IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, Oct. 1997 1

REAL-TIME VERY LOW BIT RATE VIDEO CODING WITH ADAPTIVE MEAN-REMOVED
VECTOR QUANTIZATION

Dietmar Saupe, Bernd Butz

Universitit Freiburg, Institut fiir Informatik, Am Flughafen 17, 79110 Freiburg, Germany

ABSTRACT

This is a contribution for very low bit rate video coding in
real-time and software only on computers of PC class. It
is based on frame replenishment with block coding using
mean-removed vector quantization. No motion compensa-
tion is employed and the VQ codebook is small. Algorithms
are developed to minimize the bit rate and to reduce the
search complexity for the vector quantizer. The codebook is
adaptive ensuring good overall quality encodings for head-
and-shoulder image sequences. Results are provided for
some test sequences and compared to some other state-of-
the-art techniques.

1. INTRODUCTION

For image sequence encoding only relatively little work
has been reported for methods that provide real-time and
software-only implementations for video phone applications.
We have developed a codec for circuit switched applications
with the following goals in mind.

1. The bit rate is scalable within a range from about 10 kb/s
up to 100 kb/s and more.

2. The bit rate per frame is constant.

3. The codec is fast, so that a real-time implementation on a
PC platform can work in software only.

Based on these constraints we consider in this paper only
YUV color image sequences in 4:2:0 QCIF format (176 x
144 pixels) where U and V chroma channels are subsampled
by a factor of 2 horizontally and vertically. We aim at frame
rates of about 8 frames per second. This gives a rate of 0.05
to 0.5 bpp (bits per pixel) corresponding to channel bit rates
of 10 to 100 kb/s. The method can easily be modified to
encompass a broader range of parameters.

There are a number of contributions reporting progress
in the direction of our goals, two of them carrying a close
relation to the method proposed here. Wang et al [2] pro-
pose plain vector quantization (VQ) of 8 x 8-blocks with an
adaptive codebook. Blocks are encoded using motion com-
pensation if appropriate. A constant reproduction quality is
targeted and, thus, the bit rate is not constant. Nicholls and
Monro (see, e.g., [1]) discuss a method that yields a constant

bit rate. It uses fractal and DCT block coding for image
sequences. In this work we show that it is advantageous to
combine adaptive vector quantization with the constant bit
rate encoding strategy. Together with further significant en-
hancements large gains in reconstructed image quality can
be achieved over the transform based approach.

2. CONSTANT RATE ADAPTIVE VQ IMAGE
SEQUENCE CODING

Bitrate and time manager. The target bit rate and the frame
refresh rate together define the bit budget and the time avail-
able for the coding of a single frame. The overall control
of the algorithm is executed by the bit rate and time man-
ager. It works much in the same way as the corresponding
construction in [1]. A new frame is read in and compared
blockwise with the frame buffer, which contains the previ-
ously encoded frame (available at the decoder, too). Blocks
are of fixed size, e.g., 4 x 4 pixels. The blocks are sorted
with respect to decreasing mean square difference. From this
priority list blocks are encoded and transmitted until the allo-
cated bit budget or the available time is used up. This scheme
is a type of frame replenishment, where only blocks with the
largest deviations from the previously encoded frame are
updated, while the other blocks remain unchanged.

Mean-removed vector quantization. The block encoding
is done using vector quantization with an adaptive codebook
of blocks. This is similar to the scheme proposed in [2] but
differs from it in some important aspects. Firstly, since CPU
time is at a premium no motion compensation is attempted.
Secondly, blocks are encoded using mean-removed VQ [3].
This product code technique effectively enlarges the num-
ber of possible reconstruction vectors without requiring the
increase of computing time that is necessary with plain VQ
(used in [2]) in order to arrive at about the same quality.
Thus, there is a scalar codebook for uniformly quantized
block mean values and a shape codebook for mean-removed
blocks. In the following we use the word *codebook’ for the
vector codebook of these shape blocks.

Codebook update. For each coded frame a certain tar-
get quality tol will be computed (see below). In the case

IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, Oct. 1997 2

that a given block cannot be represented sufficiently well
by mean-removed VQ (i.e., the corresponding mean square
error M SE > tol) the quantized mean and block (with
quantized mean removed) are transmitted. The shape block
is encoded using DPCM of quantized prediction errors and
entropy coding. Moreover, this new quantized shape block
is included in the codebook while another one is removed.
We call this process a codebook update.

Codebook adaptation. The codebook is maintained in the
form of a priority queue with the goal to collect the more
frequently used blocks at the front. This serves two pur-
poses:

1. Codebook block indices referenced by the encoder are
transmitted as an entropy coded bit stream. Thus, keeping
the frequently used blocks up front reduces the entropy
and improves the rate.

2. For each block that requires an update in a given frame
the encoder must search the codebook for an acceptable
matching block. This search can take advantage of the
sorting of the codebook, speeding up the algorithm (see
below).

In practice, the codebook can be initialized either as empty
or as a codebook obtained from a training sequence. The
blocks in the codebook are sorted according to a biased fre-
quency count, which is incremented by one each time the
corresponding vector is referenced by the encoder. After
such an incrementation the sorting is reestablished by mov-
ing the block forward by one position, if necessary. When
a new codebook vector is inserted into an already full code-
book, the vector with the smallest count is deleted. The new
block might be used in several future frames. Thus, it is
not advisable to append the new block at the end of the list,
initializing its frequency counter with the value one. On the
other hand, the move-to-front rule adopted in [2] causes a lot
of unfavorable fluctuation at the beginning of the codebook
and widens the histogram of used indices. Thus, guided
by experience, we propose a compromise by initializing the
frequency count t0 ki + (kmaz — Kmin)/4 (rounded to
an integer) where k,, 4, and k,,;,, denote the maximal and
minimal counts found at the beginning and the end of the
codebook.

Adaptation of target quality. The bit budget for a frame
will be used up for

1. Bits for addresses of blocks to be updated.
2. For each block to be updated:
a. Bits for the block mean,
b. 1 bit for the VQ/codebook update alternative,
c. either bits for an index to a VQ codebook entry,
or bits for all quantized block pixels.

The alternative VQ versus codebook update is decided by
the tolerance tol mentioned above which may be interpreted

as a target quality for the mean square error. A high value
of tol will lead to more blocks being encoded using VQ
while a small number forces a larger number of more costly
codebook updates. Since the bit budget per frame is constant
the setting of tol thus affects the total number of blocks
sent. When due to a strict setting of tol only a small number
of blocks are sent, then other blocks that would require an
update cannot be dealt with due to the limited bit budget.
In this case better overall distortion for the current frame
would have been achieved by using a larger value for the
tolerance tol. Therefore we propose an adaptive tolerance
which takes into account the overall need for updates, which
can be estimated by the mean square difference (ms-diff)
between the current frame and the previous decoded frame.
We set tol = max (30, min (ms-diff, 150)).

Color. The U and V color components are encoded in much
the same way as the luminance blocks. We use the same size
blocks and the current luminance VQ shape codebook. We
find that it is not necessary to carry out codebook updates
for color. In fact, the encodings presented here use only
the mean of U,V-blocks with satisfying results. For each
frame the encoding of the luminance has priority. This means
that it occurs first and in the case that a large number of
codebook updates or a large amount of CPU time is spent
for luminance encoding some or all of the color blocks cannot
be transmitted due to exhausted bit rate or computing time.

Entropy coding. In our coder we employ entropy coding
using variable length codewords. There are different Huff-
man tables used for the VQ codebook indices, the quantized
block mean values, and for the quantized prediction errors
for the components of the blocks which are inserted in the
codebook. The block locations of the transmitted blocks are
run length encoded with Huffman entropy coding of the runs.
The choice for Huffman entropy coding was motivated by
the real-time constraint.

Fast codebook search. For the codebook search we com-
bine two known techniques and additionally take advan-
tage of the sortedness of the codebook. For the codebook
search we employ partial distortion elimination (PDE, [3])
enhanced by sorting the components of query vectors ac-
cording to decreasing absolute value. Moreover, we remark,
that it is not necessary to retrieve the absolutely best code-
book block. It suffices to identify a block that meets the
tolerance criterion M SE < tol, if such a block exists in
the codebook. Due to the sortedness of the codebook such a
block can often be found near the start of the codebook. This
brings about a speedup (by a factor of about 1.7 w.r.t. PDE
in our experiments) at the expense of a slightly worsened
distortion. In practice, we define a uniform partitioning of
the codebook and test the acceptance criterion for the cur-
rently optimal codebook block each time after scanning of a
segment has been completed.

IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, Oct. 1997 3

40 T T T T T T T T
35
30
o)
)
o 25
zZ
%)
o
20]
iy chromaV -
chroma U -
15 4 luminance Y ——]

luminance Y (ref. [1]) -----

10 : 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Time (sec)

Figure 1: Time course of PSNR for YUV components of the
Salesman sequence at 50 kb/s, compared to [1].

40
35
30
o)
e
x 25
P4
wn
o
20 |t
P 100 kb/s —
P 50 kb/s -----
1By 20kbls 1

10 i 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Time (sec)

Figure 2: Time course of PSNR for the salesman sequence.

3. RESULTS AND COMPARISON

We have developed an implementation for 4:2:0 QCIF for-
mat color image sequences. The program runs on an Intel
Pentium 133 MHz processor. Encoding parameters were:

e block size: 4 x 4 pixels,

e number of quantization levels for mean values: 64,

e number of quantization levels for DPCM prediction error
for block components: 64,

e VQ codebook size: 512,

o frame frequency: 8.3 Hz,

e color coding: means only.

All our encodings were carried out in real-time, often with
an ample supply of CPU time left over for each frame. The
peak-signal-to-noise ratios (PSNR) are generally computed
using only the luminance channel.

Although there are some commonly used test image se-
quences, it is hard to compare experiments such as ours to

40

35

30

25

PSNR (db)

20
100 kb/s ——
50 kb/s -
15 20 kb/s - T
-10 ’ 1 1 1 1 1
0 1 2 4 5 6

3
Time (sec)

Figure 3: Time course of PSNR for the Miss America se-
quence.

40 T T T T T T T
35 .
30 .
o)
s
T 25 .
P4
(7]
o
20 b
§ 100 kbls ——
E 50 kb/s -
15 20 kb/s - T
10 ‘ 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Time (sec)

Figure 4: Time course of PSNR for the Mother-and-
Daughter sequence.

others found in the literature because parameter choices are
numerous and diverse. The encodings of the Salesman se-
quence in [1] are best corresponding to ours in terms of
parameter settings. The only difference is the slightly lower
spatial resolution in [1] (160 x 128 pixels). Figure 1 com-
pares the performance for the sequence of 18 seconds. Our
results are superior to those based on fractal and DCT block
encodings provided in [1] (lower curve in figure 1).

Bit rate Average PSNR (dB)
(kb/s) | Method [1] | Our method
20 248 292
50 28.7 338
100 30.6 36.6

The table above shows the average PSNR from different
encodings. The average is computed ignoring a transient
initial phase of two seconds.!

IThe numbers for [1] and the lower graph in figure 1 were obtained

IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, Oct. 1997 4

Figure 5: A frame of the original salesman sequence.

We also provide encoding results for different bit rates
and image sequences in figures 2 to 4.

Wang et al [2] encoded the Suzie sequence at 8 Hz and ob-
tained an average PSNR of about 35 dB at an average rate of
about 830 kb/s. Our method yields the same average PSNR
at constant rate of 168 kb/s and 8.3 Hz. However, we re-
mark, that this comparison is not fully conclusive, since their
encodings used higher resolution data (480 x 720 pixels),
which, however, on the other hand introduces an increase of
redundancy and makes the encoding easier. Moreover, it is
not clear that their encodings can indeed be carried out in
real-time on a machine of PC type.

Our coder may well compete with some others that do
not impose the real-time constraint. For example, Zhang et
al [4] employ a sophisticated motion compensation scheme
in combination with mean-removed residual vector quanti-
zation. They also encode the Salesman sequence (CIF reso-
lution, 15 Hz) and report an average performance of about 34
dB PSNR with a variable bit rate ranging roughly between
90 kb/s and 270 kb/s. Our real-time method yields the same
average PSNR at 12.5 Hz and the constant rate of only 63
kb/s. However, for the comparison it must be taken into
account that our encoding was done using the QCIF format.

4. CONCLUSION

We have presented a new technique for very low constant
bit rate encodings of image sequences in real-time and soft-
ware only. The method consists of frame replenishment
with mean-removed VQ encodings of blocks with large ac-
tivity estimates. Special adaptive codebooks provide good
visual quality and raise the efficiency of the entropy encod-
ing of the indices. An implementation demonstrates that the
method outperforms some comparable current state-of-the-
art systems. The improvements of the proposed method over
comparable previous ones are due to:

using the plot provided in [1].

Figure 6: Same frame coded at 50 kb/s.

e use of adaptive product code VQ in place of ordinary VQ
or nonadaptive block transform coding,

o more efficient adaptivity of the VQ codebook,

e fast codebook search techniques,

e image quality adapted to global frame activity,

e incorporation of entropy coding of VQ indices, codebook
block updates, and block positions.

Future work will include postprocessing at the decoder and
an expansion of the product code technique by using rotated
and reflected blocks thereby further increasing the recon-
struction quality without requiring excessive extra encoding
and decoding time. With enlarged CPU power of future PC
generations it will become possible to improve the encoding
by including motion compensation and/or recursive subband
transformation. Furthermore, the quantizer for the codebook
block update should be made adaptive to the global scene ac-
tivity.

5. REFERENCES

[1] Nicholls, J., Monro, D., Scalable video by software, in:
Proceedings IEEE Intern. Conf. Acoustics, Speech, Sig-
nal Proc. ICASSP), Atlanta, 1996.

[2] Wang, X., Shende, S., Sayood, K., Online compression
of video sequences using adaptive VQ codebooks, in:
Proceedings DCC’94 Data Compression Conference,
1994, Snowbird, Utah, J. A. Storer, M. Cohn (eds.),
IEEE Computer Society Press, 1994,

[3] Gersho, A., Gray, R.M., Vector quantization and signal
compression, Kluwer, Boston, 1992,

[4] Zhang, K., Bober, M., Kittler, J., Robust motion esti-
mation and multistage vector quantization for sequence
compression,in: Proceedings IEEE Intern. Conf. Image
Proc. (ICIP), Austin, 1994.

