On the limitations of fractal image texture coding
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ABSTRACT

Fractal-based image coders suffer from per-
ceptually annoying distortion in textured ar-
eas. This paper discusses possible reasons for
this limitation. A texture may be modelled
as a stochastic process with place-independent
autocorrelation properties. Two image ar-
eas should have similar correlation (spectral)
properties to be perceived as belonging to
the same texture. We show that stationary
textures in the general case do not possess
the self-similarity property on which current
block-based fractal coding methods are based.
A fractal collage approximation of such a tex-
ture may possess quite different spectral prop-
erties than is the case for the texture itself.
We derive a formula for the transformed cor-
relation function introduced by the decima-
tion in the collage modelling process for the
one-dimensional case, and provide coding ex-
amples and comparisons to JPEG for practi-
cal texture images. Areas with different spec-
tral content, elsewhere in the same image, are
needed in order to obtain an approximation
with the desired spectral properties for a given
texture area. The probability for this specific
kind of image nonstationarity to be present
may be rather small, which may explain why
fractal texture coding often yields perceptu-
ally unsatisfying results, even with extensive
domain searching.

1. INTRODUCTION TO FRACTAL
COMPRESSION

Fractal compression [1] exploits blockwise self-
stmalarity over different scalesin an image, which
is split into nonoverlapping range blocks to be
coded. The similarity between each range and
a set of nonlinearly transformed domain blocks
is then considered. The domains are taken from
a decimated version of the same image - hence
the name self-similarity. Each range is approx-
imated by the nonlinearly transformed domain
which is the most similar to the range, out of
all the domain candidates in the decimated im-
age. This collage approximation can be almost
perfectly decoded, in an iterative manner, from
knowledge of only the domain position, and the
parameters of the nonlinear domain transforma-
tion, for every range.

For simplicity of notation, we assume that all
images have been ordered into column vectors,
denoted by small boldface letters. Formally, an
image x (containing M pixels) is then encoded
as the collage Tx of an affine contractive map
T:X — Xon X =RM|[2 3. T consists of a
linear part L : X — X, and an offset t:

N,
Tx -~ Lx +t = (3 al’P,0,D,Fy)x
n=1
N,
+3 P, b, (1)
n=1

N; is the number of ranges. Fy,,) : X — RP»
fetches the best domain-to-be (of position d(n)
and length D,)) for range n. D, : RP» — RB»
decimates this block to a domain of range length
B,,, by simple averaging (D,/B, = 2). O, :
RP" — RP» orthogonalizes the d(()rglain with re-

spect to the offset basis vector by, a constant

(DC) block. P, : RP» - X places the sum of
offset and transformed domain in range position

(n) (")

n. ay ', oy are scalings for the offset and the
transformed domain respectively. These parame-
ters are usually least squares optimized. The code
for each range consists of the optimized values of

agn), oz(zn), and d(n). The decoded signal is the
attractor of T [1],

K-1

XT = E th7 (2)
k=0

where K is big enough to ensure convergence!.

The decoded attractor can be made almost iden-
tical to the encoder collage approximation (by
The Collage Theorem [1]).

2. FRACTAL MODELLING OF
STATIONARY STOCHASTIC
TEXTURES

Any range block r can be written as

r=Or+m, (3)

" Typically K = 4 - 8.



where m is a constant block, with all samples
equal to the block’s mean value. This mean value
is equal to the offset parameter oy for each range
block [3]. Thus it is really only the range resid-
ual,

r' = Or, (4)
which is to be approximated by a zero-mean
(orthogonalized) domain block. We term the
domain-to-be (before decimation) d. Note that
whether decimation by averaging or orthogonal-
ization (mean removal) is performed first is ir-
relevant for the final result. In the discussion
in this paper it is practical to reverse the order
used in practice, and assume that mean removal
is performed before averaging.

Assume now that the range residual, for sim-
plicity denoted r = [ry, 7, ..., x|’ from now on,
can be viewed as consisting of samples from a sta-
tionary stochastic process {r}, with zero mean,
characterized by its autocorrelation function,

p(l) = E[rerp]- (5)

Here I denotes lag. p(1)is a common feature used
to describe stochastic textures ([4], p. 397).

The above assumption implies that any or-
thogonalized domain-to-be d also belongs to this
stationary stochastic texture, and thus has the
same correlation /spectral properties as the range
residual. For simplicity and without loss of gen-
erality we assume that the texture has been nor-
malized to unit variance, i.e. p(0) = 1. What
happens to the correlation /spectral properties of
the domains-to-be when we perform the decima-
tion which is part of the collage modelling pro-
cess?

2.1. Acf transformation due to decima-
tion by averaging

Assume that any orthogonalized domain-to-be,

d = [dy,ds,...dyp|", is decimated by a factor

D by sample averaging over D samples at a time,

i.e. any range sample ry is to be approximated

by a collage sample

D
1

k= 2y Y dg-1yp+i = caw'd  (6)

i=1
where ag is the domain scaling factor, which
will be least squares fitted to the signal, dy =
(dierypors - dip]Ts and w = S[1,.., 1|7
(D 1’s) is the decimation filter vector. Us-
ing the assumption of least squares optimal as,

c = [c1,...,cen]T may be written as
Dw (Dw)?
c— . T (7)
[Dw|  [[Dw]|

where D is the N x D matrix with df,..
as row vectors.
Thus ¢ is a projection of r onto the line

spanned by the unit domain vector H]]g‘x”, for a

T
.,d%

given domain-to-be vector d. This means that
the fit will be better the more parallel r is to the

domain vector d = Dw, no matter its norm.
Assuming that the normalized autocorrelation
(NACF) is a relevant measure of the “typical
shape” of a process, we are therefore interested
in computing the NACF of the domain process

(now denoted {d}), defined as

pa(l) = E|dpdk+1)/E[d}], (8)

and comparing it to p(l). p4(l) should be equal
as possible to p(l), if we are to ensure that the
domain process really can be used to find per-
ceptually good approximations of range residual
blocks.

After tedious but rather straightforward ma-
nipulations on the above equations and defini-
tions, which we omit here, we obtain the rela-
tionship

(D) + & - 2D — i) - [p(ID — i) + p(ID + i)

1+ 2 507D — i) p(i) o

As an example, let us consider the much-used
image model of an AR(1) process, with p(l) =

0.95!1, We assume that the decimation factor is
D = 4. In Figure 1 p(I) and pg4(1) are plotted for
k=01,...
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Figure 1. Autocorrelation function for range resid-
ual and domain processes.

It can be seen that the domain process in

this case is much less correlated than the range

residual process?. In fact, the domain process

is not even an AR(1) process. Typically it will
therefore not be visually similar to the process
it is used to approximate. This seems to imply
that there is a basic weakness in the assump-
tion of self-similarity over different scales for sta-
tionary textures. Specifically, searchless fractal
coding algorithms (such as the one proposed by

2Whether correlation increases or decreases will be de-
pendent on the type of process we have.



Monro et al. [5]), which use domain-to-be blocks
positioned directly above the ranges (implying
that the statistical properties of the range and
domain-to-be are basically the same) are proba-

bly not a good strategy for modelling textures®.

The saving grace for high-quality fractal tex-
ture modelling, then, seems to be the existence
of image nonstationarity, i.e. that a given tex-
ture can be approximated by a decimated ver-
sion of another texture existing in the same im-
age. The correlation/spectral properties of this
second texture must then be such that they ap-
proximate those of the first after the domain dec-
mation. If we were to investigate the probability
of such matches existing, we would have to “in-
vert” the formula for pg(7): Le., given a desired
range autocorrelation pg4(l), which p(7) must the
domain-to-be process have in order to make a
good collage approximation? This is not a one-
to-one problem, but we may argue that there re-
ally is no particular reason why existence of such
a “correct” domain-to-be texture should be guar-
anteed for a given range texture in an arbitrary
image. The frequent failure of fractal texture
coding in real-world images seems to confirm this
suspicion.

3. EXPERIMENTS AND
DISCUSSION

We shall perform the following experiments to
illuminate the theories presented and to see how
they apply to real world images:

1. We will show that fractal compression suf-
fers more than JPEG when texture images
are encoded in practice, by encoding Bro-
datz texture images [6] with both schemes,
and comparing the visual quality.

2. We will demonstrate that stationary texture
images suffer more from collage modelling
than images containing several types of tex-
tured (and other) areas do.

3.1. Encoding of Brodatz textures

We have approximated a number of Brodatz tex-
ture images using

1. Collage approximation
2. JPEG encoding

In each case a uniform range partition of 8 x 8
blocks was used, and parameters were quantized
to obtain a bit rate of 0.4 bits per pixel. In Fig-
ures 2 — 4, results are given for the “Metal” tex-
ture. These results are representative of every
texture tried.

Unless the printing process has let us down,
the perceptual difference between the collage and
the JPEG image should be rather obvious: The
collage looks “out-of-focus” (i.e. more lowpass),

*Two obvious, but rather trivial cases for which this
is not true are those of a white noise (totally uncorre-
lated) signal and a fully correlated signal. In these cases
the domain and the range processes will have the same
correlation properties.

Figure 2. Original metal texture (512 x 512 pixel
resolution).

Figure 3. Collage coded metal texture (8 x 8 ranges,
16 x 16 domain-to-be’s).

Figure 4. JPEG coded metal texture.



greyish, and of lower contrast than the original.
The JPEG image, however, disregarding details
at the pixel level, clearly comes from the same
kind of texture as the original. This is rather ob-
vious from the way JPEG chooses its parameters:
For each block, the most perceptually important
frequency components (and therefore, through
the inverse Fourier relation, correlation proper-
ties) are kept. In the case of the collage, we have
no such natural mechanism to retain perceptu-
ally important features. The pel-by-pel least
squares block matching gives no guarantee of a
good perceptual match.

3.2. Comparison between textures and
real-world scene images

Collage modelling of the five Brodatz texture
files Stone.0005, woolencloth-1.1.5, roughwall-
1.5.8, Fabric.0000, and Fabric.0004 yielded a
percentwise RMS NACF error in the collage
which on the average was about 35 % higher
than the corresponding error for the collages of
the following (nonstationary) real-world scene
images: peppers, Lenna, Airplane, Couple, and
Boat. This seems to confirm once more that sta-
tionary textures are not well suited for fractal
modelling. However, we should comment that it
is unlikely that the abovementioned percentwise
RMS NACF error measure really provides the
best way to measure the perceptually important
differences in the NACF. An error measured in
the frequency domain would probably be more
appropriate, but this has not yet been imple-
mented.

4. CONCLUSION

We have discussed the problem of fractal tex-
ture modelling in the light of a texture’s correla-
tion/spectral properties, and the way these are
transformed by the domain-to-be decimation. It
is seen that stationary textures do not possess
self-similarity in the sense it is currently used in
the fractal coding community, since their visual
appearance and spectral properties may be sig-
nificantly changed by this decimation. This is
confirmed both by theoretical and experimental
results. There are still some unresolved prob-
lems, most notably what error measure should
be used to quantify the differences in correla-
tion/spectral properties between the collage and
the original texture, in order to best reflect the
perceptual differences which occur.
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