j=0

where hjn(x) = v/27 h(2/2 —n). We define f(z) as the sum
of detail components of f(z),

=Y dln) Tn(@).
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The high frequency coefficients, df (n), of a self-similar
function f(x) are linked to each other via

dl,\(n) = % S a(k) d! (n - 2K) + d}1 (n)

This means that the contractive term of the self-similar
model generates an inter-resolution interpolation process
and the independent term adds a non self-similar correc-
tion to the estimate created by the interpolation. These
correction coefficients are also called residues. They allow
to control the loss of quality due to the self-similarity mod-
elization.

3. 2D MODEL

The definition of self-similarity given for one dimensional
signals can easily be extended in two dimensions. In this
section, we define the concept of global and piecewise self-
similarity and their implications on the wavelet multireso-
lution coefficients of two dimensional functions. This allows
to design an image model combining self-similarity and fre-
quency decompositions. An analytic way to estimate the
parameters of the model is also given.

3.1. Global self-similarity

Given a wavelet multiresolution representation of L?(R?)
characterized by its scaling and wavelet functions, respec-
tively denoted ®(z;y) and ¥'(z;y), ¥2(x;y) and U3 (z;y),
any function f(z;y) can be decomposed onto an orthonor-
mal basis given by

{(I)J,m,nz (x; y)}nl no€Z

and {\Il] nl,nz( ;y)}j1n11n2€z1]'2-1 b= 1727 3
where hjnyno (23y) = 29 h(270 — n1; 27y — na). It follows
that any function f(z;y) can be written as
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We shall refer to the coefficient a’ (ni,n2) as the approxi-
mation coefficients and to the djf- *(ny1,n2) as the detail co-
efficients in the direction b at resolution 27.

If we denote

=3 AP ne) VS, (23),
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the function f(z;y) is said to be self-similar if each compo-
nent f°(z;y) can be expressed as

Py =1 ()
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The parameters a’ (I1,12) are called the self-similarity pa-
rameters and are represented by matrix of size L X L. Some
remarks are to be done in relation to the previous definition
of self-similarity:

e the model is chosen to be different along the three
detail directions.

e more than two copies of the shrunken signal
f°(22;2y) can be added in order to compose the self-
similar signal f°(z;y). This implies that the terms
ab (1, 12) f* (2 — 11; 2y — 12) will overlap in the spatial
representation of the transformation.

3.2. Piecewise self-similarity

In the model presented so far, the function is composed
of a single self-similar component. However, natural im-
ages do not exhibit this kind of self-similarity. A unique
self-similar model cannot represent efficiently any image
and must therefore be adapted to the local content of the
signal. For natural images, the concept to be used is the
piecewise self-similarity[4]. This means that local parts of
the signal are similar to each other through a self-similarity
relationship. A possible manner to express that uses the
decomposition of the original signal into a sum of localized
components denoted fibli2 (z;y) such that

o .’E y) anig Zla i2)' (3)
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The local components are defined coherently with respect
to the self-similar model by the intermediate of extraction
filters w;(n1, n2),

fiblig (’E,y) = Z Z d]f-’b(nl — 2ji1,n2 — 2ji2)
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A piecewise self-similar model can then be identified for
each localized function ﬂbliz (z;y). The main change brought
to the global model lies in the use of a widest definition
of self-similarity which allows to use a different localized
function as source information. This means that any local
function fib”-2 (z;y) can be written as

Fria(@y) = D abhi(le) ok (20 — 152y — 1)
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Figure 1: Illustration of the interpolation process

The local function f,?l ko (T3 9) is called the source function
of fibll-;) (z;v). In the latter case, it can be shown that the

detail coefficients of ff’li? (z;y) and its source function are
related to each other through the following relationship

dr’ (nl, n2)
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It is worth noting that the coefficients linking the different
resolution levels of the two functions do not change from
resolution to resolution and correspond exactly to the pa-
rameters of the spatial self-similarity definition. In addition
to that, the relationship is valid whatever the wavelet basis
is, the equation is independent from the wavelet multireso-
lution analysis and only depends on the self-similar model
defined earlier.

3.3. Improvement of the model

The piecewise self-similar model that has been defined can
be improved by the introduction of a more complex trans-
formation of the source function. For instance, simple geo-
metrical transformations as rotations or symmetries of the
source function can be introduced and their effects can be
translated onto the wavelet coefficients. If the target lo-

cal component fibliz (z;y) has Ty, 4, (f}j;kZ (:E,y)) as source

function, where I'; 4, (-) denotes a geometrical transforma-
tion. The resulting relationship between source and target

wavelet coefficients then becomes

b b
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In the last equation, d] 4y ko (701, T12) Tepresents the wavelet

. When the function ®(z;y)

is symmetrical, these coefficients can easily be computed

coefficients of T'; 4, (fk1k2 (3 y))

from the wavelet coefficients of f}c’;kz’ (z;y) for simple ge-

ometrical transformations. A 90° rotation of f,i’/l,€2 (z;y)
corresponds to the same rotation of its wavelet coefficients
and a change of direction and symmetries correspond to the
same symmetries applied to the wavelet coefficients.

3.4. Parameters estimation

According to the fractal image representation theory, the
parameters 04211'2 (l1,12) of the self-similar model can be es-
timated by minimizing the collage error defined as the dis-
tance between the function to be coded and the transfor-
mation of it under the assumption that the transformation
is contractive on a particular metric space. It can be shown
that the collage error minimization corresponds, for orthog-
onal multiresolution analysis, to the minimization of the
interpolation error in the frequency domain given by

61112 Z Z djyﬂz n1,n2)
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One can observe that the collage error corresponds to the
energy of the residues given by

Z Z d;?112 nl’n2))2
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The parameters of ;,(l1,l2) are then obtained, by the an-
de b
nulment of the partial derivatives i1ia

o 5-)112 (e1,e2)’

as solution

of the following system
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Where the matrix r is defined by
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and the vector s by
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In the previous expressions, p = cL + c2 and
q = 1 L+1>. The vector a contains the parameters afliz (Ih,12)
according to the following correspondence

Al L+l = 0?11'2 (llvl2) (12)

Moreover, it can be shown that the collage error can be
expressed in terms of the vectors g and s and the detail
coefficients of f! ;. (z;y) via the following expression

ehiz =y > (@, mn2)) —a’s  (13)
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Once the self-similarity parameters are known, the residues
can be computed according to

dr,b
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4. SYNTHESIS OF THE RESULTS

The image model we have developed allows to combine in a
single representation two types of signal modelization tech-
niques. On one hand, self-similar information is taken into
account via the parameters O‘?liz (l1,12) of the model. On
the other hand, the low frequency information represented
by the approximation and detail coefficients ag (n1,n2) and
d%"(n1,m2) and the residues given by d;’b(nl, n2) bring the
complementary information to the self-similar one in order
to represent the signal without loss of information. The way
to estimate the self-similarity parameters ensures to max-
imize the amount of information contained in the fractal
part of the model.

5. TARGETED APPLICATIONS

The image representation technique that has been presented
is intended to be used in several applications in the image
processing field.

At first, the model coefficients can be quantized and
entropy coded in order to lead to an image compression
method taking advantages of both frequency and fractal
transformations in a locally adaptive way. The performances
of this technique should overcome the performances of mul-
tiresolution decomposition methods because, in the areas
where the self-similarity is low, all the energy can be trans-
fered into the residues and the model then reduces to a mul-
tiresolution decomposition while in the highly self-similar
zones, nearly all the information is taken into account by
the self-similar part of the model.

The fractal-multiresolution representation can also be
used to create images with super-resolution. The parame-
ters can be estimated and the inter-scale interpolation pro-
cess can be conducted beyond the original resolution of the
image to create non-existant detail coefficients.

It is also intended to be used in texture modelization
and analysis.

6. CONCLUSIONS

We have presented in this paper a new representation tech-
nique for images combining fractal and frequency decompo-
sitions. The fractal transformation is characterized by an
overlap between the self-similar components of the signal
and its effects can be translated into the frequency domain
thanks to the wavelet multiresolution representation of the
signal. The theoretical basis of the modelization technique
have been exposed for bi-dimensional signals and potential
applications have been envisaged.
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