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Abstract: In fractal image compression the encoding step is computationally expensive.
A large number of sequential searches through a list of domains (portions of the image)
are carried out while trying to find a best match for another image portion. We show
that this step can be replaced by multi-dimensional nearest neighbor search which runs
in logarithmic time instead of linear time required for the common sequential search.
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1 Introduction

With the ever increasing demand for images, sound, video sequences, computer animations
and volume visualization, data compression remains a critical issue regarding the cost
of data storage and transmission times. While JPEG currently provides the industry
standard for still image compression there is ongoing research in alternative methods.
Fractal image compression is one of them.

JPEG can be termed symmetric in the sense that the encoding and decoding phases
require about the same number of operations. On the contrary, fractal image compression
is asymmetric, requiring long encoding times while allowing fast decoding. Thus, the
method seems to be most applicable where a large number of pre-encoded images have to
be decoded quickly. The encoding may be done using special hardware or larger computers
while the decoding and the display may be carried out in software on small machines.

The merits and drawbacks of fractal image compression in comparison to JPEG and
other methods are topics of interest in the current literature, e.g., [1, 7].

Fractal image compression allows fast decoding but suffers from long encoding times.
This paper introduces a new twist for the encoding process. What is the current state-
of-the-art? During encoding a large pool of image subsets, called domains, has to be
searched repeatedly many times, which by far dominates all other computations in the
encoding process. If the number of domains in the pool is NV, then the time spent for each
search is linear in N, O(N). Previous attempts to reduce the computation times employ
classification schemes for the domains based on image features such as edges or bright
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spots. Thus, in each search only domains from a particular class need to be examined.
However, this approach reduces only the factor of proportionality in the O(N) complexity.

The main contribution of this paper is the following. We suggest to replace the domain
classification by a small set of real-valued keys for each domain. These keys are carefully
constructed such that searching in the domain pool can be restricted to the nearest neigh-
bors of a query point. Thus, we may substitute the sequential search in the domain pool
(or in one of its classes) by multi-dimensional nearest neighbor searching. There are well
known data structures and algorithms for this task which operate in logarithmic time,
O(log N), a definite advantage over the O(N) complexity of the sequential search. These
time savings may provide a considerable acceleration of the encoding and, moreover, an
enlargement of the domain pool potentially yielding improved image fidelity.

The remainder of this paper is organized as follows. In the next section we give an
overview of fractal image compression providing an orientation about where in the process
the classification scheme is replaced by multi-dimensional search. In section 3 we present
the definition of the multi-dimensional keys, a theorem that establishes the mathematical
foundation, and some practical comments on the implications.

Figure 1: Elements of the fractal code. Left: partitioning of the image region (a square) into ranges.
Center: some of the corresponding domains. Right: the affine transformation v for the k-th domain-
range pair. For each domain-range pair (Dy, Ry) there is an (invertible) geometric transformation uy :
Dy — Ry. The function f evaluates image intensities. For a point z € R; we compute its preimage
ulzl(m) in the corresponding domain Dy, look up the image intensity, f(ulzl(m)), and finally apply the
affine transformation, vy, obtaining T'f(z) = kaugl(m) for ¢ € Ry. Iteration of the image operator T'
produces a sequence of images that converges to an approximation of the encoded image (see figure 2).

2 Outline of Fractal Image Compression

Basically, a fractal code consists of three ingredients: a partitioning of the image region
into portions Ry, called ranges, an equal number of other image regions Dy, called domains
(which may overlap), and for each domain-range pair two transformations, a geometric
one, uy : Dy — Ry, which maps the domain to the range, and an affine transformation,
vy, that adjusts the intensity values in the domain to those in the range (see figure 1).
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The collection of transformations may act on an arbitrary image, g, producing an output
image, T'g, which is like a collage of modified copies of the domains of the image ¢g. The
iteration of the image operator 7' is the decoding step, i.e., it yields a sequence of images
which converges to an approximation of the encoded image (see figure 2).

Figure 2: Encoding and decoding for a one-dimensional example. Let f : [0,1] — [0, 1] denote the
’image’ to be encoded (left). We choose the same domain [1/2, 1] for all ranges shown on the left. Note
that the graph of f in R; as well as in Rj3 is just a scaled down copy of the graph in the domain. In R,
we can reproduce f by a vertical flip of the same copy, in R4 we use the copy with an additional offset
of 1/2. The code thus employs the geometric transformations ux(z) = z/2 4 (k — 2)/4 and the affine
transformations v1(f) = v3(f) = f/2, v2(f) = (1 — f)/2, and v4(f) = (1 + f)/2. When reconstructing
the original from the code we may start with an arbitrary ’image’, g, and repeatedly apply the image
operator T. The first two iterations Tg and T?g are shown for the choice g(z) = =.

The time consuming part of the encoding step is the search for an appropriate domain
for each range. The number of possible domains that theoretically may serve as candidates
is prohibitively large. For example, the number of arbitrarily sized square subregions in an
image of size N by N pixels is of order O(N?®). Thus, one must impose certain restrictions
in the specification of the allowable domains. In a simple implementation one might
consider as domains, e.g., only sub-squares of a limited number of sizes and positions.
This defines the so-called domain pool. Now for each range in the partition of the original
image all elements of the domain pool are inspected: for a given range Ry and a domain D
the transformations u; and v, are constructed such that when the domain image portion
is mapped into the range the result vy, fu;'(z) for x € Rj, matches the original image f as
much as possible. This step uses the well-known least squares method. From all domains
in the pool we select the best one, i.e., the domain Dj, that yields the best least squares
approximation of the original image in the range. In other words, fractal image coding
consists in approximating the image as a collage of transformed pieces of itself, which can
be viewed as a collection of self-similarity properties. The better the collage fits the given
image the higher the fidelity of the resulting decoded image.

In this short article we cannot explain any further details and variations of fractal
image compression. For introductory texts or reviews see, for example, [3, 6, 7, 11]. For a
comprehensive bibliographic survey of the field of fractal image compression see our paper
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3 From Classification to Multi-Dimensional Keys

The classification of ranges and domains serves the purpose of reducing the number of
domains in the domain pool which need to be considered as a partner for a given range.
Just like in real life’, birds of a feather flock together. For example, if the original image
contains an edge running through a range, then domains which contain only "flat’ pieces
of the image can be safely discarded when searching for a good match for that range. In
previous schemes only a few classes were used in this way (from 3 or 4 in [10] up to 72
in [8]). Jacquin [10, 11] sorts ranges and domains into three classes (shade blocks, edge
blocks, and midrange blocks) following a classification, well-known in image processing.
The classification of Fisher, Jacobs, and Boss [8, 7] is made with a clever design of a
variable number of classes (4-12-72) taking into account not only intensity values but
also intensity variance across a domain. More recently, attempts have been made to
design the set of classes adaptively, i.e. depending upon the target images. Lepsgy and
(Jien [12] propose an adaptive codebook clustering algorithm and Boss and Jacobs [5]
consider an archetype classification based on a set of training images. In addition to the
complexity reduction by using these classification schemes Bedford, Dekking, and Keane
[4] suggest to use inner products with Rademacher functions to further exclude certains
domains from consideration for a partner to a given range.

The innovation here is that we replace the classification concept by the assignment of
multi-dimensional keys to ranges and domains. These keys form a metric space in which
we have to search for closest neighbors of the range key. The approach presented here is
really new. In contrast to the state-of-the-art classification schemes we may operate with
the entire domain pool, yet we will have to deal with only (logarithmically) few domains
in the actual minimization.

To simplify we present the results for a special one-dimensional case and generalize
later. We consider a set of N vectors z(*), ... z™) € R? (representing d pixel values in
each of the N domains of the pool) and a point z € R? (range with d pixels). We let
E(2(, 2) denote the smallest possible least squares error of an approximation of the range
data z by an affine transformation of the domain data z(9). In terms of a formula, this is
E(z®), 2) = ming 3cr |2 — (ae + bz} |2, where e = ﬁ(l, ..., 1) € R%is just a unit length
vector with equal components. Computing the optimal a, b and the error E(z(),2) is a
costly procedure, which we have to perform for all of the domain vectors (1), ..., z(N)
in order to arrive at the minimum error, given by mini<;<y E(z(),2). This staggered
minimization problem needs to be solved for many query points z in the encoding process
(i.e., for all ranges). The goal is to show that this search can be done in logarithmic time
O(log N) in place of linear time, O(N), valid for the sequential search. The following
theorem provides the mathematical foundation for the solution. We use the notation
d(-,+) for the Euclidean distance and {-,-) for the inner product in R?, thus, ||z|| =

d(z,0) = 4/(z,z).



Theorem. Let d > 2, e = \/Lg(l,...,l) € R? and X = R:\{re | r € R}. Define the
normalized projection operator ¢ : X — X and the function D : X x X — [0,4/2] by

fa) = 2 g Dla,2) = min(d(g(2), 6(2)). d(—b(z), 6(2).

"l = (z,¢) e]]

For z,z € X the least squares error E(x,z) = ming p¢eR ||z — (ae + bz)||? is given by

E(z,2) = (z,6(2)) g(D(x,2)) where g¢(D) = D*(1 — D*/4).

Figure 3: Illustration of the geometry underlying the theorem.

Proof. The least squares approximation of z by a vector of the form ae + bz (resp.
ae + bé(z)) is given by the projection

Proj(z) = (z,€) e + (2, 9(2)) ¢(2) = (2, ¢) e + (2, 6(2)) ((2), 6(2)) 6(2),

where the last equation is derived from z = (z,¢e) e + (z,¢(2)) ¢(z) (see figure 3). The
least squares error in this approximation is calculated as

E(x,z) = ||z = Proj(2)||” = (2, 6(2))” (1 — (¢(x), (2))").

Since d(+9(x), 6(2)) = /2(1 F (9(x), 6(2))) we have D(x,2) = /2(1 = [(6(2), 6(=))])
Solving for [{¢(x), #(z))| and inserting the square of the result in the formula for F(z, z)
completes the proof.

For an interpretation we note that for given = € R? all vectors of the form ae + bg(z)
can be represented exactly as a linear combination of @ and e (with zero least squares
error). These vectors form a two-dimensional subspace of R?, an orthonormal basis of
which is given by ¢(z) and e. For all z in this space ¢(x) is unique up to choice of
the sign. Thus, ¢(x) may serve as a 'representative’ of this space and will become the
multi-dimensional key for searching.

The theorem states that the least squares error E(x,z) is proportional to the simple
function ¢ of the Euclidean distance D between the projections ¢(x) and ¢(z) (or —¢(x)
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and ¢(z)). The value of the result is not in terms of a speed-up of the calculation of the
least squares error, but of a more fundamental nature. Since ¢g(D) is a monotonically
increasing function for 0 < D < V2 we conclude that the minimization of the least
squares errors E(z(), 2) fori=1,..., N is equivalent to the minimization of the distance
expressions D(z(),2)! Thus, we may replace the computation and minimization of N
least squares errors F(z(9), 2) by the search for the nearest neighbor of ¢(z) € R? in the
set of 2N vectors £¢(z()) € R

The problem of finding closest neighbors in Euclidean spaces has been thoroughly stud-
ied in computer science. For example, a method using k-d trees that runs in expected
logarithmic time is presented in [9] together with pseudo code. After a preprocessing step
to set up the required k-d tree, which takes O(N log N) steps, any search for the nearest
neighbors of query points can be completed in expected logarithmic time, O(log N). How-
ever, as the dimension d increases, the performance may suffer. A method that is more
efficient in that respect, presented in [2], produces a list of so-called approximate nearest
neighbors. The above theorem provides the link to these algorithms from computational
geometry.

We conclude with some remarks on generalizations and implications.
1. In the above we have made the ideal assumption that the number of components in
all vectors is the same, namely d. This is not the case in practice, where small and large
ranges need to be covered by domains that can be of a variety of sizes. To cope with this
difficulty, we settle for a compromise and proceed as follows. We down-filter all ranges
and domains to some prescribed dimension of moderate size, e.g., d = 8. This allows
the processing of arbitrary domains and ranges, however, with the implication that the
formula of the theorem is no longer exact but only approximate.
2. For a given range not all domains from the pool are admissible. There are restrictions
on the resulting number b, the contraction factor of the affine transformation (e.g., |b| < 1
in some implementations). This is necessary in order to ensure convergence of the iteration
in the image decoding. Also one imposes bounds on the size of the domain (for a given
range a suitable domain should be larger than the range, but not too large). To take that
into consideration, we search the entire domain pool not only for the nearest neighbor
of the given query point but also for, say, the next 10 or 20 nearest neighbors (this is
called the all-nearest-neighbors problem and can still be solved in logarithmic time using
a priority queue). From this set of neighbors the non-admissible domains are discarded
and the remaining domains are compared using the ordinary least squares approach. This
also takes care of the problem from the previous remark, namely that the estimate by the
proposition is only approximate. Some first empirical tests (using a 256 x 256 image and
the quicksort algorithm for computing nearest neighbors) have shown that although the
best domain for a given range often was not the first entry in the priority queue it usually
was among the first six or so. Thus, the result was the same as if the exhaustive search
through the entire domain pool had been carried out.
3. Our technique for encoding one-dimensional image data readily carries over to (2D)
images. There are two possible approaches. The first is simply to represent an image by a
one-dimensional scan, e.g., by the common scan-line method or (better) using a Hilbert-
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or Peano-scan. However, in the literature image domains and ranges are usually squares,
rectangles or triangles. Image data from a rectangle, e.g., can first be transformed to a
square, then down-filtered to, say, an array of 3 by 3 or 4 by 4 intensity values leading to
d =9 or 16. After applying the normalized projection operator ¢ we can use the result
as a multi-dimensional key in the exact same fashion as described before.

4. We make two technical remarks concerning memory requirements for the k-d tree.
Firstly, it is not necessary to create the tree for the full set of 2N keys in the domain
pool. We need to keep only one multi-dimensional key per domain if we require that this
key has a non-negative first component (multiply key by —1 if necessary). In this set-up
a k-d tree of all 2N vectors has two symmetric main branches (separated by a coordinate
hyperplane), thus, it suffices to store only one of them. Secondly, there is some freedom
in the choice of the geometric transformation that maps a domain onto a range. In
the one-dimensional setting we may reverse the ’direction of time’. In two dimensions a
square, e.g., may undergo any of the 8 transformations of its symmetry group (rotations
by multiples of 90 degrees and a flip). This will create 7 additional entries in the k-d tree,
enlarging the size of the tree. However, we can get away without this tree expansion. To
see this, just note that we may instead consider the 8 transformations of the range (or
just some of them) and search the original tree for nearest neighbors of each one of them.
5. The preprocessing time, O(Nlog N), to create the data structure for the multi-
dimensional search is not a limitation of the method. To see that, observe that the
number of the ranges to be considered is of the same order as the number of domains,
O(N). Thus, the sum of all search times, including the preprocessing, is O(N log N), to
be compared with O(N?) for the method using sequential search.

4 Summary

We have introduced a new technique at the core of fractal image compression which can
be integrated into existing implementations. It reduces the time complexity of the encod-
ing step thereby creating the potential for better and faster fractal image compression.
Clearly, the approach proposed in this paper should be tested empirically, the results of
which will be presented in a forthcoming paper.
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