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ABSTRACT

Much researchs are currently carried out in the field of
fractal coding of images. Fractal models try to iden-
tify and represent self-similarity relationships within
images through the use of spatial transformations of
the signal associating shrinking, translation, isometries
and scaling. These transformations can be interpreted
frequentialy and are particularly suited to an inter-
pretation in the multiresolution decomposition space
of functions. In this paper, we study the expression
of a particular fractal transform within the orthogo-
nal multiresolution context. Conclusions drawn from
the results show that the fractal transformation can
be decoupled in two terms, one serves to interpolate
high frequency coefficients from one resolution layer to
the next while the other is a constant term containing
low pass information. A fractal transformation taking
these elements into account is defined and it is shown
that parameters can be estimated only on the basis of
multiresolution decomposition coefficients. The way to
apply these results to images is then envisaged.

1. INTRODUCTION

In the last few years, fractal coding of still images has
become more and more popular among the image cod-
ing community. The initial works of Barnsley [1] and
Jacquin [3] were based on self-similarity within images.
The image to be coded is partitioned into non overlap-
ping blocks (called range blocks), each of them being
then described as a contractive transformation of ano-
ther image block (called domain block). The contrac-
tive transformation is made of a set of isometries and
a contraction of the luminance profile to which a con-
stant is added.

Concurrently to fractal coding, subband and mul-
tiresolution codings [4] continue to evolve towards se-
veral directions such as spatial variations of the filters

[2], signal adapted filters, etc .

Although it is commonly admitted that fractal cod-
ing creates relationships between subband-multiresolu-
tion signals [7], no explicit link between these two areas
of still image coding has been explicitly demonstrated.

This paper presents an explicit link between a par-
ticular type of fractal transform and multiresolution
decomposition of the signal. The fractal transform can
therefore be interpreted in the multiresolution formal-
ism, and consequently be adapted in order to merge the
two methods in a single one exploiting the advantages

of both.

2. FRACTAL TRANSFORM DEFINITION

In order to develop the link between fractal coding and
multiresolution decomposition, a local fractal trans-
form is defined. A particular case of this transform is a
classical fractal transform for which each range block is
contained in the corresponding domain block. Mathe-
matical expressions are here developed for unidimen-
sional signals, however the conclusions can be easily ex-
tended to bidimensional functions and to range blocks
not contained in the corresponding domain block.

Let f(z) be a function of L%(R), the set of square
integrable functions on the 1-D real space. This func-
tion is said to be self-similar if it can be described by
the following relationships *:

flx) = i:acf(Qm—c)—i—Z_:ﬁc(I)(?r—c) (1)
f@) = F(f(22)) +T(22) (2)

lwhen these expressions are used in modelization processes,
equalities are replaced by approximation symbols
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Figure 1: Example of self-similar function

The function ®(z) is the scaling function correspon-
ding to a particular orthogonal multiresolution trans-
form and L is the length of the low pass filter corres-
ponding to the given transform. A sufficient condition
for that fractal transform to be contractive is given by

doal<2 (3)

If the transformation is contractive, the function f(z)
is obtained as its fixed point and the parameters a.
and [, can be estimated by using the collage theorem
[1]. An example of this kind of transformation is illus-
trated in figure 1 in the case of Haar multiresolution
transform. In this particular case, the function ®(z)
is the indicatrice function on [0;1] and L = 2 lead-
ing to a local block decomposition already described in
the literature [5] [6]. In all other cases, there will be
an overlap between the compressed copies of the signal.

3. LINK BETWEEN THE FRACTAL
TRANSFORM AND MULTIRESOLUTION
DECOMPOSITION OF THE SIGNAL

The function to be described can be decomposed in a
multiresolution basis of L?(R) given by :

{®(a = n)}nez and (VT2 2 — n)hmennez. (4)

where ®(z) is the scaling function and ¥(z) the cor-
responding orthogonal wavelet. The decomposition of
f(z) in that basis is given by

flx) = Zaoy,ﬁb(m—n)
+ 30D dmaV2RE(27 2z —n)  (5)

m>0 n

Coefficients ag ,, are the low pass approximation of the
signal and coefficients d,, , represent the detail infor-
mation corresponding to higher resolution information
of the signal. Functions ®(z) and ¥(z) are defined by

\/52 hn, ®(2z — n) (6)
V2> g, ®(22 —n) (7)
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The filters h,, and g, are respectively the low pass and
high pass filters associated to the multiresolution trans-
form. The decomposition of f(z) in the multiresolution
basis (5) can be introduced in (1) in order to express
the links joining the coefficients of the multiresolution
decomposition in the case of a self-similar function. Be-
fore presenting the results, we need to state some defi-
nitions.

The filters p, and ¢, are defined by the following
expressions:

Pn =

1
qn = ﬁzal gi—n (9)

and filters u,, and v, are related to the coefficients (.
of the fractal transform in the following way:

\/5251 hn_2 (10)
V2 B g (11)
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Theorem 1 A function f(z) of L?(R) presenting self-
similarity in the sense of (1) fulfills the following prop-
erties between its multiresolution decomposition coeffi-
cients:

apgn = Z @0l Pan—1 + Un (12)
l
dO,n = Z dO,l qan—1 + Un (13)
l
1
dig1n = > dip_nn o (14)
l
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The results obtained in this section present several
interesting properties. The influence of the constant
term of the fractal transform (i.e. T'(2z)) is restricted



to the low pass approximation (ag,) and to the first
detail coefficients (dp ) of the multiresolution decom-
position of the signal. The detail coefficients for a scale
higher than 0 (d;41 ) are interpolated from the nearest
lower resolution (d; ») by the use of a filter. This filter
is constituted by a. interpolated by a factor 2° for the
detail coefficient at resolution 7 + 1.

The two terms of the fractal transform play distinct
roles on the multiresolution decomposition of the sig-
nal. The constant term (7'(2z)) is there to represent
the low resolution information of the signal while the
contractive term (F'(2z)) creates the inter-resolution
relationships through the use of its coefficients a.. The
initiator of the inter-resolution interpolation is the first
layer detail coeflicients (dg ) and is also represented by
the constant term T'(2z) of the fractal transformation.

These two remarks can therefore lead us to define
a new fractal transform within the framework of mul-
tiresolution decomposition of images characterized by a
perfect transmission of the low pass and the first detail
coefficient, while the other detail coefficients are inter-
polated from one resolution to the other by the use of
a filter estimated by minimizing a collage error.

4. COMBINATION OF
MULTIRESOLUTION DECOMPOSITION
AND FRACTAL TRANSFORM

The goal of this section is to define a transformation
combining multiresolution decomposition of a signal
and a fractal transform defined on this signal. The
previous section conclusions suggest to compute the i-
terations of the fractal transform directly in the trans-
form domain. Moreover it is shown that the fractal
coefficients (ac, B:) can be estimated only by using the
coefficients of the multiresolution decomposition of the
signal. The fractal transform will also act locally due
to the splitting of the function f(z) into a sum of more
localized functions f;(z).

4.1. Definition

It can be shown that any signal f(z) can be decom-
posed as a sum of localized translated blocks

f@) =Y fila—1) (15)

where the functions f;(z) are given by

fl(l‘) = aoﬂ'q)(l‘)-f—doyi‘lf(l‘)

fileg) = aoi®(z) + fi) (17)
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Figure 2: Illustation of inter-resolution interpolation pro-
cess

Expression (16) is derived from (5) by keeping one ap-
proximation and one detail coefficient, higher detail
layer coefficients (din,n) are deduced from detail coef-
ficients di; of the function f(z) through a windowing
by a filter depending on the underlying multiresolution
analysis. In following expressions, indices appearing in
summations on din,n are assumed to be limited to that
window. A fractal transform FR(-) is defined on f;(z)
by :

FR(fi(z)) = ) aifi2e — ¢) + doi¥(z)  (18)

This last expression is to be compared with (1), as the
function f;(z) contains only high frequency informa-
tion, the constant term of the fractal transform is re-
duced to its first detail coefficient. This allows to de-
couple the effects of terms F'(f(2x)) and T(2z) of (2)
in the fractal transform. The contractivity condition
is the same as (3). The computation of the successive
iterations of the fractal transform can be done in the
multiresolution transform domain thanks to the follow-
ing relationship:

i ! i i
djn = ﬁzl:dj—l,n—ﬂ—llal' (19)

The inter-resolution interpolation process is illustrated
in figure 2 for a multiresolution analysis having filters
of length L = 4.

4.2. Parameters estimation

The parameters o’ are estimated by minimizing the
collage error ¢;

€ = / (ﬁ(r) - X_: ol fi(2z —¢) — doﬂ"ll(;r)) dz

(20)

9¢i leads to the following

i
doal

Annulment of derivatives
matricial equation

R o' =5 (21)



where matrices R' and S’ are defined by

r;p = % Z Z@n,l—%n 271,1—2"”‘1) (22)

m>0 1

1 o
n ﬁ Z Zdin,l din—l,l—2mn (23)

m>0 I

o
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Matricial equation (21) can be seen as the dual oper-
ation of expression (14) linking the detail coefficients
through o, parameters, in (21) parameters o, are ob-
tained as a combination of these detail coefficients.

The computation of the fractal transform coefhi-
cients is consequently done only by using the detail
coeflicients of the signal multiresolution decomposition.

5. APPLICATION TO IMAGES

The samples of a discretized signal are directly related
to the multiresolution transform of the signal via a sub-
band decomposition. The difference in this case is due
to the fact that detail coefficients are only known up
the initial resolution of the image. Consequently, coeffi-
cients o will be estimated on the base of this available
information.

In the case of images, the multiresolution transform
is computed in a separable way and the developments
presented in the paper remain valid. The coded infor-
mation is composed of the low pass approximation and
the three high pass subbands of the lower resolution.
The higher frequency subbands are directely interpo-
lated via the fractal transformation in the multireso-
lution decomposition domain. In this case, filters are
bidimensional. In a practical way, the shortest filters
are Haar filters (L = 2) and will correspond to work
with block self-similarity. The use of longer filters will
decrease blocking artifacts but at a higher computa-
tional cost.

Applications to be envisaged with such fractal trans-
forms in the multiresolution domain are the coding of
images with a high compression ratio by taking into ac-
count the human visual system capacities. This can be
achieved by modifying lightly the fractal transforma-
tion previously defined and by introducing a frequen-
tial weighting factor in the expression of the collage
error. Another important property of the presented
scheme is the possibility to increase the image reso-
lution artificially by interpolation of non-existing sub-
bands through the use of filters estimated in minimizing
the collage error.

6. CONCLUSIONS

We have presented in this paper a explicit link between
a particular class of fractal transform and a multireso-
lution decomposition of signals. The interpretation of
the results points out that the low pass components of
the signal are approximated by the constant term of
the fractal transform (7'(2z)) and the contractive term
(F(f(2z)) is responsible for the successive higher de-
tails interpolation. Based on these observations, a new
transfom combining multiresolution decomposition and
fractal transform has been introduced. In this trans-
form, all computations can be achieved exclusively by
using the multiresolution decomposition coefficients.

The next issue will be to compare this technique
with both purely fractal methods and multiresolution
decomposition of images. The possibility of zooming
the signal will also be envisaged by interpolating non-
existing high resolution subbands through the use of
filters estimated in the analysis part.
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