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Abstract

In most classical coding methods, a global optimization is carried out to ensure a
given bit-rate or a given quality. In IFS based coding, some heuristic choices are
made at each step of the algorithm: No method has, for instance, been proposed
to optimize the domain blocks position, or the quantization of the transformations
parameters. In this article we first analyze the limits of the existing algorithms,
then define a new geometrical interpretation of the classical Jacquin-like method.
Through the above analysis, we will answer some of these important questions.

1. INTRODUCTION

Michael Barnsley ! was the first to propose a fractal based coding scheme for images. In
most classical coding schemes, we consider the local redundancy in the image in order to
reduce the volume of data. The basic idea of iterated function system (IF'S) based coding is
to take advantage of the similarities between different parts of the image at different scales.
Jacquin was the first in 1989 ? to propose a fully automatic algorithm for achieving this
goal.

The method consists in partitioning the image support, Z, in range regions ¥ Ry. For each
region Ry, a “corresponding” domain region Dy, is searched in the image. “Corresponding”
means that under a contractive transform Wy, the luminance Dy of the region Dy, is similar
to the luminance Ry of the region Ry according to a certain distance d. This transformation

*Initially, these regions were fixed size blocks, but we will consider any kind of regions.



1. Spatial sub-sampling: The domain region is usually bigger in surface than its
corresponding range region, so it has to be sub-sampled for matching Ri. We will
denote this sub-sampled version of the luminance of Dy by D;C, and the corresponding
transform Sy.

2. Spatial Isometry: The domain region is then transformed by one of the eight 2D
isometries that leave the square unchanged. We denote the new luminance vector
obtained after applying the isometry Oy by DZ.

3. Luminance transform: We then apply a contractive affine transform L on the
luminance vector DZ to obtain the final luminance vector R;C = oszZ + 0kl. 1
denotes the constant vector containing only values 1.

The algorithm searches a pool of domain regions for the best fitting Dy minimizing the
distance d(Rg, R;). The Banach fixed point theorem shows that an image T can then be
coded by the transform T = (J, Wj.

2. LIMITS OF THE EXISTING ALGORITHMS
At this stage several unsolved problems arise:

e How should we choose the geometrical range partition for an optimal coding? Many
attempts have been made to address the above problem, including fixed block par-
titions, quad-tree partitions 2, triangle partitions 4, polygonal partitions >, and H-V
partitions 3. All the above methods except H-V are not theoretically justified. Hence
the less expensive (in terms of complexity and bit rate) one, the fixed size block or the
quad tree for adaptivity, seems to be the most reasonable choice. The H-V partition
consists in choosing range and domain rectangles that are either “smooth” or con-
tain an edge in their diagonal. In this way the content of a range region is explicitly
chosen so that it can be easily matched to a domain region. However, none of the
above methods ensures that for a highly textured region of reasonable size (for data
compression), a correct matching domain region can be found. On the contrary, the
numerical experiments we carried out indicate that most of the above variations of
the Jacquin algorithm behave poorly on high frequencies areas (see Fig. 1)

e How should we quantize the parameters aj and §; of the image? Y. Fisher carried
out a complete numerical experiment of the Jacquin algorithm in ¢ to solve this prob-
lem. However only uniform scalar quantizations have been tried and no theoretical
justification of the results have been stated.

Many other questions remain to be answered, but we will restrict ourselves to these two
and try to analyze the algorithm in such a way that theoretical answers can be given.
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Fig. 1 Lenna 512 x 512 coded with a classical quadtree fractal algorithm at 0.21 bpp (a),and with a JPEG
algorithm at the same rate (b): On (a), one can notice the poor result on the feathers. On (b), block effects
are more visible but high frequencies are better preserved
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3. A GEOMETRICAL ANALYSIS

In this section we will assume that a pool {Dgi}'e{o 00 of (), already spatially trans-
)y Qp
formed acceptable domain regions is available. The considered range region R contains

Np pixels. The algorithm is equivalent to the following minimization problem:

ie{o"'Qk}7|r2i?<1ﬁk€[07]4] d(Re, akaﬂ. )

L denotes the maximum value of the luminance. This minimization is equivalent to the
geometrical projection of the points Ry, ; of RNE on the two dimensional subspaces generated
by the vectors 1 and Dgﬂ-. In fact, the points belong to the restriction of RV% to [0, L]NR.
Since |ag| < 1 and B; € [0, L], the projection space is a two dimensional “band” By, .
These bands are all “turning” around the vector 1 and intersect the origin O. The Fig. 2
illustrates the model in the very simple case where the range region is a three-pixels triangle.

Fig. 2 The geometrical model for Ng = 3 and for a pool of two domain regions. DZJ generates the largest

. 11 . .
occupation volume Vi1. Dy ; is “near” the segment generated by 1 and has a smaller occupation volume

Vi o
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4. SPACE FILLING

When solving the above problem for a highly textured range region, no assumption can
be made on its content, therefore the vector Ry should be considered as a random point
in K =0, L]NR. A “good” pool of domain regions should hence generate bands By ; that
“occupy” as much space as possible: Given a tolerance error e, the volume Vi generated
by the balls of radius e centered on the points of the bands Bj; should occupy the whole
set K. We can estimate an upper bound of this volume Vj; by assuming that all individual
occupation volumes Vj ; do not intersect, and that d = L.,. Given that the bands By ; have
a maximum width of \/NgL (to fit inside the set K), the volume to estimate is enclosed in
a Np dimensional rectangle parallepiped with two “sides” of size /NrL and (Ng — 2) of
size e. Hence,
Viei < (26)NR_2NRL2 and,

for the global occupation volume Vj:
Vi < Qk(Qe)NR_QZVRLQ

An upper bound of the probability Py of “acceptance” of the region Ry is hence given

by:
Vi 2¢\ Vr—2
P.=—= Np | —
F= < QrNRr <L)

In a usual case where Np = 8 x 8 = 64, L = 256, () = 256, and with an acceptance error
of e = 8, we have P < 22%!!!. If we wanted this probability to become more “reasonable”,
we would like to find Py < 1 (which is always true, of course, but intuitively we understand
that in this case, Py is closer to one), then in the above usual case Q} = 2**? domain blocks
would be necessary (remember that () is here the total number of domain blocks after the
subsampling and the geometrical transformations).

This shows that it is “statistically” impossible to find a matching domain block for a
given highly textured range block of size 8 x 8. If we want to ensure a given reasonable
error e, we must reduce the size of the blocks. We also understand why fractal schemes
behave so poorly in high frequency areas, as we noticed in our numerical experiments.

In the next sections, we will analyze how we can try to better this acceptance probability.

5. OPTIMAL PARAMETERS QUANTIZATION

In the previous section, we have carried out a volume estimation assuming that all bands
By ; had an empty intersection, and that all points of each band were represented. These
two hypotheses can lead to an upper bound of the volume Vj, but don’t stand if we want to
find an optimal quantization for ay and (. We have to take into account the fact that all
bands intersect at the origin O and include the segment generated by vector 1. This means
that “flat” blocks are over represented, whereas some areas of textured blocks in our space
K are not in the occupation volume. In order to occupy as much volume as possible, the
geometrical model then leads to the following conclusions:

1. For the higher values of the parameters ay and (i a finer quantization should be used.
Hence a uniform quantization is not optimal.

2. The parameters should never take a zero value. The initial value should be at least e.
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3. To ensure an acceptance error e, the distance between two quantized points on a
given projection band By ; should lie between e and 2e (depending on which distance
is used).

The Fig. 3.a illustrates the case where a uniform quantization has been applied. ith shows
the over representation of constant blocks, and the weakness on highly textured blocks (near
the boundaries of the space K). In Fig. 3.b, non uniform quantization has been applied,
and better domain blocks have been chosen (see next section). These ideas have not yet
been implemented.

b

a
Fig. 3 In (a) vectors Dy,; have a variable length, quantization is uniform. In (b) vectors have approxima-
tively the same length, and quantization is not uniform

The Fig. 4 shows the distribution of the « parameters obtained with the image Lenna
512x512. As expected the most probable values are &1, which indicates that the boundaries
of the space K are not accurately represented. We are now able to estimate the number of
necessary bits to encode the transformations parameters: if we want to ensure an error of
e = 8, with a segment of length L = \/NrL = 255 * 8 to be covered, we find that at least
128 points are necessary, which means we need 7 bits to represent each parameter ;. This

is exactly the result found numerically in 6.

6. OPTIMAL DOMAIN REGIONS

6.1 Geometrical Criteria For An Optimal Domain Pool

Choosing an optimal domain pool is essential for minimizing the global collage error. Since
full search complexity is too high, and no assumption can be made on the content of a
textured range region, the only reasonable method seems to be a fixed path search, as it is
done in most publications. However, the volume criterion suggests the following;:

1. The luminance vectors D;;Z- should not be near the segment generated by the vector
1. This means the distance between the domain vector and this segment should be
as large as possible.
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Fig. 4 Histogram of a values for Lenna 512 x 512

2. The vectors DZ’Z» should have at least one high value (but not all, to respect the above
condition).

3. The vectors Dgﬂ- should not be “t00” correlated. We cannot impose an orthogonality
condition since we usually take a larger pool than the dimension of the space (Ng).
A way to ensure this would consist in using a generalized notion of angle (see next
section) between different domain vectors D;;Z»

6.2 Comparing Vectors Of The Space ®NR

Let us consider a domain vector D = ( dy---dy ) in K. We would like to choose D such as
the distance d(1,D) between D and the segment generated by vector 1 is maximal within
our space K. We can calculate easily the distance in the Ng dimensional space between a
point M and a straight line generated by a vector & and a point O:

il

a((0,2), M) = O3 | - (ﬂ ”)

We can then estimate this distance in our case where # =1 = (1---1), and M = D. We

find after some calculations:

d(1,D) = Nro(D)?,

o(D)? being the variance of the vector D.
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For two given domain vectors Dy and D5 a generalized cosine in the space RV& between
two vectors can be defined by:

D;.D,
COS(Dy,D2) =
[| D |l Dz |
The Schwarz inequality combined with the fact that all components of the domain vectors
are positive shows that:

0<COSDy,D2) <1

When the two vectors are orthogonal, COS(Dq,D2) = 0, and COS(Dy,D32) = 1 in the
case where the vectors are collinear.

6.3 Designing An Optimal Pool

According to the above observations, we would like to design a pool P of domain blocks
(already down-sampled and spatially transformed) that would be used for any match be-
tween range and domain blocks. Of course if we want to keep an adaptive scheme (such
as a quad tree algorithm for instance), with different sizes of range blocks, we would then
have to design a pool Py for each size d of the range block we consider.

We are able to build an optimal domain pool by applying the following method:

1. For a given size, select all possible blocks in the image, and keep those with a high
variance (according to a certain threshold vy). Po will denote the first pool obtained
in this way.

2. Take a starting domain block D¢ from Py and put it in P

3. Find a block D in Py such as COS(Dg, Dy) is below a threshold ¢ for all Dy already
in P.

4. Add the block Dy in P.
5. Go back to step 3 until the pool P has the desired size

Nothing guarantees in step 3 that such a block may be found. However, due to the
enormous number of blocks in Py, this never happens in practice. If this was the case, for
a given block Dy in Py, we would eliminate the blocks (usually one) that give a generalized
cosine function above the threshold and reintroduce Dy in P.

6.4 Other Conclusions

These results also explain why, as quoted in 7, IFS algorithms behave poorly in the case
of compensation errors frames: In this case, most domain blocks will lie near to the origin
0, so our space K will be very poorly represented. Moreover, no specific scheme such as
zero-length coding is used in the case of IFS based coding.

The geometrical model also shows that it is inefficient to add fixed vectors to the base (as
suggested in ®, for instance), since all projection spaces would include the space generated
by these fixed vectors. The use of a fixed vector, 1, is also questionable, for the same
reason. A different strategy should be studied, where projection spaces have the “smallest”
intersection.
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7. NUMERICAL RESULTS

In this section, we would like to compare a classical quad-tree algorithm, in which domain
blocks are chosen among the blocks of the partition, and the same algorithm but using our
domain pool, designed with geometrical criteria.

Our experiments were carried out on 512 x 512 images, with range sizes of 16 x 16, 8 X 8
or 4 X 4, corresponding to domain blocks of 32 x 32, 16 x 16 or 8 x 8. In the following table
the size of the pool for each size is given (starting with 8 x 8 blocks). For each experiment,
the result is compared with te quad-tree method: As we can observe in the table 1, the

Table 1 The results of the “optimal pool” for various sizes of pools, compared with the result
of the quad-tree method for the same compression ratio

Size PSNR(db) | Compression || Quad-tree
(16,16,16) 28.44 54.0 27.6
(32,32,32) 28.76 50.9 27.9

(256,256,256 29.80 39.9 28.6

optimal pool gives numerical results that are between .8 and 1.2 db above the classical quad-
tre algorithm. Of course, the search of the optimal pool takes some time, so the encoding
is slower. This is mostly due to the fact that the algorithm to design an optimal domain
pool is not yet optimized.

Fig. 5 compares the classical quad-tree algorithm with the new one. We can notice that
the coding results are also visually better in the case of the new algorithm. This is due to
the use of domain blocks with a high variance, whereas a lot of flat blocks are used in the
case of the quad-tree algorithm. Another main difference appears when comparing the bit
streams of the two algorithms: In the new one, the positions of the domain blocks in the
global pool are stored, and then only an index is necessary to adress them in each transform.
In the case of the quad-tree algorithm, the position of the domain block in the quad-tree
partition has to be given for each transformation, which is expensive in terms of bit rates.

Some efforts still remain to be done in order to find a faster algorithm, but these results
look very promising for this preliminary stage. We can also think that a mixed appoach
using global domain pools and local ones could be fruitful. Professor D. Saupe used a
similar analysis and succeeded in reducing the complexity by projecting the problem in a
one dimensional space 2. It should also be possible to improve the occupation volume by
using non affine luminance transforms. Further work remains to be done on this subject.

8. CONCLUSIONS

We have developed a geometrical analysis for Jacquin-like coding algorithms. The new
model explained some numerical results of previous publications, and improved the coding
results. A lot of work remains to be done in this relatively new field of image coding,
including better analysis of contractivity factor and coding of high frequency regions.
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b

Fig. 5 Lena 512 x 512 coded with a compression factor of 50.9 and PSNR = 28.76dB with the new
algorithm (a), and at PSNR = 27.9 dB with the classical quad-tree algorithm (b). The image (a) was
generated with the use of only 32432432 = 96 domain vectors
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