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ABSTRACT

In this work, we propose a hybrid vector quantization scheme
for general images that aims at exploiting similarities among
detail signals in a multiresolution decomposition of the im-
age. In a multiresolution decomposition, the image is de-
composed into a set of subbands which are localized in scale,
orientation and space. Our coding scheme consists of divid-
ing each subimage of the multiresolution decomposition into
square range blocks. The range blocks are matched against
domain blocks chosen in the lower resolution subimage with
the same orientation, and coded through a description of the
map transforming the domain block into the range block.
The pool of of domain blocks acts as a codebook for the
range block, as in vector quantization, with the difference
that the codebook is built from blocks inside the multires-
olution decomposition. If the prediction procedure is not
satisfactory with respect to a target quality, the block is
coded using a geometric vector quantizer for laplacian ran-
dom variables.

1. INTRODUCTION

Pyramid subband decomposition provides a multiresolution
representation of images that has been used by several au-
thors for image analysis and coding [1, 2]. The redundancy
of the multiresolution representation has been fully recog-
nized for fractal images and it has also been efficiently ex-
ploited for coding of general images [2, 3, 4].

In this work, we propose a coding procedure that uses a
hybrid scheme of vector quantization for the coefficients of a
multiresolution subband decomposition of the input image.
The coding scheme consists of partitioning each subimage
of the multiresolution decomposition into a set of nonover-
lapping range blocks. The range blocks are matched against
possibly overlapping domain blocks of the same dimension
taken from the adjacent lower resolution subimage with the
same orientation. The scheme efficiently exploits the re-
dundancy of the multiresolution decomposition since range
blocks are predicted from domain blocks. Thus, the pool
of domain blocks acts as a codebook for the range block, as
in vector quantization, with the important difference that
the codebook is built from blocks inside the subband de-
composition itself. To enlarge the codebook size, domain
blocks are multiplied by a constant (i.e., scaled in ampli-
tude) and possibly isometrically transformed before match-
ing (i.e., reshuffling of the block coefficients is carried out)
[5]. A range block of a subimage at a certain scale can be

coded by giving the relative position of its matched domain
block in the next lower resolution subimage with the same
orientation, together with the resulting scaling factor and
an identifier for the isometric transformation. To provide
initial conditions to the coder, the four subbands with the
lowest resolution are coded using a pyramid vector quan-
tizer (PVQ) [6]. The block prediction procedure is then ap-
plied to the blocks of finer resolution subimages in a causal
fashion, i.e., going from low to high resolution subbands.
Whenever the block matching procedure is not satisfactory
with respect to a target coding quality, the non-predicted
range block is coded using PVQ. Thus, our coder uses a
hybrid scheme of VQ, with the codebook built from blocks
inside the subband decomposition, and geometric VQ.

The improvement over the technique described in [4] is
significant. Specifically, the domain block search region for
a range block at relative position (7, k) in one subimage,
consists now of the blocks centered at position (j/2,%/2) in
the adjacent lower resolution subband with the same orien-
tation. This reduces considerably the coding time. More-
over, the use of adaptive geometric PVQ for the non pre-
dicted blocks gives improved results in terms of achieved
compression ratios.

2. PRINCIPLES OF SUBBAND CODING

Subband decomposition for images has first been introduced
by Woods and O’Neil [7]. A popular scheme for two-dimen-
sional subband decomposition is based on separable filters,
as shown in Figure 1. Subband z'/, 4,7 = 0, 1, is obtained by
first filtering the columns of the input image with H;(z) and
subsampling by a factor two, followed by filtering the rows
with H;(z) and subsampling. In the scheme of Figure 1,
Ho(z) is a low-pass filter, while H1(z) has high-pass char-
acteristics: thus, each subband z* has one fourth of the in-
put image coefficients and is relative to details that pertain
to different frequency regions of the input image spectrum.
Assuming no coding error, the reconstruction is performed
at the receiver by upsampling the rows of z*/, and filtering
with G;(z), followed by upsampling the columns and filter-
ing with G;(z). The outputs of the four upsample/filter
sections are summed together to give the reconstructed im-
age &. It is possible to show that in the absence of coding
errors, perfect reconstruction of the input image z can be
obtained by appropriate design of the analysis filters H;(z)
and synthesis filters G;(z) [8].
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where the filter bank can be obtained by designing a single
filter Ho(z). In fact, one possible way to achieve perfect
reconstruction is to choose the analysis/synthesis filter co-
efficients such that

go(n) = ho(—n)
g1(n) = ha(—n) (1)
ha(n) = (—1)'~"ho(1 — m),

where ho(n) is a filter whose z-transform Ho(z) satisfies
Ho(Z)Ho(Z_l)+H0(—Z)H0(—Z_1) = 2. (2)

Note that relation (2) implies that the filter ho(n) and its
even translations form an orthonormal family, and that the
two filters ho(n) and hi(n) are orthogonal [8].

In [9, 10] it is shown that orthonormal bases of wavelets
correspond to a subband coding scheme with orthogonal fil-
ters satisfying equations (1) and (2). Considering the case
of FIR filters, it is possible to show that conditions (1) and
(2) can be met exactly only for even-length filters. Further-
more, only trivial solutions with linear phase are possible.
Approximate solutions with odd length linear phase FIR
filters are however possible. A design method for linear
phase FIR analysis and synthesis filters can be found in
[11]. A consequence of the linear phase constraint is that
relation (2) can only be satisfied approximately. More gen-
eral solutions for exact perfect reconstruction even-length,
odd-length FIR linear phase filters are given by biorthogo-
nal systems, where the orthogonality conditions (1) and (2)
are relaxed.

The basic separable two-dimensional scheme of Figure 1
can be used to obtain finer decompositions of the input
spectrum. In a multiresolution scheme, the decomposition
of Figure 1 is iterated to obtain a multiresolution decom-
position of z(m,n). Denoting with z§° the input image
z(m,n), at each decomposition level ! the image #{°, is de-
composed into the four subimages #0°, 29! 2;°, z}!, for
l =1,...,lp. The result of such a decomposition is a set
of subimages which are localized in scale, orientation and
space.

3. ADAPTIVE GEOMETRIC VECTOR
QUANTIZATION

A fundamental result of rate-distortion theory is that it is
possible to achieve better performance in terms of average
distortion for a given output rate r in bits per sample by
coding vectors of input data instead of scalars [12, 13]. In-
terestingly enough, this is true even in the case of a source
that generates independent variables. This observation ex-
plains the interest of vector quantization for data compres-
sion, particularly in image and speech coding for communi-
cation or storage on digital links and media.

VQ is a non linear map Q(-) from a multidimensional
input space R into a discrete output set of representative
points. Thus, each L-dimensional vector x of input data
is mapped into one of K = 2"% output vectors yi,...,yx.
Since r bit per dimension are sufficient to specify the output
vector y; = @(x), compression is obtained at the expense
of an average distortion

Eld(x, Q(x))], (3)

where d(x, X) represents the cost of reproducing any vector
x as the reproduction vector X and E[-] denotes statistical
expectation.

To specify a vector quantizer, one needs the set of out-
put vectors yi,...,yx, (or codebook) and the specification of
the rule Q(-) to map the input vector to one of the output
vectors. This rule, in turn, implies a partition R, ..., Rk,
of RY, where

Ri=Q '(yi) = {x:Q(x) = y:}. (4)

Determining the output vectors and the partition R, ..., Rk,
in order to minimize the distortion (3) is a non-trivial task,
and several approaches to the solution of this problem have
been proposed in the literature [13, 14].

Geometric quantizers exploit the geometric properties
of memoryless sources of random variables. Let fx(a) be
the one-dimensional probability density function of a ran-
dom variable X. Then any L-dimensional vector x of in-
dependent and identically distributed (iid) variables drawn
according to fx(a) has a joint probability density function

ﬁ@ZHHW) (5)

It is possible to show [12], that for large L the vector x
belongs with high probability to the typical set defined as

Se = fa: 27 M09 < fy(a) < 27HOEOFIY - (6)
where
h(X) = — / Fx(a)log, fx(a)da

denotes the differential entropy of the scalar random vari-
able X. Thus, one can conclude from (6) that, for large L,
vectors of iid random variables drawn according to fx(a)
concentrate with high probability in a subset of RZ where

Fu(@) ~ 2750, (7)

Therefore, for random vectors of iid variables, the repro-
duction points of a vector quantizer should be uniformly
located on the set Se¢, which can be determined once the
probability density fx(a) is known.

Based on these results, Fischer [15] designed a pyramid
vector quantizer for L-dimensional vectors of iid laplacian
random variables. It turns out that the relevant volume for
quantization is located around the L-dimensional hyper-
pyramid defined by

L

L
> lail= 1 (8)

=1

In [6] a PVQ has been presented to code vectors of subband
coefficients which have approximately a laplacian distribu-
tion [7]. The PVQ codebook vectors are determined by the
intersection of a cubic lattice with a scaled L-dimensional
pyramid. The pyramid is selected to be close to the nominal
one, defined by (8), on the basis of the value

lIxlls =Y 1Xi] (9)



computed from the actual components of each input vector
X. A product gain-shape code is used, in which ||x||; is
coded using a Lloyd-Max gaussian quantizer [16] to index
the actual pyramid, and the remaining Lr bits are used to
identify the lattice point on the pyramid. It can be shown
that the mean squared error distortion obtained with such
PVQ is
~ 62 —2r
Dpvg(r) ~ e 277 (10)
Therefore, given a nominal variance o = 2/A? of the
subband coefficients and the rate rZ in bits per vector,
the PVQ computes the output vector among the N < 27
points in the intersection of the cubic lattice with an L-
dimensional hyper-pyramid determined on the basis of the
actual value of ||x||1. At the decoder, we need the nominal
variance, a code for ||x||1 and rL bits per vector of input
coeflicients.
An adaptive version of the PVQ is obtained by imposing
a target distortion and determining the rate rp for each
input vector xj using relation (10) and the sample variance

ok = xi(l). (11)

The rate ry is then uniformly quantized. The vector of block
coeflicients is fed into the PVQ using a nominal value for the
variance that is recalculated with (10) from the quantized
ri. Thus, besides the N, +ry L bits for each input vector, at
the decoder we need side information about the quantized
values rg.

4. DESCRIPTION OF THE CODER

In this section we describe in some detail the proposed
coder. The description is relative to 512 x 512 images, but
it can be easily adapted to different sizes of the input im-
age. The actual coding is performed on the coefficients of a
5 level multiresolution subband decomposition that is com-
puted using the 24-tap linear phase nearly orthogonal and
quasi-perfect reconstruction filter bank of [11]. The image
is symmetrically extended before filtering to avoid border
effects.

Given a target value P for the reconstruction mean
squared error, we subtract from the 16 x 16 low-pass sub-
band z2° its mean value, and subdivide z2° into four 8 x 8
blocks. The mean value is coded separately using an 8 bit
uniform quantizer. Each 8 x 8 block is transformed us-
ing the Discrete Cosine Transform (DCT). As known, the
transform coefficients have approximately a laplacian distri-
bution, although their variance depends on the coefficient
position inside the block [16]. In order to build vectors of
DCT coefficients with the same variance, we split the 8 x 8
blocks into four 4 x 4 subblocks, and group the coefficients
of the subblocks located in corresponding positions inside
the 8 x 8 blocks, thus originating four vectors of L=64 co-
efficients. These vectors are coded using adaptive PVQ as
explained in section 3. Using 64 coefficient vectors should
guarantee performance close to the asymptotic values. Sim-
ilarly, subbands z2!, z1°, zi! are divided into four 8 x 8 block
vectors that are PVQ coded directly. The imposed distor-
tion is 0.5P and the number of bits for ||x||; is N = 6 in
both cases.

Quantized subbands at level 5 provide the codebook for
the prediction of subbands at level 4. Specifically, subimage
01 10 11y i 3:o- : :
zy (or z3°, zy ) is divided into non overlapping 4 x 4 range
blocks bx. A domain block dpn of the same dimension is

searched in 22! (or #:°, z3') to minimize the distance

D(be,dn) =YY (bx(l,m) — nu[dn](l,m))”  (12)

between the range block and an appropriately transformed
domain block 7ix[dr]. Here, I, m, indicate the coefficient
position inside the block. The transformation 75 has the
form

r[dn] = ak(Zr[dn]), (13)

where o is a multiplicative scaling factor, and Z is one of
the possible four rotations of the domain block coefficients,
chosen to minimize (12). The transformations are similar
to those proposed for fractal block coders [5].

For each of the four rotations, the optimal scaling pa-
rameter is readily obtained by setting to zero the derivative

of D(bx, x[dr]), namely

ol — El,m bk(l,m)dh(l,m). (14)

Zl,m di(l’ m)

The scaling parameters are quantized using a uniform quan-
tizer followed by entropy coding [16], in which the quanti-
zation step is proportional to the square root of the target
mse P.

The 4 x 4 blocks in z2' considered for matching of a
range block at relative position (7, k) in 31 are located in a
subregion centered at the corresponding position (j/2, k/2)
in z2'. Three bits per direction are used to specify the
address of the domain block relative to this position.

If the prediction is not satisfactory and gives an mse
greater than P, the 4 x 4 block is coded by using adap-
tive PVQ. Four consecutive non predicted 4 x 4 blocks are
grouped together to form a vector of L=64 coefficients. Also
in this case, we use N, = 6 bits for ||x||1. As explained in
section 3, the rate ri for a block is quantized using 0.25 bit
steps. The resulting output symbols are entropy coded and
sent as side-information to the decoder.

The procedure is repeated for subbands at level 3. In
this case, we consider two possible range block dimensions,
namely 4 x 4 and 8 x 8. Again, domain blocks are searched
around the corresponding position in 3 (or z3°, zil) and
six bits in total are used to specify the domain block posi-
tion. Prediction is considered first for 8 x 8 blocks, which
are split into four 4 x 4 subblocks whenever the minimized
distortion gives an mse greater than P. If the prediction
of a 4 x 4 block is still not satisfactory, it is coded using
adaptive PVQ.

Subbands at level 2 and 1 are coded similarly, with the
only difference given by the largest allowed dimension for
range blocks. In Table 1 we report the range block di-
mensions considered for the subbands at the various levels.
Note that PVQ is performed in all cases only for those 4 x 4
blocks that could not be predicted.

The scaling parameter oy is set to zero whenever the
variance of the range block is less than 0.5P. The blocks
corresponding to the same spatial location at finer scales




with the same orientation are also tested to determine if
their variance is negligible. In such a case, these blocks
are not coded at all. The first range block with oy = 0 is
encoded with a special symbol indicating the insignificance
of all the corresponding blocks in finer scales. The technique
is similar to that described in [3].

Additional bits per block are needed to specify the block
type in order to correctly decode the stream of bits relative
to each block. For the subbands at level 4, one bit per
block is sufficient to distinguish between the predicted and
PVQ coded blocks. Each 8 x 8 block at level three can be
split into four 4 x 4 blocks or predicted as it is. One bit
is sufficient to distinguish between these two possibilities.
Only in the case the block is split, one bit for each of the
resulting 4 x 4 blocks is needed to distinguish between the
prediction and PVQ alternatives. Thus, additional bits are
used only when necessary.

The same strategy is applied to classify blocks of subim-
ages at levels two and one of the multiresolution decomposi-
tion. Starting from the largest allowed block dimension, one
bit specifies if the block is predicted as it is or split. In case
it is split, the four originated blocks are recursively classi-
fied with one bit indicating prediction or further splitting,
for the intermediate block sizes, and prediction or PVQ, for
the smallest block size.

5. RESULTS

In this section, we present some experimental results to
evaluate the performance of the proposed hybrid vector
quantization coding scheme. The used test images are 512 x
512 gray-level, coded with 8 bits per pixel (bpp). The objec-
tive image reconstruction quality was determined by evalu-
ating the peak-signal-to-noise ratio (PSNR).

Figure 2 shows the PSNR versus the bit rate relative to
the coding of the test image “Lenna”. In the same plot, the
results of the proposed coding method are compared with
those obtained by using the coder presented in [4] (PPC)
and with the popular JPEG coding system. The plot shows
that the hybrid VQ coder performs better over the entire
range of bit rates, with an improvement in PSNR that is
almost independent of the bit rate. The curve labeled PVQ
in the plot is relative to the application of adaptive PVQ
alone to all the subband coefficients. Specifically, the sub-
bands are divided into 8 x 8 blocks that are coded using
PVQ with 6 bits for ||x||:. Note that the performance of
our scheme is similar to that of PVQ at a rate of about 0.4
bpp. As a matter of fact, when the prediction procedure
gives poor results, our scheme reduces to adaptive PVQ of
subband coefficients.

The visual quality obtainable with our coder can be ap-
preciated by comparing the original image “Lenna” shown
in Figure 3 with the image coded at .25 bpp shown in Fig-
ure 4. As it may be seen, no blocking effect can be noticed
in figure 4, even though some artifacts and smearing can be
detected. Ringing effects, typical of subband coded images,
are also negligible.

The computation time required to code “Lenna” at .25
bpp was about 2 minutes on a Sun SPARCclassic (this time
does not include the computation of the pyramid subband
decomposition). Coding time figures that were obtained for

different bit rates and other images are similar. Notice that
the coding time may vary depending on the image recon-
struction fidelity: when the target quality required is high,
(i.e., for small values of the target mse P) the block pre-
diction procedure resorts more often to block splitting and
a greater number of blocks are coded with PVQ. We re-
mark here that the value of the parameter P is not directly
related to the actual mse that will be obtained after coding.
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Table 1: Summary of the range block dimensions.
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Figure 1: Separable 2D scheme for subband decomposition.
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Figure 2: PSNR versus bpp for the test image “Lenna”:
comparison of the hybrid VQ vith JPEG, PPC and PVQ.

Figure 3: Original test image “Lenna”.

Figure 4: Reconstructed image “Lenna” at .25 bpp.



