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Abstract

A new scheme for sequence coding based on the iterated functions systems theory is presented. The method
relies on a 3D approach in which the sequence is adaptively partitioned. Each partition block can be coded either
by using the spatial self similarities or by exploiting temporal redundancies. The proposed system shows very
good performances when compared to other existing methods.

1 Introduction

The concept of fractalhas been introduced by Mandelbrot [1] in the 1960’s as an alternative to the classical Euclidean
geometry mainly for describing shapes generated by Nature. Since then, this theory attracts the interest of many
researchers in fields ranging from biology to physics through computer imaging and image processing. Iterated
contractive functions systems (IFS) have shown their capability to generate fractal structures. The efficiency of such
systems for representing fractals is explained by the self-similar appearance of these objects. Fractals can display
very intricate structures but they are characterized by statistical or deterministic similarities across scales.

From an image processing point of view, it turns out that some form of self-similarity does exist in many natural
images. Such an observation induces naturally to use the theory of fractal for image coding purposes. Barnsley in [2]
gives general principles on the use of iterated transformations in the context of image coding. Impressive compression
ratios announced by Barnsley however stand only for some particular images (as trees or ferns) possessing a high
degree of self similarity, which is obviously not the case for natural images. A lack of details about this scheme and
its results induced a feeling of scepticism until Jacquin gave a more detailed version of fractal image coding based
on partitioned iterated contractive transformations systems [3].

Several schemes for still image compression have been developed over the past few years [4] [5] [6] while no techniques
for sequence coding have been presented. This paper proposes to fill up this gap. The scheme described in this paper
relies on a tridimensional approach based on an adaptive partitioning of the sequence support. This partitioning
enables one to vary in an optimal way the size of the blocks according to their statistical properties both temporal
and spatial. The method allows to exploit both the spatial self-similarities and the temporal redundancies. The
system shows very good performances when compared with other traditional methods.

This paper is organized as follows. Section 2 briefly reviews the theoretical background of iterated contractive
functions systems. A complete description of the sequence encoding procedure is given in section 3. In section 4, the
adaptive partitioning of the sequence support is presented. Section 5 presents the simulation results while section
6 gives some interpretations explaining the quality of the system performances. Section 6 concludes this paper by
citing some future improvements currently under investigation.

2 Theoretical Foundations

A transformation 7 on a metric space (M,d) is called contractive if there is a constant 0 < s < 1 such that

d(r(p), 7(v)) < sd(p,v) Yp,veM. (1)



The factor s is called the contractivity factor of the transformation 7. A fundamental property of contractive
transformations in a complete metric space is that iterative application to any initial subset of M assures convergence
to a unique fractal attractor.

In the context of image coding, we are facing the inverse problem i.e. finding the contractive transformation whose
fixed point is close to a given set. A clue to solving this problem is given by the Collage theorem [2]:

Let (M, d) denotes a complete metric space where d represents a given distance and let p,,55 be the set to approxi-
mate. If the transformation 7 from M to M satisfies the following requirements:

. Jds < 1 such that Yu,v € M, d(7(p), 7(v)) < sd(u, v) (contractivity requirement) (2)

. d(ptorig, T(porig)) < € (3)

then for any set gy € M and for any positive integer n :

n € n
d(ftorig, 7" (po)) < 11— + 5" d(piorig, po).- (4)

This theorem tells us that we need to find a contractive transformation under which the given set is an approximate
fixed point. Then, according to inequality (4), it can be seen that applying the transformation iteratively to any
initial set pg causes convergence to an attractor close to the target set. Therefore the transformation 7 fully describes
the fractal approximation of the original set. For further details, the reader is referred to [2].

3 Fractal based Sequence Coding

The capability of iterated functions systems to generate very intricate structures suggests their use for image coding
purposes. In the context of sequence coding, (M,d) denotes the complete metric space of digital sequences where d

represents the traditional mean-square-error:
K L M

1
Vv eM, dip,v) = KIM SO gk —vig)? (5)

i=1j=1k=1

The self-similarity encountered in natural images differs from the one present in fractal objects. Instead of having
an image formed by copies of its whole self, one has an image formed by copies of properly transformed parts of
itself. Therefore, as described by Jacquin [3] for the two-dimensional case, the class of contractive transformations
considered for sequence coding purposes is defined blockwise. If {R;,0 < i < N} denotes a nonoverlapping partition
of the sequence support into N tridimensional range cells, the transformation 7 is defined by:

Ve M, m(p) = Z T(1)|r; = Z 7i(WD;) with 7 : D; — R; (6)

0<i<N 0<i<N

where p g, denotes the restriction of the sequence u to the cell ;. D is called a domain cell and denotes a block
belonging to the sequence but not necessarily to the partition.

In that context, the Collage theorem states that the set of contractive transformations {7;,0 < i < N} under which
the original sequence is an approximate fixed point possesses an attractor close to this sequence. Therefore the
encoding process implies to find, for each of the N range cells R; of the partition, the transformation 7; leading
to the best approximation of R; with respect to the distortion measure adopted'. This operation is performed by
scanning all possible blocks D; and by evaluating the remaining parameters of the transformation 7; in order to
minimize d(7;(D;), R;). The transformation 7; leading to the best approximation of R; is then selected and encoded.
The transformation parameters are the only data encoded and no grey-level information is needed to recover the
attractor.

Scanning of the domain blocks is performed within a search area surrounding the range block. This limitation is
imposed by computation time requirements and induces a compact representation of the address of IJ; within the
transformation 7;. This search can be led either among blocks belonging to the same set of frames as the block R; or

1Tt must be noted that the specification of the position of the domain cell D; is included in the description of ;.



among blocks belonging to a different set. In the first case, we intend to exploit the spatial self-similarities while in
the second case we expect to reduce temporal redundancies. Those alternatives must be sharply distinguished since
they lead to two very different processings. Subsection 3.1 will treat the first case while the second alternative will
be presented in subsection 3.2.

3.1 Spatial self-similarities

Using spatial self-similarities means exploiting information from one scale to represent information at a lower scale.
For this reason, the spatial size of the domain blocks is chosen to be twice the size of the range blocks. This factor two
proceeds from a trade-off between the quality of the approximation 7(gorig) (which experimentally decreases with
an increase of the shrinking factor) and the contractivity factor s (which decreases with an increase of the shrinking
factor) which will condition the distance between the original sequence fi,r;4 and the final attractor like:

: n 1
Jim d(porig, 7" (ko)) < T d(Korig, T(Horig)) (7)

For sake of clarity, 7; can be written as the composition of two transformations &; and 7;:
=708, (8)

where S; represents the geometric part of the transformation, while 7; denotes a massic transformation.

A= O
Arms O

Si 7

/

Figure 1: Geometric transformation &;

The geometric transformation corresponds to a mapping in position and in size from the domain cell D; to the range
cell R; as illustrated in figure 1. Shrinking is performed by a four by four pixels averaging process. The massic part of
the transformation consists in a modification of the pixels values inside the block. This last transformation allows to
change the grey-level information in order to find a good approximation of the block R;. Once again a compromise
needs to be reached between the complexity of the transformation and the compactness of its representation. A
study of that trade-off for the two-dimensional case can be found in [6]. In this paper, we will use one of the simplest
transformations. We will consider only eight possible shuffles of pixels (4 rotations and 4 reflections), a contrast
scaling a and a brightness shift Ag. The massic part of the transformation 7; can therefore be expressed by:

X a; bz 0 0 xr 0
Yy _ C; dz 0 0 Yy 0

Tl =10 o1 o0 N )
z 0 0 0 « z Ag

where the parameters a;,b;, ¢;, and d; are constrained to correspond to one of the eight isometries and |a| to be

strictly lower than 1 due to the contractivity requirement. Indeed, a simple calculation shows that the contractivity

factor s of the massic transformation is a2.



The search for the best transformation is performed by scanning all the possible domain blocks D); in the same set
of frames as R;. The geometric transformation S; is then applied in order to map D; onto R;. Once S;(D;) is
computed, the parameters of the massic transformation 7; are evaluated in order to minimize:

d(7; o S;(D;), Ri) (10)
The global transformation 7; o §; leading to the best approximation of R; is then selected and encoded.

It must be noted that using self-similarities for approximating 3D blocks exploits also, in a certain sense, temporal
redundancies.

3.2 Temporal redundancies

The difficulty to use the contractive functions systems theory for reducing temporal redundancies proceeds from the
contractivity requirement. The temporal redundancies consist in frame to frame similarities but on the same scale.
It does mean that the transformations 7; possess a contractivity factor s close to 1. According to equation (7), it
results in a dramatic increase of the distance bound between the attractor and the original sequence since 1/(1-s)
— 00.

In order to overcome this problem, we are forced to impose a temporal direction in which the search will be performed.
The transformations 7; will be reduced to a geometric translation. The exploitation of temporal redundancies will
therefore be performed by using:

z z Az
1yl _| v Ay

L I e N B N (11)
z z 0

where At is constrained to be strictly negative.

In this scheme, At is set to -1 and the determination of the parameters Az and Ay is performed by an exhaustive
search of the block D; yielding the best matching of R;. The exploitation of temporal redundancies during the
encoding process is therefore reduced to a 3D block matching.

Even if the transformation 7; of equation (11) is not contractive, imposing a temporal direction search for D; ensures
convergence during the decoding process. Since At is constrained to be strictly negative, regions of the last frame will
be coded with self-similarities ensuring therefore the recovering of the fractal approximation of this frame (according
to the IFS theory). All regions coded by exploiting temporal redundancies will be defined directly or indirectly from
that frame what will allow to retrieve these regions. The last frame can therefore be considered as an intraframe or
expressed differently as a reference frame.

4 Adaptive partitioning of the Sequence Support

The motivation for using an adaptive partitioning in the context of fractal sequence coding is twofold. First, flexibility
in terms of bitrate is obtained. Any budget constraint or picture quality can be reached by controlling the criterion
parameter. Then, such a partition is image-dependent and allows to vary in an optimal way the size of the blocks
according to their statistical properties, both temporal and spatial.

The partitioning is produced recursively from top to bottom. The root of the tree represents the entire sequence and
the leaves symbolize the partition blocks. The decision to split a block is based on a maximum mean-square-error
allowance of its approximation by 7;(D;). The split can either be performed along the temporal axis or along the
spatial axes. Temporal split will produce two subblocks whose temporal size is half the one of the block of the
previous hierarchical level but whose spatial sizes remain the same. The spatial split will generate four subblocks
whose spatial sizes are divided by two but whose temporal size matches the size of the block at the previous level.
This procedure is illustrated in figure 2.
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Figure 2: Spatial Split versus Temporal Split

The choice between the split alternatives rests on a try-and-decide procedure. The global mean-square-error in
approximating the four subblocks resulting from the spatial split is compared to the mean-square-error of the appro-
ximation of the two subblocks generated by the temporal split. The best option is then selected. In a formal way,
this gives:

Spm:{ Spatial if Yoy d(ri(Df), R}) < Yo7, d(m (D)), RY)

Temporal otherwise

where the superscript s (resp. ?) denotes blocks resulting from a spatial (resp. temporal) split. The top-down approach
does not lead to the optimal partition of the sequence support but only to a suboptimal solution. The optimum path
does not indeed correspond necessarily to the path containing the locally optimal nodes.

Figure 3: 3D partition of the sequence support. Black regions point at locations of temporal split

This partitioning is attractive for its simplicity and for the low cost of its representation. Describing the partition
requires only two bits per node. One to differentiate internal nodes from the leaves and one to specify the split
direction. The result is that the partition code constitutes a negligible part of the final bitstream while improving
drastically the performance of the system.



5 Simulation Results

Simulations have been run on 8 frames of the Miss America sequence (256x256, 8 bit/pel, 25 frames/sec). The
encoding data (i.e. the transform parameters) must be mapped into a finite number of codewords in order to
generate the bitstream representing the compressed data. The quantization stage is inserted in the optimization of
the transform parameters. In order to take into account the non uniform probability distribution of the transform
parameters after quantization, an arithmetic coder of order zero [7] has been used. The addresses of the domain blocks
are represented relatively to the addresses of the corresponding range blocks. The brightness shift parameters Ag
are coded using an entropy coder conditioned on the corresponding contrast scaling factor « i.e. by using P(Ag|a).
This operation is motivated by the high correlation between those two parameters as confirmed by the histogram
shown in figure 4.
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Figure 4: Histogram of («, Ag)
| | At | Az | Ay | Isometry | o | Ag | Total (bytes) |
Spatial Self-similarities (516 blocks) | - | 260 | 262 171 296 | 466 1455
Temporal Redundancies (131 blocks) | 69 | 19 | 37 - - - 125
Partition Representation - - - - - - 173

Table 1: Distribution of the bitstream. Simulations correspond to compression of Miss America sequence with a
average reconstructed PSNR of 31.44 dB

The eight frames of the sequence have been coded with an average peak signal to noise ratio (PSNR) of 31.44 dB
at .0267 bit/pel which corresponds to a compression ratio of 300. For this simulation the maximum mean-square-
allowance has been set to 100. Table 1 shows the distribution of the bitstream. As expected, it turns out that the
partition code constitutes a negligible part of the final bitstream (about 10%) compared with the efficiency of the
adaptive partitioning. It should be remembered that, while simulations have been performed on eight frames, the
compressions achieved generally increase substantially with sequence length.

Decoding was performed in 15 iterations starting from 8§ identical frames of cameraman. The convergence curve,
giving the behavior of the PSNR versus the number of iterations, is shown in figure 5. We must note that the number



of iterations can be highly reduced by starting from a decoded group of pictures belonging to the same scene. Indeed,
according to equation (4) the convergence will be accelerated since d(fiorig, pto) decreases.

35

301

PSNR (dB)
N N
o 91

-
13
T

10r

0 2 4 6 8 10 12 14
# of Iterations

Figure 5: Convergence curve for the decoding process

6 Discussion

In this section, we will briefly analyze the reasons for the success of the scheme described above. This short analysis
is realized in comparison with traditional motion compensation techniques using block matching.

e No intraframe needs to be coded independently to the other frames. Even if the last frame can not be coded by
using temporal information (for convergence requirement as stated above), regions of this frame will be coded
within 3D blocks using therefore the temporal correlation.
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Figure 6: Reduction of spatial redundancies by 3D block matching

e The adaptive partitioning allows to vary in an optimal way the size of the blocks according to their statistical
properties both temporal and spatial. In the context of the top-down partitioning, a path in the tree will end
when encountering one of these categories of 3D regions:

— Regions which are both nearly uniform and non-moving. These areas will be approximated by using the
spatial self-similarities. Regions very large both temporally and spatially can be very cheaply coded this
way.

— Regions which are both intricate and non-moving. These regions will be coded using temporal redundan-
cies.

— Regions with uniform translational motion. These ones will be coded by using temporal redundancies.

Using 3D blocks in the context of exploiting temporal redundancies can be seen as multiple compensations of the
vector field after motion compensation by a traditional block matching algorithm. This comparison is illustrated in
figure 6. Let us assume we deal with a region following a uniform translational motion. Regions of the frames 1, 2,
3 and 4 will be approximated by regions belonging to frames 2, 3, 4 and 5; The corresponding regions of the frames
5 and 6 will be represented by regions belonging to frames 6 and 7 etc.. This assertion is confirmed by the way the
sequence support is partitioned as shown figure 6.



7 Conclusions and Future Work

In this paper, a new sequence coding scheme has been presented. The system is based on a tridimensional adaptive
partitioning of the sequence support. The 3D partition blocks can be coded either by using spatial self-similarities
or by exploiting temporal redundancies. Simulations show very good results.

The system presented in this paper is a basic scheme on which several improvements are susceptible to be added.
In the last part of this section, some possible improvements which are currently under investigation will be briefly
presented.

During the encoding process described above, the choices between different alternatives were based on a comparison
in terms of mean-square-error. However a rate-distortion based criterion would be more valid in the context of
sequence coding. Such a criterion is used in [8] for determining the best wavelet packet basis with optimal associated
quantizers. It consists in comparing the improvement in terms of mean square error with respect to the increasing
request in bitrate:

AD/AR > A (12)

where D denotes the distortion and R the amount of bits required. The parameter A can be viewed as a quality
factor. The reconstructed image quality increases with a decrease in A. This criterion can be used at three different
points of the algorithm:

¢ When deciding to split a block, the improvement in terms of quality should be related to the increase in bit
requirement. The decision to split a parent node into child nodes would be based on formula (12) where

AD=D - Df and AR=Y R{—R" (13)
i=1 i=1

where the superscript p (resp. ¢) stands for the parent node (resp. the child nodes), and n equals 2 or 4 according
to the split.

e The number of blocks produced by a spatial split is twice the number of blocks generated by a temporal split.
This means that that the amount of parameters to code is potentially doubled. Therefore, in the context of a
rate-distortion criterion, the decision to split either temporally or spatially would rely on formula (12) where

2 4 4 2
AD=Y"D{->"D;and AR=> R - R'j (14)
ji=1 i=1 i=1 ji=1

where the superscript ¢ (resp. s) stands for blocks resulting from a temporal (resp. spatial) split.

e As can be seen from table 1, the average number of bits per block when using self-similarities is higher than
when exploiting temporal redundancies. Consequently, the decision to use the spatial self-similarities or the
temporal redundancies would rather rest on formula (12) where

AD = D" — D* and AR = R** — RV (15)

where the superscript ¢r (resp. ss) denotes the use of temporal redundancies (resp. spatial self-similarities).
The use of a rate-distortion criterion in this context is expected to lead to very significant improvements.

As in the fractal-based image coding schemes, the memoryless blockwise partitioning of the sequence support induces
blockiness artifacts. These distortions are mainly located near sharp edges under the form of a staircase effect and
artifacts taking the form of sharp transitions between adjacent blocks will be visible in smoothly varying areas. In
order to overcome these artifacts, a method based on an overlapped partitioning has been built in the context of still
image coding and will be presented in a further publication. This technique, which yields an actual improvement in
terms of visual quality, can easily be extended to the 3D scheme.
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