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ABSTRACT

The redundancy of the multiresolution representation has been clearly demonstrated in
the case of fractal images, but it has not been fully recognized and exploited for general
images. Recently, fractal block coders have exploited the self-similarity among blocks in
images. In this work we devise an image coder in which the causal similarity among blocks
of different subbands in a multiresolution decomposition of the image is exploited. In a
pyramid subband decomposition, the image is decomposed into a set of subbands which are
localized in scale, orientation and space. The proposed coding scheme consists of predicting
blocks in one subimage from blocks in lower resolution subbands with the same orientation.
Although our prediction maps are of the same kind of those used in fractal block coders,
which are based on an iterative mapping scheme, our coding technique does not impose any
contractivity constraint on the block maps. This makes the decoding procedure very simple
and allows a direct evaluation of the mean squared error (mse) between the original and the
reconstructed image at coding time. More importantly, we show that the subband pyramid
acts as an automatic block classifier, thus making the block search simpler and the block
matching more effective. These advantages are confirmed by the experimental results, which
show that the performance of our scheme is superior for both visual quality and mse to that
obtainable with standard fractal block coders and also to that of other popular image coders

like JPEG.
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I INTRODUCTION

Fractal models for images have proven to be effective for image compression and rendering [1]-
[7]. Fractal images share the common property that they exhibit self-similarity across scales.
The redundancy of the multiresolution representation for such images has been fully recognized
[8, 9].

The wavelet transform has been proposed [10] to provide a multiresolution representation of
signals: its connections to subband coding have been recently noted and analyzed [11, 12]. A
good example of the redundancy of the wavelet representation for fractal images is offered by
figure 1 which shows a typical fractal image f(z1,22) and the log — log plot of the magnitude of
its wavelet transform T'(a, by, bz) versus scale a [13]. In this example, the analyzing wavelet is
the “Mexican hat”
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The plot shows the log-magnitude of the wavelet transform centered at (by,b3) = (b1,bs). The
simple mapping between scale and wavelet transform suggests one could devise coding methods
based on a multiresolution representation of images. Indeed, the methods proposed by Pentland
[14] and Shapiro [15] seem to be inspired by this basic idea.

Fractal based coders have recently received attention in the literature [16]-[20]. In these
coders, the image is partitioned into a set of non-overlapping range blocks, and a set of possibly
overlapping domain blocks is chosen from the same image. FEach of the range blocks is coded
by mapping a domain block to the range block: the mapping consists of a spatial contraction,
pixel reshuffling, contrast scaling and addition of an offset. By composing the action of the
individual block maps, the result of the coding procedure is a transformation W on the image
f that satisfies W(f) ~ f. The essence of the method is that the description of the map W
can be used as a code for f. If this description is simpler than that of the original image, some
compression can be obtained. Fractal block coders give performances that are comparable to
standard techniques [21]. From a subjective point of view, and as in most other block-based
coding techniques, artifact edges between range block boundaries may appear at low bit rates
[19].

In this paper, we propose a coding procedure that aims to exploit similarities among detail
signals in a multiresolution decomposition of the image f. In a subband pyramid [22], an
image is recursively decomposed into a low resolution approximation and three high pass detail
images. The result of the decomposition is a set of subbands which are localized in scale (spatial
frequency), orientation and space [11]. Figure 2 shows the original image “Lenna” and its
pyramid subband decomposition.

Our coding scheme consists of choosing range blocks of different dimensions in each of the
subimages corresponding to the same scale and orientation. The domain blocks are chosen from
the subimage at the next lower resolution. The maps from a domain block to a range block
are similar to those used in fractal block coders. Rather than recursively coding range blocks
from other blocks in the image, as in standard fractal coders, our scheme predicts the range
blocks of a subimage from the blocks of the smaller subimage at the next lower resolution. This
simplifies considerably the decoding procedure, since no iteration of the map W is necessary, and



allows a more accurate control of the reconstruction error between the original and the coded
image. Furthermore, the subband decomposition acts as an automatic classifier for blocks, since
the blocks in different subimages corresponding to the same orientation have similar spectral
content. This can be used to reduce the block searching time and to have smaller mean squared
error in the block matching procedure. The proposed coding procedure gives better results than
state-of-the-art fractal coders, and other popular coding algorithms such as JPEG, in terms
of signal to reconstruction error ratios. From a subjective point of view, no blocking effect is
visible in the reconstructed images, due to the nature of the coding procedure that operates in
the subband coefficient domain.

In section II of the paper we briefly review subband coding principles and describe the
pyramid subband decomposition scheme adopted as the first stage of our coder. Section III
is a review of the main ideas used in fractal block coders: a description of the domain-range
block mappings is given. Section IV describes our predictive technique. Section V is a detailed
description of the coder. Section VI shows the results obtained with our scheme, and in section
VII conclusions are drawn.

II SuBBAND CODING PRINCIPLES

In this section we briefly review subband coding. For a more complete treatment, reference
[23] is appropriate. Subband decomposition of signals was first introduced by Crochiere et al.
[24] for speech coding, and later extended to image coding by Woods and O’Neil [25]. Figure
3 shows the schematic diagram relative to a two-channel subband coder for one-dimensional
signals, where the transmitter and the receiver are connected back-to-back (therefore assuming
no coding error).

In this scheme, the subband signal y'(n) is obtained by filtering the input signal y(n) with
the low-pass filter Hg and then subsampling the result by a factor two. Similarly, the other
subband signal y"(n) is obtained by subsampling the output of the high-pass filter H; applied
to y(n). The pair of filters Hy and H; is usually referred to as the analysis filter bank. At
the receiver, the reconstruction is performed by first upsampling by a factor two the subband
components yl(n) and yh(n), then filtering the obtained signals with the synthesis filter pair Gg
and G4, and finally adding the results to get the output signal v(n).

From figure 3, the z-transform of the output signal v(n) can be expressed as

V(z)=T(2)Y(z)+ S(2)Y(-2)

where

1
I(z) = 5 [Go(2)Ho(2) + G1(2) Hi(2)]
corresponds to a linear shift-invariant transfer function between the input and the output, while
1
5(2) = 5 [Gol(2) Ho(~2) + G1(2) Hi(~2)]

contributes to the aliasing components [26]. Ideally, one would like to reconstruct at the output
the input signal or a delayed version of it, i.e., V(2) = 27%Y(z) with L the number of delay
samples. Therefore, a perfect reconstruction analysis/synthesis subband system is one for which

S(z)=0, T(z)=2""L.



This frequency domain analysis of the subband coding system can be alternatively replaced
by a time (space in 2-D) domain analysis using the matrix notation of linear algebra [12, 27].
In this case, the signals y(n) and v(n) are represented by the infinite length vectors y and »
respectively. The input/output relation is then expressed as

v=GH'Yy

where G and H are infinite size matrices which represent linear transformations on infinite
length vectors [27]. The columns of matrix H consist of even-shifted versions of the time-
reversed kernels of the analysis filters Hy and Hy (zero-padded in the case of FIR filters), while
the columns of G are even-shifted copies of the synthesis kernel filters Gg and G;. Based on this
analysis, a perfect reconstruction subband system with zero delay satisfies the constraint that
the matrix product GH? is the infinite size identity matrix 7.

In addition to the perfect reconstruction condition we usually require the orthogonality of
the analysis transformation, and we obtain for matrices G and H the constraints GG' = I,
G = H. One possible way to satisfy these conditions is to choose the analysis/synthesis filter
coeflicients such that

go(n) = ho(—n)

gi(n) = hy(—n) (1)
hi(n) = (=1)'""ho(1 - n),

where hg(n) is a filter whose z-transform Hy(z) satisfies
Ho(Z)Ho(Z_l) + Ho(—Z)Ho(—Z_l) = 2. (2)

In [11] it is shown that orthonormal bases of wavelets correspond to a subband coding scheme
with orthogonal filters satisfying the equations (1) and (2). Considering the case of FIR filters,
it is possible to show [12] that conditions (1) and (2) can be met exactly only for even-length
filters. Furthermore, only trivial solutions with linear phase are possible. Approximate solutions
with odd length linear phase FIR filters can be found in [11, 27].

A scheme with linear phase FIR analysis and synthesis filters has been proposed in [28], and
a design method with several examples can be found in [29]. The scheme uses a symmetric linear
phase low pass filter Hg, while the filter Hy is given by Hy(z) = Ho(—z2). The two filters are
called Quadrature Mirror Filters (QMF). A consequence of the linear phase constraint is that
relation (2) can be satisfied only approximately.

More general solutions for exact perfect reconstruction even-length, odd-length FIR linear
phase filters are given by biorthogonal systems [12, 30], where the orthogonality conditions (1)
and (2) are relaxed.

An interesting consequence of the orthogonality of the transformation matrix G is that the
synthesis performed in the subband coding scheme is equivalent to the projection of the vector
y onto two orthogonal subspaces spanned by the even translations of the synthesis filter kernels
go(n) and g1(n). Thus the Parseval theorem assures that the energy of y is equal to the sum
of the energies of ' and y". Furthermore, whenever the synthesis stage is fed with any pair
of sequences §' and §", the energy of the output sequence v equals the sum of the energies of
9" and §". This property can be used to relate in a simple way the coding error energy in the
subbands to the error energy in the reconstructed signal. The same relation holds with a good
approximation for nearly orthogonal systems.

The subband decomposition scheme of figure 3 is easily extended to two-dimensional signals
(images) following a separable approach [25]. This is done by decomposing the input image y



into four subimages (or subbands) y'" g™,y 4!l where the pair of superscript letters denotes
the row-column filtering operations performed to obtain the subimage. For instance, subimage
y'" is obtained by low-pass filtering the rows and high-pass filtering the columns of y, followed
by a factor two subsampling in each direction.

This procedure can be iterated to obtain a multilevel pyramidal decomposition of the image

y [11]. Denoting with y! the input image y, at each decomposition level i the image yi | is
decomposed into the four subimages yf-h, yzhl, yz-hh, yf-l, for = 1,...,72p. The result of such a

decomposition is a set of subimages which are localized in scale, orientation and space.
Figure 4 shows the organization of the subimages in a 5 level decomposition.

IIT FracraL CODING

Fractal block coders are essentially based on the work done by A. Jacquin in [16, 17], with
several improvements and variations presented in [18]-[20]. In standard fractal block coders, the
image f is partitioned into a set of non-overlapping range blocks {r;,i = 1, ..., Ng} such that

Nr
UTiIf, riNr; =¢ for i # j.
=1

Each of the range blocks has size B; X B; pixels. As proposed by Jacquin, similarities between
range blocks and domain blocks of another size D; x D;, taken from other parts of the image,
are exploited. The set of domain blocks {d;,j = 1,..., Np} plays the role of a codebook for the
range blocks {r;,7 = 1, ..., Ng} as in vector quantization [31], with the important difference that
the domain blocks {d;} are taken from the image itself.

When exploiting similarities between a range block r; and a domain block d;, the domain
block is spatially scaled from size D; X D; to size B; x B;, it is isometrically transformed (i.e.,
reshuffling of the domain block pixels is carried out), it is contrast scaled by a factor a; and
added to an offset value o;. The mapping from the domain block d; to the range block r; is
given by

P = mi(dj) = i Zi(5:(d;)) + oi,
where 5; denotes spatial contraction (e.g. pixel averaging), Z; represents the isometry, a; is the
contrast scaling and o; is the offset. The map 7; is chosen in order to minimize the distance
between the range block r; and its approximation 7#;. Typically, we want to minimize the mse
distance

Al B; B;
D(ri,#0) = 53 |22 2 (rillym) = (1, m))* | (3)
2 (=1 m=1

where [, m denote the pixel position inside the range block.

The framework in which fractal coders operate is the theory of iterated functions in complete
metric spaces [17]. Once a metric is defined in the space F' of images (for example, the mse
metric), we define a map W : ' — F by composing the action of the individual block maps.
Specifically, we define the transformation w; : F — F as

wi(f)=m7(d;), t=1,..., Np,

and build the map W as



Hence, W( f) is obtained as the union of approximations #; of the range blocks r;, where each
approximation #; is obtained by transforming a domain block d; taken from the same image.

We now give some definitions and state the main theorems. A map W is contractive with
respect to the metric D if it satisfies

DW(f1),W(f2)) <sD(fi,fa), Vh,[2€F, 0<s<1,

where the number s is called a contractivity factor for f. Thus, W is contractive if the application
of W to any two images fi, f; € F reduces the distance between them. Furthermore, an image
f such that W(f) = f is called a fized point of the transformation W.

It can be shown [32] that if W is contractive, then W possesses exactly one fixed point image
f € F,and moreover, for any image fo € F, the sequence of iterated maps {W(fo), W(W( /o)), ...}
converges to f. Thus

= lim Wer(fo), Vo€ F,

where “°"” denotes n iterations of the map W, that is W°°(fy) = fo and WO(”‘H)(fO) =
W(W°"(fo)). This result is known as the Fixed Point Theorem or Contraction Mapping The-
orem. We note that this result permits to conclude that a description of W can be used as an
alternative and equivalent definition of the fixed point f.

The following theorem, which we restate from [3], is central to the design of fractal coders.
Theorem. [The Collage Theorem| Let F' be a complete metric space with metric D. Let f € F
and W : F — F a contractive transformation with contractivity factor 0 < s < 1 such that

Then the distance between f and the fired point f = lim,_., W°"(fo) satisfies

B €

DL < 17—

(4)

In words, if f and W(f) are close, then f is close to the fixed point f = W(f) if the map W is
sufficiently contractive (i.e., s is not too close to 1 in (4)).

In summary, fractal block coding proceeds as follows. Block maps 7; are searched in order
to minimize (3) for each individual range block. A map W on the entire image is then built by
composing the action of the block maps. If W is contractive with respect to the mse metric and
verifies D(W(f), f) < ¢, then the iteration of the map W on any starting image fu will result
in an image that is close to the original one f because of the bound in (4).

The map W can be described by specifying, for each range block r;, the transformation
w;, i.e., the address of the domain block d;, the isometry Z;, the scaling parameter a; and the
offset 0;. This description of W is a code for f. At the decoder, it is possible to reconstruct an
approximation of image f by iterating W on any starting image (e.g., a uniform gray image).

It is important to understand the conditions under which the transformation W is contrac-
tive. It is noted in [33] that W can be eventually contractive and still have a unique fixed point.
If |a;| < 1 for each transformation 7;, W results to be eventually contractive with respect to the
mse metric. However, this condition is excessively restrictive. In general, the conditions under
which W is eventually contractive can be difficult to determine: moreover, the exact determi-
nation of the contractivity factor for W could be important to bound the reconstruction error

[19].



IV  PrepicTIVE PYRAMID CODING

In our work we abandon the idea of a recursive map W. More precisely, we try to exploit a
causal interdependence of the subband images in a multiresolution decomposition of f. The
image is first subband decomposed, using a pyramid subband decomposition, as described in
section II.

In our scheme, we predict blocks in the subimage y* (or y/, y#*) from blocks of the same
dimension in the subimage yfff_l (or yzh_f_l, yf_fl) The subimages at the lowest resolution 757 are
coded independently using PCM [34], as described in section V. After all the subband images
are predicted from the blocks in lower resolution subimages, an approximation to the original
image is reconstructed from the subband coeflicients.

The connections between our scheme and standard fractal block coders are as follows. Each
subimage y!* (or y#, y#*) is divided into a set of non-overlapping range blocks {r;}, whose size
may vary depending on the different frequency band: the pool of domain blocks for image yf»h
(or y, yP") consists of the blocks of the same dimension found in the image y/%; (or y/t,, y™).
For each range block r; in the subimage y!", we find a domain block d; in the subimage y/,
such that the map 7; defined as

i = mi(dj) = a; (Zi(d;))

minimizes D(r;, 7;) with respect to all the possible choices of the isometries and the contrast
scaling a;. In our scheme we neither use an offset parameter o; nor a spatial contraction 5;.

We now show that it is reasonable to predict range blocks from domain blocks of the same
size. Consider a 1-D system with input y(n) and subband signals y;(n),7 = 1,...,ip, where
yi(n),s = 1,...,ips — 1 is obtained by filtering y(n) with Hy and subsampling by a factor of
two (7 — 1) times, followed by high-pass filtering with H; and subsampling. Signal y;,, (n) is
obtained by filtering with Hy and subsampling ¢3; times. We note that all the subband signals
except y;,,(n) are obtained by subsampling the output of the high pass filter H;. Therefore,
their energy will be localized in correspondence of the irregularities of the input signal. As an
example, figure 5 shows the signals y;(n) and y2(n) when the input sequence y(n) is a step
function and Hg and H,y are the 9-tap symmetric quasi-perfect reconstruction filters described
in [27] that we use in our coder. As seen, the practical duration of the high energy events in the
two signals is the same. So, if we want to predict blocks of coefficients in y;(n) from blocks in
y2(n), they should be of the same duration. The same reasoning can be applied to the following
stages of the pyramid decomposition. These considerations extend to the 2-D case at least for
one direction of filtering (row or column).

Our approach leads to some advantages with respect to standard fractal block coders. Since
we are simply predicting subband subimages from lower resolution ones, there is no need to force
contractivity of the block maps. Furthermore, this allows a direct evaluation at coding time of
the mse between the original and reconstructed image, unlike the case of standard fractal block
coders, where knowledge of the contractivity factor of W is required to evaluate the error bound
[19]. The decoding procedure becomes very simple, because a one-step mapping is necessary to
predict the subband images.

The most important advantage of our scheme, however, is that the pyramid subband de-
composition acts as an automatic block classifier, with the result of simplifying the block search
and block matching procedures. To make this evident, we consider the case of a 1-D signal y(n)
with low-pass characteristics and consider the spectrum of the signals obtained from y(n) with



ideal subband filters. The results immediately extend to the case of a 2-D image with a low-pass
power spectral density [34] and a separable 2-D subband analysis scheme.
Let y(n) be generated by a first order Markov model:

y(n) = py(n - 1)+ 2(n),  0<p<1, (5)

where z(n) is white noise with zero mean and variance o2. The power spectral density of y(n)
is given by

0.2

s Jwy — z_
Z/(e ) |1 _ pe]w|2
and has strong low-pass characteristics when p is close to 1. We consider a pyramid subband
decomposition of the signal y(n) (p = 0.9 in (5)) with an ideal low-pass filter

; 1 for |w|< Z
Ho(e™) = { 0 0the|rv&|lise ’
and a high-pass filter H;(e/*) = 1 — Ho(e!*). Figure 6 shows the power spectral densities of
the signals y;(n),7 = 1,...,5. The power spectral densities in figure 6 are multiplied by an
appropriate constant: it is easily seen that, apart from a multiplicative factor, the spectral
contents of the subband signals are very similar to each other. An actual example is offered
by figure 7 which shows the magnitude of the 2-D FFT of subimages y/ and y4' corresponding
to a subband decomposition of “Lenna”. Specifically, figure 7.a shows the magnitude of the
256 x 256 2-D FFT of y}*, while figure 7.b shows the magnitude of the 256 x 256 2-D FFT of
the zero-padded y'.

The similarities in the spectral content of the subband subimages show that the blocks in
different subimages with the same orientation are of the same class and have similar band-pass
characteristics. This is also suggested by the visual closeness of the subimages. The analysis
indicates that better block matching is possible with a scheme that operates on a pyramid
subband decomposition of the image. Therefore, we expect a lower mse between matched blocks
than in standard fractal block coders, and a lower reconstruction error for the entire image at
the same bit rate. This is confirmed by the experimental results of section VI.

V DESCRIPTION OF THE CODER

In this section we will describe in some detail our predictive pyramid coder (PPC). In the
following, the coder organization is described for 512 X 512 images, but it can be easily adapted
to images with different dimensions. We consider a pyramid subband decomposition with five
levels, organized as in figure 4. The filters used to compute the subband decomposition are 9-tap
symmetric nearly orthogonal and quasi-perfect reconstruction FIR quadrature mirror filters [27].
To avoid the introduction of artifacts at the boundary of the image, row and column filtering
was performed using the symmetric extension method [35] rather than the circular convolution
technique [25].

The coding procedure can be conceptually divided into two steps: a block prediction (BP)
step and a residual block coding (RBC) step. In the first step we try to predict blocks from
low-resolution subimages recursively, as described below. If the prediction for a range block r;
is not satisfactory at this stage, the actual coding of r; is deferred to the RBC step.



A. Block Prediction

To provide initial conditions to the BP step, subband 3. is coded using an 8 bit uniform quan-
tizer. Subbands y&*, y&* 45! are coded with a 7 bit laplacian quantizer The prediction procedure
begins at level 4 of the pyramid decomposition. Subband (y4 , yfl) is divided into 4 x 4 blocks
{r;}. For each block r;, a 4 x 4 block d; is searched in the 16 x 16 region y* (y2", y&!) at level
5 of the pyramid decomposition, in order to minimize D(r;, a;Z;(d;)). We only consider 4 rota-
tions [17] for the isometry Z;: this has been shown to be sufficient, since nearly no improvement
is obtained by considering reflections as well [20]. For each of the four rotations, the optimal
parameter af is readily obtained by setting to zero the derivative of D(r;, 7;(d;)) with respect
to a;. Note that 4 bits in one direction and 4 bits in the other direction are sufficient to specify
the position of the 4 x 4 domain block in subregion y&* (y?h, yg“l)

Once the domain block d; and the optimal transformation are found, the mean squared error
D(r;,7i(d;)) is compared to a target value P of the reconstruction error for the entire image. If
D(r;,7i(d;)) exceeds P, the range block will be coded during the RBC step using a pixel-based
coding scheme.

When D(r;,7(d;)) < P, the range block r; is coded with 8 bits for the address of the domain
block, 2 bits to specify the isometry, and 6 bits to code the scaling parameter a;. An additional
bit per block is required to distinguish between the two coding schemes, corresponding to the
BP or RBC alternatives.

We note that, apart from the blocks that are actually coded in the RBC step, we are in a
position to predict subbands at level 4 from those at level 5. In order not to propagate the block
matching error, subsequent subbands are actually predicted from the approximated subimages
at the lower level, and not from the original subband coefficients. Thus, subbands at level 3 are
predicted from the approximation at level 4 obtained with the procedure described above. We
note that the decoder has in fact to predict subbands in the same way, i.e., it starts from coded
lower resolution subimages to predict the new ones.

Subbands 34, yi" yh are divided into 8 X 8 range blocks. Domain blocks with the same
dimension are searched in subimages ", yi", y#' respectively. As before, we compute the mean
squared error between matched blocks. If it exceeds the target parameter P, the range block
is divided into four 4 x 4 blocks, like in the quadtree scheme of [19], and domain blocks of
dimension 4 x 4 are considered. The block splitting procedure is due to the fact that the smaller
block dimension should make it possible to satisfy the mse constraint between matched blocks.
In case D(r;, 7i(d;)) > P for all j, the 16 coefficients in the range block will be coded during the
RBC step.

The 8 x 8 and 4 x 4 blocks are coded With 10 bits to specify the location of the domain
block in the 32 x 32 subimages y*, y#", yk!, 2 bits for the isometry, and 6 bits for the scaling
parameter. Two additional bits are required for each block to indicate its dimension (8 x 8 or
4 x 4) and to distinguish between the BP or RBC alternatives for the 4 x 4 blocks.

Subimages y4, y3", y#' are coded similarly: this time, blocks of dimension 16 X 16,8 x 8,4 x 4
are considered, and domain blocks are searched in subimages ", y&* 45! respectively. If the
P parameter constraint is not met for one block, it is split into four subblocks: the smallest
allowed dimension for the blocks is 4 x 4. If the match is still not satisfactory, the 4 x 4 block
will be coded during the RBC step. The domain blocks have the same dimension as the range
blocks, but their position is not arbitrary in the 64 x 64 subimages 34, y2", y%'. Only 4 x 4
domain blocks located at even pixel positions are considered, so that 10 bits are still sufficient
to specify their location in the subimages. We use 4 bits to specify the location of the 8 x 8



blocks and 2 bits to specify the location of the 16 x 16 blocks. Therefore, the 8 X 8 domain
blocks are searched with steps of 4 pixels in each direction, and a step 16 search is adopted for
the 16 x 16 blocks. Two additional bits for each block indicate the block dimension and the BP
or RBC alternatives for the 4 x 4 blocks.

In subimages y{*, y", y/' we consider domain blocks of dimension 32 x 32,16 x 16,8 x 8 and
4 x 4. Each block is split into 4 subblocks of smaller dimension every time the P parameter
constraint is not met: however, no RBC step is considered for the 4 x4 blocks in these subimages.
The 4 x 4 domain blocks in subimages y*, y#% yh! are located at positions that are multiples
of 4 in each direction, so that 10 bits are sufficient to specify their location. We use a step 16
search for the 32 x 32,16 x 16,8 x 8 blocks, with 6 bits necessary to specify their location.

A particular care has been taken of the quantization of the scaling parameters «;. As a
matter of fact, an error Aq; in the quantization of a; can contribute considerably to the overall
mse because it affects the error in the pixels of an entire block.

Let us respectively denote with r; and d; the range block and the (isometrically transformed)
domain block. The optimal value of a; that minimizes the mse error for range block ¢

Z[TZ (I,m) d;(1,m)]? (6)
Im

is given by

ol — El,m Iri(l7 m)dj(l7 m)
¢ Yim d?(l, m)

If a? is quantized with an error Aa; 2 qa(ai) — oy, the mse (6) increases to

Pi(af + Aa;) = Pi(of AaZ Zd2 (I,m)

(7)

as it is immediately seen by evaluating (6) in af + Aa; and taking (7) into account.
In order to minimize the expected mse we have to design the quantizer ¢,(o;) such that

> (Aay)? Zd2 (I, m) Z(Aai)Z S(oy) (8)
7 k3
is minimum.
If we model a; as the outcome of a random variable «, equation (8) is proportional (by
a factor 3°; 5(a;)) to the sample mean of a function (Aa)? of a, where each occurrence «; is
weighted by S(a;). A hystogram of a;, where each occurrence is counted S(a;) times, shows
that the best fitting distribution is laplacian, with a variance given by

2 > %2 S(ai)
Ol TP )

In our coder we therefore compute the variance from the scaling parameters and the domain
block energies by using (9) and we employ a 6 bit laplacian quantizer for a;.

The scaling parameter a; is set to zero whenever the variance of the range block is less than
or equal to 0.5P. The blocks corresponding to the same spatial location at finer scales with the
same orientation are also tested to determine if their variance is negligible. In such a case, these
blocks are not coded at all. The first range block with a; = 0 is encoded with a special symbol
indicating the insignificance of all the corresponding blocks in finer scales. The technique is
similar to that described in [36, 15]. Similarly, we do not code and set to zero the subbands
with a total variance less than or equal to 0.5P.
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B.  Residual Block Coding

The block prediction procedure described in the previous section can give unsatisfactory results
for certain 4 x 4 blocks. In that case, one possible strategy could be to propagate the block
splitting and consider 2 x 2 range blocks. If we used the same coding scheme as described above,
we would devote around 20 bits to code 4 coeflicients, and 80 bits to code a 4 x4 block. However,
well-known results from the subband coding literature [25] suggest that it is possible to obtain
good quality reconstructed images while using less bits per coefficient on average. We therefore
decided to code the individual coefficients in those 4 X 4 blocks by using a laplacian quantizer
and an optimal bit allocation strategy.

There are M = 9 subbands, from level 4 to level 2 of the pyramid decomposition (see figure
4) that possibly have 4 x 4 range blocks that were not coded during the BP step. As mentioned
in the previous section, the RBC step is not considered for the blocks in subbands at level 1.

Let 07,k = 1,..., M, be the energy of the 4 x 4 residual blocks in subband k and fj the
corresponding total number of subband coefficients.

Optimum bit allocation is obtained by coding subband & with Ry bits [34], where

ar/ fx

i)'

h=1 fh

1
Ri= R+ 3 log, k=1,..M, (10)

R is the average number of bits per coefficient, and N = ), fx. The minimum reconstruction
error energy results to be

M 2 5
Noz\ ™
ol =@ RIT] (—}3&) . (11)
k

k=1

The RBC step in our coder therefore consists of computing energies o7 of the residual blocks
in each subband k, together with the total number of coefficients fr. We fix the average rate
R = 3.5 bits/coefficient, and allocate Ry bits to each coefficient in the blocks of subband £, as
computed by (10). Ry is rounded for simplicity to the nearest integer and a laplacian quantizer
with 2% levels is used for the coefficients [34]. Finally, the quantizer output levels are entropy
coded by using a Huffman code [34].

VI REsULTS

In this section, we present some experimental results to evaluate the performance of the proposed
PPC. Original images are 512 x 512 gray-level images, coded with 8 bits per pixel (bpp).
The peak-signal-to-noise ratio (PSNR) is used to determine image reconstruction fidelity.

PSNR is defined as
2552

mse

where mse is given by

1 511 511 ) 9
mse = > > [f(l.m)= st m)]",

{=0 m=0

with f and f denoting the original and reconstructed image respectively.
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Figure 8 shows the PSNR versus the bit rate used to code “Lenna”. In the same plot, the
results of our coder are compared with the JPEG coding system [37]. As it may be seen, the
PPC performs better over the entire range of bit rates, with an improvement in PSNR that is
almost independent of the bit rate.

To compare the visual quality of the two coding systems, we run our PPC and JPEG coder
to reconstruct “Lenna” at 0.26 bpp. The reconstructed images are shown in figure 9.a and figure
9.b, respectively. As it may be seen, no blocking effect can be noticed in figure 9.a, even though
some artifacts and smearing can be detected. Ringing effects, typical of subband coded images,
are also negligible.

Table 1 reports a summary of the coding results for “Lenna” at 0.26 bpp. For each subband,
we give the number of blocks of each size obtained during the coding procedure. For the
4 x 4 blocks that were coded in the RBC step, we report the number of quantization levels, as
computed with the bit allocation strategy described in section V.

The total coding time for “Lenna” was about 5 minutes on a Sun SPARC station IPC.
Similar coding time figures were obtained for different bit rates and other images. The coding
time is mainly devoted to the block search. The decoding procedure is instead very fast, and the
system candidates itself very well for applications where a large variety of pre-encoded images
has to be decoded quickly.

As reported in the last line of table 1, the value of the reconstruction error P = 150 was used
during the coding procedure. Notice that the actual mse is much lower (mse=34 dB). Therefore,
P is used as a qualitative input parameter to the PPC. Smaller values of P were used to obtain
a better quality (i.e., a higher PSNR) at the expense of a higher bit rate. However, the value of
P is not directly related to the actual mse that will be obtained after coding. Nevertheless, the
mse can be tracked during the coding steps, as explained in section V.

To make the artifacts introduced by our technique more evident, we show in figure 10 the
image “Lenna” coded at 0.15 bpp using the PPC and JPEG. The PPC coded image appears
to be smeared, and ringing artifacts are noticeable around edges. However, the image quality is
acceptable.

Figures 11.a and 11.b show the original and PPC reconstructed image “Building” at 0.36
bpp. In this case, the performance of the coder is worse than for “Lenna”, because of the greater
high frequency content of “Building”. Again, the visual quality of the reconstructed image is
fairly good, even though some artifacts and ringing effects are noticeable near the edges. Table
2 reports a summary of the coding results.

Another coding example is offered by figures 12.a and 12.b which show the original and
reconstructed image “Clown” at 0.25 bpp, while the corresponding coding results are reported
in table 3.

VII CONCLUSION

In this paper we have proposed an image coding technique which exploits the similarities among
blocks in different subbands of a pyramid representation of the image. These similarities are
used to predict blocks of a subband from blocks in subbands with the same orientation at lower
resolution. The predicted blocks are therefore simply coded by specifying the location of the
domain block and the parameters of the map. In our coder, we use block mappings similar to
those used in fractal block coders. However, our technique is not fractal since no map iteration
is implied.

The advantages of this scheme with respect to standard fractal block coder derive from
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the fact that the multiresolution decomposition inherently classifies image blocks. We have
shown that the spectral content of blocks in subbands with the same orientation has similar
characteristics. The block search procedure is simplified because the search region is limited to
the nearest lower resolution subband. Moreover, similar spectral characteristics allow a better
matching of most blocks.

The block prediction scheme is conceptually simpler than the iterative scheme adopted in
standard fractal block coders. As a consequence, in our coding algorithm, no map contractivity
issue arises. Furthermore, a direct evaluation of the mse between the original and the recon-
structed image is possible at coding time and the decoding procedure is not iterative but very
simple.

Experimental results are satisfactory both in terms of the visual appearance of the recon-
structed image and in terms of PSNR versus bit rate. No blocking effect is visible in the
reconstructed images, as expected from a technique that operates in the subband domain.

A drawback of the proposed technique is the larger encoding time in comparison to other
coding techniques like JPEG. The block matching procedure employed by the PPC is responsible
for such an impairment, with the result of making the coder suitable for applications were non-
symmetric coders and decoders can be tolerated. We are currently investigating the possibility
of reducing the encoding time by constraining the search performed for each block.

As a final remark, we note that, when the BP step does not give satisfactory results, our
scheme actually reduces to standard subband coding. We believe that better schemes for the
RBC step could further improve the image quality at the same bit rate.
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Figure 1: (a) The “Snowflake”; (b) Wavelet Transform versus Scale.
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Figure 2: “Lenna”: (a) Original image; (b) Multiresolution decomposition.
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Figure 4: Organization of Subbands in the pyramid decomposition.
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(a) (b)

Figure 7: 2-D FFT magnitude of y/! and y4' of “Lenna”.
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Figure 8: PSNR versus bpp for “Lenna”: comparison of PPC and JPEG.
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(a) (b)
Figure 9: Reconstructed “Lenna” at 0.26 bpp. (a) PPC; (b) JPEG.

(a) (b)
Figure 10: Reconstructed “Lenna” at 0.15 bpp. (a) PPC; (b) JPEG.
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(a) (b)

Figure 12: “Clown”: (a) Original; (b) Reconstructed at 0.25 bpp.
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Table 1: Coding results for “Lenna”.

| Subband | #4 x 4 (RBC) / Lev. | #4 x4 (BP) [ #8 x 8 | #16 x 16 | #32 x 32 |

v 53/16 11 - - -
Yyt 51/16 13 - - -
yM 59/32 5 - - -
v 96/8 76 21 - -
Y 91/8 57 27 - -
Y 149/16 71 9 - -
v 100/8 148 42 38 -
yh" 72/8 136 20 46 -
Yy 202/8 162 49 29 -
yi - - - - -
Y - 136 22 18 56
H P=150 ‘ PSNR=32.78 ‘ bpp=0.26 ‘ Coding Time: 5m H

Table 2: Coding results for “Building”.

| Subband | #4 x4 (RBC) / Lev. [ #4 x4 (BP) | #8 x 8 [ #16 x 16 | #32 x 32 |

vy 63/64 1 - - -
yit 61/16 3 - - -
yy 63/32 1 - - -
v 209/16 39 2 - -
Yt 133/8 95 7 - -
y 168/16 68 5 - -
vy 431/8 273 44 9 -
yh" 16/4 60 17 55 -
yy 181/8 283 76 16 -
ik - 120 26 10 58
" - - - - -
yr' - - - - -
H P=150 ‘ PSNR=31.20 ‘ bpp=0.36 ‘ Coding Time: 6 m H
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Table 3: Coding results for “Clown”.

| Subband [ #4 x 4 (RBC) / Lev. | #4 x4 (BP) | #8 x 8 | #16 x 16 | #32 x 32 |

yF 57/32 7 - - -
yit 48/16 16 - - -
Y 59/32 5 — — —
yi 129/16 79 12 - -
ybh 72/8 72 28 - -
yH 165/16 63 7 — —
y 71/8 177 42 38 -
yh" 3/8 17 11 60 -
yy 162/8 298 53 22 -
" - - - = =
y" - - - - -
! - - - - -
H P=225 ‘ PSNR=32.93 ‘ bpp=0.25 ‘ Coding Time: 4 m H
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