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Abstract. In this paper, we present an evolution of IFS-based image compression
schemes, well adapted to high frequency contents. We propose to substitute the
usual affine mass map which tends to smooth irregular surfaces, by an harmonic
based map. This change implies the creation of a new IFS determination algorithm
for solving the inverse problem, and a new way to quantize and encode coefficients.

1 INTRODUCTION

It may be surprising to note that IFS in the family of Jacquin’s coding
schemes [11] suffer from annoying distortions when dealing with high fre-
quency image contents reconstruction [16] [21]. In fact, some of them are
able to generate many rich and different textures [1] at a very high com-
pression rate, but under condition they are fractal [14]. Generally, stationary
textures do not possess the self-similarity property on which block-based frac-
tal coding methods rest. Nevertheless, some fractal tools are very efficient for
common textures manipulation. This is the case of the multifractal theory
[22][17] which has recently drawn much attention as a tool for studying the
structure of singular measures, both in theory and in application: analyzing,
modifying and classifying textures[13]. This would prove that fractal coders
are potentially able to accurately compress rich-contented images.

1.1 Related works

Different directions have been explored, so as to improve IFS coding perfor-
mance over chaotic surfaces.

Among the early ideas, we can quote the creation of a range blocks parti-
tion adapted to the content of each block (the richest, the smallest). This
solutions, dramatically improves IFS capabilities, because textured regions
are split into small blocks that probability of which to be well mapped is in-
creased. Davoine presents in [9] an overview of all different types of partition
that have been used to solve the inverse problem : quadtrees, HV, triangular,
polygonal, complex regions.
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Another way to get better rate-distortion curves consists in mixing IFS with
other coding methods. These hybrid schemes, provide satisfactory results.
Techniques using this idea are described in [6][3].

Barthel defined in [2], a fractal based transform coding in which an IFS is
computed over DCT coefficients of small square blocs. This approach com-
bines the interest of both methods: DCT expresses intra-block redundancies
while IFS expresses inter-bloc redundancies.

Novak chooses another kind of IFS-DCT hybridizing, proposing a model-
residual algorithm[20]. First the input image is approximated by a paramet-
ric model (polynomial basis or DCT), then the residual part of the signal is
encoded using an IFS. The advantage of this method is its robustness to low
bitrate and noisy channels.

It has also been proven that fractal coders are able to point out likely relation-
ships existing between the different resolutions of a subbands or wavelets im-
age decomposition. Davis[5] and Krupnik[12] propose to express those likely
relationships between square range blocks in a subband, and square domain
blocks in another subband at a lower resolution. Contrary to DCT hybridiza-
tion those methods do not create block effects at high compression rates.
Unlike the previous methods, VQ-IFS hybridization is not developed in a
transformed space. The IFS is seen as an auto-quantizing process and a vec-
torial quantizing is applied to the domain blocks set [19] [7] i.e. similar domain
blocks are merged.

Compared with other elements of the IFS coding chain, map functions have
not been widely studied. Only a few works attempt to optimize maps which
are affine functions for most of the time. In the early years of fractal coders,
Monro who wanted to bypass a domain-range embedding constraint, proposed
[18] the use of polynomial map function. More recently Lutton introduced
nonaffine tree-based map functions and resorts to a genetic programming
method for solving this much more complex inverse problem developed in
[15].

1.2 Main contribution

Considering textures to be the IFS pitfall, and observing the efficiency of DCT
methods, we address this IFS drawback by considering harmonic based maps.
The main advantage of our approach over others IFS-DCT hybridization
is that both methods are not chained but are really mixed and conjointly
optimized.

1.3 Paper organization

In section 2 the framework of our method is looked at. Section 3 details the
resolution of the inverse problem. First the range blocks partition building



New mapping functions for high frequencies 3

method is exposed, and then our map function family is defined: a one-
pixel precise domain block positioning and harmonic functions based map are
presented. Finally, section 4 concludes the preliminary results and outlines
future works.

2 OVERVIEW

Our work is divided into three parts. The first part is the range blocks parti-
tion building. This step consists in the creation of triangular blocks, possibly
fitting the image content. Textured parts are covered with small blocks. This
part is further detailed in [8] [10].

The second part, is the main evolution we propose for improving IFS capa-
bilities on disturbed regions. Contrary to usual mapping models resting on
affine functions, we introduce harmonic functions based model. The mapping
error is defined as the Lo distance between the original range block and its
associated decimated domain block whose surface is projected in an harmonic
functions basis, in the way of a DCT transform. Only a few coefficients are
needed for a good result. Moreover, domain positions are computed so as to
reach a one-pixel precise position.

3 GENERAL ALGORITHM

The inverse problem remains unchanged since the early IFS coders. Let us
consider a given grey-level image I whose support is split into n g range blocks
{R? }. Each range block has to be associated by « to a unique and often larger
domain block D*() among np possibly overlapping domain blocks {D7} so
that there is a map w*®whose image R*® of D is close to R? . The
union of the ng chosen maps is named IFS W. In the case W is eventually

2
contractive over the metric space (N N ,d) of grey-level images I, W has a
unique grey-level image I as afixed point. Resolving the inverse problem for
I, means finding out an IFS W whose fixed point [ is so that:

According to the collage theorem [4], this property can be verified if
Vi € [0..ng[ d(RP ,R*® ) =0 (1)
The L, distance is commonly considered for image compression with losses.

Nevertheless, a zero distance is too strong a constraint and only a minimiza-
tion of this distance is performed.
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a. Regular triangle range blocs. b. Content adaptative Delaunay range blocs.

Fig. 1. Our IFS algorithm, still presents content adaptative range blocks .

3.1 Range blocks creation

Our algorithm is based on two types of range partition construction. The first
one (figure 1a) provides a low cost regular triangles partition building. Its use
is advantageous on homogenous content images such as Radar256 (figure 3).
The second mode (figure 1b) allows the creation of an adaptative Delaunay
triangulation, whose blocks are larger on flat zones.

3.2 Spatial map

The determination of a map w®(®can be broken down into two steps. The first
one creates a decimated domain block D*() through an affine spatial trans-
form wg(z) [23]. The second one is the mass map w? ’and creates R by
modifying D% surface.

The decimated domain block D*(% is a subsample of the domain block D associated
with the range block R!. Our spatial transform family F is a subset of
affine transforms, disabling rotations and letting the domain position free
in the vicinity of R? . The domain pool P? associated to R® is defined as
Pt = {D CI, Jwe F\ support(R' ) = support(w(D))}. On the one hand,
one may think the size of P? will increase the amount of information for a
domain block characterization and thus reduce the coder performance. That
is true, but on the other hand this offers high precision maps, which is of
a great interest concerning edges, and advantageously balance the increased
cost.

The parameters of the spatial transform are the spatial contraction vector
Cc2() ¢ R? and the spatial translation vector 7% e N2. To express the
D) content, let us introduce subsets B*94 C D) associated to a pixel
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g € D) and defined as follows :

foli) 15 0 o)
. . _D ) a() P z
Ba(z)q = p € a(z) ( _q /T = Ca X ( z) —+ .
wEPTA g, 0 ) o) e )

Thus the value of a g pixel in the decimated block D*( is

S Bg(i)q
pEsupport(Ba(i)q )
card(B*(®1 )

[);1(1) —

3.3 Affine mass map

The mass map is the transformation through which the surface of a deci-
mated domain block D*(%) is moved in order to approximate the surface of
its associated range block R . The usual constraint on the mass map wg,f(z)is

its minimization of the collage error E~®) in the sense of the L, distance :

B0 = R ,w3 (D0 ) = d(R' R ) (2)
When using an affine mass map, the collage error has the expression:
B — Z (S x @g‘(i) +o— 'R;) )2 (3)
pEsupport(R?)

Where s € R and 0 € N are named scale and offset of the map. The mini-
mum value for E*) according to equation 3 can be computed by resolving
the two equationed linear system resulting from E*(") derivations.

3.4 Cosine mass mapping

Instead of an affine mass map mentioned in 3.3, and in order to thoroughly
consider high frequency surfaces, we introduce a cosine mass mapping. This
map wf\‘l(’)depends on a basis of N, fixed pulsation cosine functions, whose
amplitudes have to be computed.

The expression of the value of pixel p in the approximated block R g
defined as:

ﬁg(i) _ wﬁ}(i) (Dg(i) )
=0+ Yic0. N[ ke[0.. N clcf,c(’) x @ff(’) x cos(f; x pz) x cos(Or X py)

(4)
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Where b € Z is the offset, ; = 2T are the fixed pulsations, (ps,py) € N?
stands for the relative position of pixel p in D and c*® € MPM(R) is a
matrix of cosine amplitudes. One can notice that §y = 27 which means that
cg‘éi) from equation 4 is equivalent to the scale factor of equation 3.

The map error between the original range block R* and the appoximated

range block R is then deduced from equations 2 and 4:

B = Y (X% g xpp@x
pEsupport(Ri) kE[0..N[I€[0..N,[ )
cos(B x pz) x cos(0r x py) ) = R, )2

()

The determination of the czl(i) coefficients minimizing E*? is performed by

resolving the following equations system :

aE>(1)
90 0
00
. 6
oo _ (6)
ac‘l(’i) -
Ne—1Ne—1
aE>(t) 0
o6
After simplifications, 6 can be written as a linear matrix equation :
00 00 00 00
Ago -+ Aon.—1 Al - Ano
: Coo By
AONC : .
A A(l)(I)Vc * X : =B :
00 CN.—1N.1 By, 1n.1
: b Bn,-1n,
N.0 N.0 N.0 N.O
Aoo Agn.—1 Ao ANCo
(7)

If we introduce the function W;l = cos(0k X pz) X cos(0; X py), then coefficients
of the known matrix A € MNHL(R ) are:

(A, = Y (D) xypn x gl Yk € [0..N,[, VI € [0..N,[,
pEsupport(RY) Vm € [0..N.[, Vn € [0..N,]
ANNe =y DR sy, Vm € [0.N,], ¥n € [0..N,]
< pEsupport(R?) o
ARy = n Dy <yl VE € [0..N,[ , VI € [0..N,]
pEsuppor.t(’R")
{ A%zé\{“ = card(R")
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2
and coefficients of the known vector B € R Vet! are:

By = X D3 x Ryl Wk € [0.N[, VI € [0.N[
pEsupport(R?)

BN.-1N. = > R
pEsupport(R?)

The solution of this system can be performed using an LDL! factorization.

4 PRELIMINARY RESULTS AND CONCLUSION

In this paper we proposed the use of a one-pixel precise domain block po-
sitioning associated with an image content range partition building. These
facilities ensure IFS capabilities on contour reconstruction. We also intro-
duced a new kind of mass map, resting on a domain block projection over an
harmonic basis in order to enable a better reconstruction of textures.

d. Iteration 9

Fig. 2. Iterations of a cosine-IFS at a rate of 0.5bpp.

Figure 2 and 3 illustrates the algorithm behaviour over a textured image. One
can notice that high frequency appears at first iteration. Precise details like
the river are kept while conserving the general texture appearance with no
block effects. A classic affine based IFS (figure 3.c) succeeds in reconstructing
the river, but tends to smooth out the texture.

The total CPU time for encoding this image with our algorithm is about
5min on a PII350 with 2 different cosine pulsations (i.e. 5 coefficients to
fix). Nevertheless, the use of 3 or more cosine pulsations leads to prohibitive
computing times. Future works will solve this problem by an optimized pri-
oritized hierarchical scanning. We also plan to improve cosine amplitudes
quantization.
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b. Affine-IFS at 0.31bpp c. Cosine-IFS at 0.30bpp

Fig. 3. Comparison of algorithm performance at low bitrate on an highly textured
image.
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