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Abstract

This paper presents a new method for attractor
coding of images. A contractive transformation, T’
is defined in a piecewise manner from a given im-
age by affine mappings over triangular image re-
gions. The image is then represented by 7. Bit
rates of 0.5 bits per pixel have been obtained for
the 512x512 sized LENNA test image at 30.1 dB p-p
SNR.

1 Introduction

The idea of representing images as transformations
that generate them has been proposed in [1, 2, 3].
The transformations are in all these cases contrac-
tive transformations on the space of images, i.e.
the transformation applied to an image produces
a new image. If the transformation is contractive
(see below) then recursive application of it onto
an arbitrary image produces the fixed point (or
invariant image) of the transformation. The basic
problem in attractor coding methods is to calculate
a transformation for a given image. Most existing
methods involve a large amount of computations
and searches. This problem has been treated in [4]
and [5].

In this paper we will first present some of the
mathematics of contractive transformations, see
e.g. [6]. Next, a method to calculate transforma-
tions on images is given followed by a short note
on a method for reducing the computational com-
plexity. A determination of the amount of data re-
quired to store the transformation is made in the
following section. Coding results for some test im-
ages are presented.

2 Contractive Transformations

Start with a space, X, equipped with a metric, a
distance measure d(z,y), where z,y € X. We will
only consider transformations (or mappings) of the
form w: X — X.

If, for every pair of points z,y € X it holds that

d(w(z), w(y)) < s-d(z,y), (1)

with the factor s € [0,1[, then w is said to be
contractive with contractivity factor s. The
contractivity ensures that the mapping w has a
unique fixed point z* € X such that w(z*) = z*.
Further, if we let

w™(z) = ww(w...(z)) =wowow.. (z),

n n

then for any z € X

. n %
nl}l_)rréow( Nz) = a*. (2)

Furthermore, if we are given an arbitrary point

xg € X then
1

d(z*,zg) < :d(’w(a:o),mo). (3)
This means that if we wish to find a mapping w
to represent xg with as small error as possible, we
should find a w where d(w(zg),z¢) is as small as
possible and which has a small contractivity factor
s.

For grayscale images the space X is often defined
to be the space of real-valued functions defined on
the supporting square of the image, or on the in-
teger valued coordinate pairs within that square.
Attractor based image coding presents us with two
important problems:



e Which metric d should be chosen to measure
the distance between two images?

e How should a transformation T" be defined for
an image f so that d(f,T(f)) is small?

We will make an attempt to solve these problems
in the following section.

3 Image Transformations Based
on Triangular Blocks

We define the space, X, of grayscale images as the
space of real-valued functions defined on the inte-
ger valued coordinates within the rectangular sup-
port of the image. The function value at position
(z,y) in the image reflects the image intensity in
this position.

The most common choice of metric, which will
also be used here, is the root mean square (rms)
metric. The distance d(f, g) between two elements
f,g € X is defined as: (S is the set of (z,y) within
the supporting rectangle and n(S) is the total num-
ber of points)

d(f,9)=( Y (f(z:y) - g(z,9))*)"*/n(S).

Y(z,y)€S
(4)

A method for calculating a transformation T
that for a given image f gives a small d(f,T(f))
can be designed in the following way (see figure 1):
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Figure 1: Triangulation of the image support into
destination and source blocks

Partition the rectangular support of the image
into a set of N nonoverlapping triangular areas,

called destination blocks. Each destination block
is defined by a triplet of points (pairs of coordi-
nates). Adjacent triangular regions have common
corner points. Destination trianglez,2=1,..., N,
defines a set D; of points (z,y) in the triangle.
Next, define again a set of M triangular areas in
the image support, called source blocks. These can
be overlapping. Each source block defines a set of
points S;,7 =1,..., M, in the triangle.

Consider a given image, f. The idea is to define
a transformation 7" on images in a piecewise man-
ner, where the function values within each desti-
nation block are defined from sub-transformations
of the function values within a source block.

In order to design T to give as small d(f,T(f))
as possible, the part of f within each destination
triangle should be approximated as well as pos-
sible by a sub-transformation of f within one of
the source triangles. The sub-transformations are
chosen to be affine transformations. These are suf-
ficiently complex to enable modelling of the image
data, yet simple to represent.

The process of approximating the function f
within one destination triangle involves the map-
ping of the function values in source triangle j,
f(Z,7) at the points (Z,7) € S; into new values
f(:t,y) at every (z,y) € D; in destination triangle
1. For this purpose we define the affine mapping
from source triangle j to destination triangle ¢ to
be of the form

T T
wi(| 9 |)=| ¥ =
f(&,9) f(z,y)
aj; aiz 0 z c1
a1 azz 0 ] + | e
az; agy ass f(&,7) c3
Aij Cj

The two zero entries of the matrix A;; ensure that
each f(:c, y) is uniquely defined.

In order to calculate the parameters of A;; and
C;; we put the following requirements on the affine
mapping:

At the three corner points of the destination tri-
angle, the mapping w;; should produce function
values equal to the function values of f at those
points. In other words, if the corner points of the

source triangle are (z4,v4), (zB,yB) and (z¢, yo),



and the corresponding points of the destination tri-
angle are (Za,Ya), (z3,yp) and (z,y,) then it is
required that

wij(za,Y4, f(z4,94)) = (Tas Yas f(Zas Ya))  (5)
wij(mBayBa f(mB7yB)) = (Iﬂ,yﬁaf(wﬂayﬂ)) (6)
wij(ze,yo, f(re,yo)) = (Ty, Yy, f(2y,95)).  (7)

The equations gives us a possibility to solve 9
of the parameters in w;;. The tenth parameter,
a3z is chosen as the value that minimizes the rms
distance d; between f and f within destination
triangle ¢. This distance is defined as

di(f,9)=( Y. (flz,y) — glz,y)?)"/?/n(Dy),

V(z,y)EDi
(8)

where n(D;) is the number of points in D;. The
calculation of as3 can be done as soon as the
parameters a1, @12, @21, @22, C1, o are determined.
These are independent of ass.

If we define the following matrices:

za ya 1
zp yp 1 |. (9)
zc yc 1

X =

and
Za Ya f(xaaya)
V=1 a3 ys [f(zp,98) |- (10)
Ty Yy f(xvay'y)

and the column vector

f(xa,ya)
Z=X"1| f(zB,yB) (11)
f(zc,yc)

then we can calculate the parameters in w;; from

a1l az1 as 0 0 :
R= a1p ag9 asm = X71Y— 0 0 (L33Z
C1 C2 C3 0 0

(12)

Every combination of destination and source tri-

angles gives a set of parameters defining a mapping

w;;. For each destination triangle the mapping

that gives minimal distance d;(f, f) will be part
of the transformation 7.

If we in all w;; ensure that lags| < 1, it can be

shown that T will be contractive in some metric.

This ensures that T will possess a unique fixed
point.

If the distance d; between f and f within the
destination triangle is larger than a predefined
value, the destination triangle is splitted in two
by adding an extra point at the middle of the
longest side and processing the two smaller trian-
gles. We can be certain that the splitting process
stops when the triangle degenerates into 3 points.
The splitting process is usually halted at an ear-
lier stage, accepting some areas in the image being
represented with larger distortion.

After the encoding process is finished (all desti-
nation blocks are processed) we have the following
definition of T: Given an arbitrary image, g, the
transformed image, T'(g), is calculated by:

T(g9)(z,y) = wij(,9,9(%,7)) (13)
Vi, (Iay) € Dia (:Z‘,:Lj) € Sj'

Due to the fact that S, the set of all points in
the image is S = |J; D; (the corner points in each
triangle belong to more than one D;) we have an
upper bound on the distance between f, the given

image, and T(f):

d>(f,T(f)) < 32 (UDs) - di(f, )*/n(S)?. (14)

4 Data Reduction Aspects

To represent the transformation 7', each of the
mappings w;;, ¢ = 1,..., N have to be stored. In-
specting equations (11), (10), (11) we notice that
the mapping w;; is defined by:

e The number of the source triangle used,
e The orientation (6 possibilities),

e The function values at the corner points of the
destination triangle,

e The function values at the corners of the
source triangle

e The parameter ags.

It can be shown [7] that a quantization of asz to
8 bits is feasible. If the total number of destination

triangles is N, the number of source blocks is M



and the image has 256 levels of greyscale, then the
total number, Ny, of bits required to define T is

Niot = 8(M +4) + N(2log (12M) +16).  (15)

An 512 x 512 image with M = 128 source blocks
and N = 5707 destination blocks yields N;; =
155145 bits. This implies a bit rate of 0.59 bpp.

5 Search Reduction

In order to minimize the number of source blocks
actually tested for each destination block, all
source and destination blocks are categorized by
a set of four numbers that are invariant under the
affine mappings used. Only those source blocks
whose set of invariants is close to the destination
block’s set of invariants are involved in the search.
The invariants are defined from the moments of
the greyscale distribution within each block. Mo-
ment invariants are described in [8, 7, 9]. A time
reduction of 80 % can be achieved in the process
of calculating the transformation 7.

6 Coding Results

All images below have 256 values of greyscale. The
encoding procedure for the LENNA image required
1500 seconds CPU on a SUN Sparcstation 2. The
decoding process requires about 30 seconds. In
the table below some encoding data are presented,
such as the number of mappings w;j, bit rate (bits

per pixel) and SNR in dB (p-p).

Image | Size | # w;; | bpp | SNR (dB)
LENNA | 512 | 5707 | 0.59 | 30.1
JAS 512 | 3410 0.35 | 344
GIRL 256 | 2713 1.11 | 31.3

7 Discussion and Further Ideas

One major reason to use triangular subblocks
of the image is that triangles are more flexible
and more easily fitted to image data than square

blocks.

ing method an image adaptive initial triangulation

In a future implementation of the cod-

scheme will be used.

Figure 2: Decoded LENNA image from a T with
5707 mappings.

References

[1] Michael Barnsley and Alan Sloan. A better way to
compress images. BYTE magazine, 1988.

[2] Arnaud E. Jacquin. Image coding based on a frac-
tal theory of iterated contractive markov operators.
part ii - construction of fractal codes for digital im-
ages. Georgia Tech Preprint 091389-017, 1989.

[3] D.M. Monro and F. Dudbridge. Fractal approxima-
tion of image blocks. ICASSP-92 proceedings, 3:111
— 485488, 1992.

[4] Geir E. @ien, Skjalg Lepsgy, and Tor A. Ramstad.
Reducing the complexity of a fractal-based image
coder. EUSIPCO proceedings, 1992.

[5] Arnaud E. Jacquin. Image coding based on a frac-
tal theory of iterated contractive image transfor-
mations. IEEE Transactions on Image Processing,
1(1):18-30, 1992.

[6] Michael Barnsley. Fractals Everywhere. Academic
Press, 1988.

[7] Mirek Novak. Attractor coding of images. Licenti-
ate thesis (to appear), Dept of EE, Linkoping Uni-
versity, 1992.

[8] Ming-Kuei Hu. Visual pattern recognition by mo-
ment invariants. IRFE Transactions on information
theory, pages 179-187, 1962.

[9] R. C. Gonzalez and P. Wintz. Digital Image Pro-
cessing. Addison-Wesley, 1977.



