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ABSTRACT
In this paper, a novel wavelet subtree partitioning algorithm is
proposed, which divides a subtree into scalar quantized
wavelet coefficients and fractal coded sub-subtree. Based on
this new technique, a variable size wavelet subtree fractal
coding scheme for still image compression is developed.
Experimental results show that the new scheme can achieve
nearly optimal partition of wavelet subtree with substantially
computational reduction as compared with Davis' scheme.

1. INTRODUCTION
Recently, G. M. Davis [8] and H. Krupnik et. al. [9] independ-
ently generalized the fractal coding [4-6] from spatial domain
to the wavelet domain [1-3].  Davis coined a new term wavelet
subtree for representing the hierarchical data structure of an
image decomposed in wavelet pyramid.  The wavelet subtree
consists of the wavelet coefficients that has the same spatial
location but with different resolution and orientation. Fig. 1 is
the coefficient structure of 4-level wavelet decomposition for
an image. Each subband coefficient at coarser scale is related to
a 2×2 coefficients at the next finer scale with the same
orientation. Thus, the three coefficients with the same spatial
location from the three bandpass subbands at the coarsest scale
together with their children and grandchildren, i.e. 2×2, 4×4
and etc. coefficients at successive finer scales, are highly
correlated.  They can be grouped together to form a wavelet
subtree as shown in Fig. 1 with triangle pixels.  Such wavelet
subtree is denoted as Dp with p = 4 and p is the scale level of
the root nodes.  The wavelet subtree can have root nodes
starting from high frequency subband at finer scale.  A wavelet
subtree Rq with q = 3 and root nodes at scale level 3 is also
depicted in Fig. 1 as square pixels. These wavelet subtrees, Rq

and Dp, can form square blocks of corresponding dimension by
scanning the coefficients.  The scanning order of wavelet
coefficients for Rq to construct an 8×8 square block is shown in
Fig. 2. As contrasted with spatial domain blockwise fractal
coding, Rq and Dp are called range and domain subtrees,
respectively.

The main idea of wavelet subtree fractal coding is to
approximate each range subtree by a domain subtree through
fractal transformation as in spatial domain. Owing to the
special structure of wavelet subtree, the affine transformation
used for wavelet subtree mapping is different from the spatial
domain fractal coding.  Let τ denote the affine transformation
and it is composed of the following three parts:
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Fig. 1: A four-stage wavelet decomposition: domain subtree
and range subtree consists of the triangular pixels and the
square pixels. The shaded square/triangular pixels represent the
split quadrant range/domain subtree.
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Fig. 2: Scanning order of wavelet coefficients to form a
wavelet subtree.  The shade area represents one of the four
children subtree.

i ) Geometric part Γ : It truncates all the finest leaf nodes of
the domain subtree Dp to match the tree size of the range
subtree Rp-1, and scale down all coefficients by 1/2.

ii )  Shuffle part Π :  The horizontal, vertical and diagonal
reflection of wavelet coefficients are carried out within
each subband separately.  The rotation operation is
performed within each subband and followed by switching

the LH
jW  coefficients with HL

jW  coefficients.

iii )  Massic part Ω : It operates directly on the coefficients of a
wavelet subtree.  As the wavelet subtree does not have DC
component, the shift factor is unnecessary.  Thus Ω is
defined as pp DD ⋅=Ω α)( , where α is the scaling factor.



The affine transformation τ for wavelet subtrees is the
composition of the geometric, shuffle and massic part, which
can be expressed as

    ))(()()( ppp DDD ΓΠ⋅=ΓΠΩ= ατ $$ (1)

For a given Rq, the main task of fractal coding is to find the
best-matched Dp that can approximate the Rq with the minimum
distortion through certain affine transformation.  If the mean
squared error is used as the distortion measure, the range-
domain comparison can be formulated as
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The scaling factor α is obtained when the minimum error
occurs 0)/( =∂∂ αε .  After full searching among the domain
pool, the best-matched domain subtree is found and the fractal
transformation parameters are recorded as fractal dodes.

Recently, Davis [10] further developed an adaptive wavelet
coding algorithm using joint optimized scalar quantization and
fractal compression which outperforms the state-of-the-art
fractal coding scheme.  The blocking effects can be reduced
substantially at very low bit-rates. His idea is to partition a
wavelet subtree into two parts, separate nodes and several
children subtrees.  The separate nodes are coarse-scale wavelet
coefficients are scalar quantized independently. The children
subtrees are quantized by fractal coding.  Hence, it is crucial to
find the optimal partition of the wavelet subtree for the best
coding performance.  However, Davis' optimization process is
an iterative algorithm carried out on each node of a wavelet
subtree from bottom to top.  At each iteration, a Lagrangian
cost for construction is computed for determining whether the
subtree node is a pruned node or a unpruned node with
children.  At the same time, the partition of the wavelet subtree
is modified accordingly.  Another step of quantizer optimizat-
ion for each subband is performed to reduce the total
Lagrangian cost of the quantized coefficients and fractal
quantized subtrees.  This optimization process is repeated for
all nodes which have been checked for several cycles.
Although the iterative algorithm can obtain the optimal
partition of a wavelet subtree, the heavy computation
complexity is a burden for practical applications. To tackle this
problem, a non-iterative subtree partition algorithm is proposed
in this paper.  The new subtree partition algorithm can
substantially reduce computational complexity as compared
with Davis' method while maintaining the coding performance.

2. SUBTREE PARTITIONING
Quadtree partitioning is widely used in spatial domain variable
size fractal coding [6] to adaptively separate a range block into
quadrant subblocks. Its superior performance leads to the
development of adaptive variable size wavelet subtree fractal
coding algorithms.  In subtree partitioning, if a range subtree Rq

cannot find a good-matched domain subtree Dq+1, it will be
divided into smaller subtrees for separate encoding.  A natural
extension of quadtree partitioning is to remove the three root

nodes from the range subtree and then split the pruned range
subtree into four quadrant children subtrees Rq-1.  Such quad-
subtree partitioning is shown in Fig. 1, where the shaded
square/triangular pixels represent one of the four children
subtrees.  These children subtrees will be encoded in the way
same as that for their parent. This partition algorithm is very
simple in implementation.  However, it is not an efficient
representation of the tree structure.

In fact, the four children range subtrees Rq-1 are close to each
other in both wavelet and spatial domain. Thus, they are highly
correlated and can be combined to form a new range subtree
R'q-1 (sub-subtree).  If R'q-1 can find a good-matched domain
subtree D'q, nearly 75% reduction in bits can be achieved as
compared with coding four children range subtrees. The
proposed variable tree partitioning algorithm for coding a given
range subtree Rq can be summarized as follows.

(1) Based on a predefined distortion threshold Tq, check
whether the initial range subtree Rq can be fractal encoded
by a domain subtree Dq+1 within the distortion Tq.

(2) If Rq can be fractal coded, the coding is finished and the
next range subtree will be processed.  Otherwise, the three
root nodes are removed from Rq and scalar quantized. The
remaining coefficients are combined to form a new range
subtree R'q-1.

(3) Based on another distortion threshold T'q-1, the newly
formed range subtree R'q-1 is encoded as its parent using
the corresponding domain subtrees D'q searching pool.  If
the distortion between the best-matched D'q and the R'q-1

is below T'q-1, the coding is finished. Otherwise, if the
distortion exceeds T'q-1, R'q-1 is divided into four children
subtrees Rq-1.

(4) Each of the four children subtrees Rq-1 is encoded as their
parent.  If further splitting is allowed, just let q=q-1 and
then go to step 2 to repeat the subtree partitioning.

This subtree partition is repeated until all range subtrees have
found their best-matched domain subtrees within the given
distortions, or the allowed minimum dimension of range
subtree is reached.

3. NEW SUBTREE FRACTAL CODING
Based on the proposed subtree partitioning algorithm, a new
variable size wavelet subtree fractal coding scheme is
developed. Without loss of generality, the scheme is presented
with image of 512×512 size and 6-level wavelet decomposit-
ion.  The block diagram of the proposed variable size wavelet
subtree fractal coding is illustrated in Fig. 3. The first three
steps are just the same as the fixed size wavelet subtree fractal
coding algorithm: 1) Pyramidal wavelet decomposition, 2)
Scalar quantization of the four subbands at the coarsest scale,
and 3) Construction of initial range subtrees R5 and domain
subtrees D6 of size 1023 and 4095, respectively.  There are
altogether 256 R5 and 64 D6.  For each R5, full search is
employed to find the best-matched D6 with minimum
approximation distortion ε5 through fractal transformation.  In
fixed size wavelet subtree fractal coding, the coding process is
finished regardless of the distortion.  However, in the proposed



variable size wavelet subtree fractal coding, 5ε  is compared

with a predefined threshold T5 to see whether the matching
distortion is small enough.

It is obvious that the range subtree can be “fractal coded” if ε5

≤ T5. In this case, the bits allocated for R5 will be the minimum.
Note that an additional bit is assigned to indicate that R5 is
encoded by fractal quantization and further splitting is not
necessary.  On the contrary, if ε5 > T5, the proposed subtree
partitioning algorithm is applied to divide the R5 into several
parts for separate coding to reduce the overall distortion.

The badly matched R5 is first divided into two parts, three root
nodes and the pruned subtree R'4 containing 1020 nodes.  The
three root nodes are scalar quantized independently within their
own subbands.  The pruned subtree R'4 differs from R5 in
having 12 root nodes instead of 3 at the highest tree layer.
Similarly, the corresponding domain subtrees D'5 can be
obtained by removing the three root nodes from D6 so that the
searching pool still contains 64 disjoint domain subtrees D'5.
As larger searching pool can usually reduce the distortion of
the best-matched domain subtree, the domain subtrees D'5
searching pool is enlarged by overlapping one coefficient with
the neighboring domain subtrees in both horizontal and vertical
direction within the three subbands at scale level 5. The tree
nodes of D'5 at the successive scale levels will overlap by 2, 4,
8, and 16 coefficients, respectively.  That means the searching
pool is now formed by 256 D'5 of size 4092.  The effectiveness
of using overlapped domain subtrees is confirmed by
experimental results.

Same as before, the best-matched domain subtree D'5 is found
and the distortion ε'4 between the matched subtrees is
calculated.  If ε'4 is below a predefined threshold T'4, R'4 is
encoded successfully and further splitting is not needed.
Otherwise, if ε'4 >T'4, R'4 is divided into four children subtrees
R4 of size 255.  Again an additional bit is required to indicate
whether R'4 is split or not.  The corresponding domain subtrees
D5 of size 1023 with root nodes at scale level 5 are constructed
to form the searching pool.  This construction is very simple
because D5 are, in fact, the range subtrees R5. Therefore, there
are 256 non-overlapped D5 for fractal coding.  Each of four
children range subtree is encoded as their parent nodes.
Finally, the best-matched domain subtree D5, which has the
minimum distortion is found.

When the children range subtrees R4 cannot be encoded within
a predefined distortion T4, the variable tree partition algorithm
is further applied to divide them into smaller subtrees.  At this
time, the pruned children subtrees R'3 and the corresponding
domain subtrees D'4 are of size 252 and 1020, respectively. We
also consider the domain subtrees with one root node overlapp-
ing so that the searching pool contains 1024 different domain
subtrees.  Similarly, each R'3 will find a matched D'4 with the
minimum distortion ε'3.  If the distortion  is  below a  threshold
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Fig. 3:.The block diagram of the proposed variable size
wavelet subtree based fractal coding algorithm.

T'3, the subtree is coded by fractal quantization.  Otherwise, it
will be further partitioned into four quadrant subtrees R3 of size
63. The minimum subtree dimension is set as 63. Thus, each
subtree R3 will be fractal coded regardless of the distortion.

4. EXPERIMENTAL RESUTLS

The 512×512 gray-level Lenna with 8 bits per pixel is used for
testing our coding scheme. Biorthogonal wavelets, B9/7, is
employed. The distortion thresholds to determine the wavelet
subtree splitting are adjusted for different size of range subtrees
and they are set as T5 = 7.2, T'4 = 8.2, T4 = 10.2 and T'3 = 11.2.
In addition, adaptive arithmetic coding is applied to the scalar
quantized coefficients, fractal transformation parameters and
tree node symbols to generate the output bit stream. The
reconstructed image is illustrated in Fig. 4a with the compress-
ion ratio of 64:1. To show the superior coding performance, the
result of the proposed algorithm is compared with that of JPEG



and Davis’ method in terms of PSNR and compression ratio in
Table 1.  Although JPEG is the standard for still image com-
pression, it is very difficult to obtain an acceptable image
quality at very low bits rates.  The proposed algorithm can
achieve 5.4dB improvement in PSNR as compared to JPEG
and the visual quality is also much better than JPEG (see Fig
4b).  In addition, the experimental result is also slightly better
than that of Davis’ algorithm [10] in terms of PSNR value and
compression ratio. Thus, the proposed variable tree partition
algorithm has obtained nearly optimal partition of wavelet
subtrees, and its implementation is simpler due to the relatively
lower computation requirement as compared to Davis’ method.

5. CONCLUSIONS
A simple wavelet subtree partitioning algorithm for variable
size wavelet subtree fractal image coding is proposed. Based on
this partitioning algorithm, range subtree is adaptively
segmented into various detail regions according to local details.
The domain subtrees are constructed with some overlapping
area for enlarging the searching pool.  Experimental results
show that the proposed hybrid image coding algorithm can
obtain a much better reconstructed image at very low bit-rates
than the JPEG in terms of PSNR as well as subjective quality.
In addition, its performance is also slightly better than Davis’
iterative optimized partition coding algorithm. The major
advantage of the proposed coding scheme is that no computat-
ional intensive iteration process is needed as compared to
Davis’ iterative optimized partition method.  The algorithm is
carried out from “top-to-bottom” instead of “bottom-to-top”,
thus, requiring fewer nodes checking to determine the final
subtree partition.  The heavy Lagrangian sum calculation is
also avoided. The simpler encoder structure and lower
computation requirement make this proposed coding scheme
suitable for practical applications.
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