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Abstract

This paper presents a hybrid system to speed up image fractal encoding. The coding scheme, LP–IFS, consists of linear prediction (LP)
and Iterated Functions Systems (IFS) applied in cascade on the image. The LP process employs a 2D auto-regressive model to estimate
parameters for each block in the image partition; IFS are then used instead of adaptive quantizers to encode linear prediction errors. The
stability of the resulting coding scheme is assured, since both LP and IFS are stable systems. The experiments performed have shown that
LP–IFS can achieve very low bit-rates (BR) with good subjective and objective quality. Moreover, comparative studies based on extensive
computer simulations have demonstrated that LP–IFS can rival standard IFS-based techniques in terms of BR and peak signal-to-noise ratio
for high compression ratio and with respect to computing time.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main goal of this work is that of providing a method
that can both improve on the computational load imposed by
IFS and effectively rival the performance results of well-
known techniques such as JPEG [1], IFS [2–4] and IFS-
based hybrid schemes [5,6].

To this aim, we explore the use of a cascaded combina-
tion of auto-regressive (AR) linear prediction (LP) [7,8]
with iterated function systems (IFS) [2,9] to encode mono-
chrome images. The AR model is computationally very
simple and has a low number of coefficients. In addition,
it has been shown to be efficient for digital image coding
[10]. IFS have been developed in the last few years and are
receiving major attention in research as a new technique for
image coding. This interest stems from the fact that an IFS is
an object simple in form and yet capable of accurately
modeling complicated signals such as images [2,9] and resi-
duals, i.e. predictive errors.

An IFS, based on iterated contractive image transforma-
tions [2,3,9], is applied to encode residuals instead of adap-
tive quantizers and/or decimators. In fact, IFS theory
provides a convenient way to describe and to code LP resi-
duals since it is designed to exploit the self-similarities that
abound in such residuals.

An IFS usually requires a huge computing time to be
carried out on an image. This is less true in the framework
of LP–IFS: indeed, much less work is required on the resi-
duals yielded by LP. In other words, the LP filter traps a big
amount of visual information, and a greater tolerance is
allowed for IFS encoding of the residual.

More recently, a closed related method for true color
images was proposed [11]. However, it was only compared
with a classical IFS coding scheme. Moreover, LP–IFS
provides better performance for reducing the computational
complexity, since it adopts a new lossy acceleration fractal
encoding, proposed in Ref. [12].

The proposed method is attractive because of its fast
encoding, that will be useful in a wide range of applications
such as fractal image coding and fractal image retrieval and
communication [13].

The outline of the paper is as follows. Section 2 presents a
review of LP and IFS techniques, while Section 3 describes
the proposed coding scheme. Experimental results and
comparative studies are shown in Section 4, while Section
5 draws conclusions.

2. A review of LP and IFS techniques

In this section, we deal briefly with LP and IFS techni-
ques. A general description is provided without too many
details, but those strictly necessary to understand the
remainder of the paper.
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2.1. LP technique

For a given imageS, any pixelsm,n can be predicted from a
number of past samples using linear prediction [7,8]. This is
the same as considering our image to be the output of some
filter which has as input the past samples – which are known
– and an additional input sequence. Formally, the auto-
regressive moving average (ARMA) model is represented
by the relation

sm;n � 2
X
i;j

ai;jsm2i;n2j 1 G
X
k;l

bk;lum2k;n2l �1�

whereG is the gain factor,ai,j andbk,l are predictor coeffi-
cients andum,n is the input sequence. If the latter is ignored,
the second term on the right-hand side is null, and we have
an auto-regressive (or all-pole or AR) model [8,14,15]. In
this way, the amplitude of the predictable signal is
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where ROS is the region of support. We stress that this
model is not able to trap all information: there is always a
difference between original and predictable signal. This
quantity is

em;n � sm;n 2 ŝm;n � sm;n 1
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and it intervenes in the estimate of the parametersai,j.
Indeed, using the least-squares method, we can minimize
the mean squared error (MSE):

2E=2ai;j � 0, 2
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In this way, we obtain a set ofp equations, wherep is the
number of parameters – well-known asnormal or Yule–
Walker equations [8].

The linear prediction operatorA turns out to be linear and
shift invariant. If we want filter stability, i.e. minimum
phase, all poles must lie inside the unit circle [14].

Usually, LP techniques alone do not remove redundancy;
in other words, they do not achieve any compression. The
data can be reduced if we eliminate some of the predictive
error coefficients or if we reduce the number of quantization
levels [16]. Here, we make the choice of eliminating further
redundancy, that is, we look for a transformation able to find
self-similarity in the residual signal. With this aim, we
employ IFS, described in the next section.

2.2. IFS technique

The theory of IFS [2,3,9] is based on the concept of a
contractive function (CF). This can be defined as a function
f:X ! X on a complete metric space (X,h) such that there
exists a constants , 1 for which the following condition is
satisfied:

h�f �x�; f �y�� # s·h�x; y� ;x; y [ X �5�

whereh is a metric function and the real numbers is said to
be acontractivity factorof f.

From Banach’s fixed point theorem we know that each
CF, when iterated, converges to a pointxf [ X, independent
of the starting point of iteration. These theoretical results
can be used for image coding, since we can solve the
problem of finding the set of CFs that better approximates
the points of a given image. Such a set is called an iterated
function system (IFS). The IFS of an image can be
constructed with Jacquin’s algorithm [2], in which images
are first partitioned into regions, and then encoded by find-
ing CFs to transform image regions (which in this context
are calleddomains) into similar image regions (here called
ranges). These transformations are affine mappings, having
the general form
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where the coefficients represent characteristics such as the
geometric contraction, the isometric transformation, grey
scale factors, etc. IFS coding provides a compact but still
accurate representation of an image.

3. LP–IFS coding scheme

Our goal is to find a transformationT having basically
two properties. The first is that it traps information due to a
strong correlation existing among contiguous pixels. The
second property is that it should ideally succeed in eliminat-
ing the remaining redundancy.

In order to satisfy the first property, we chose Linear
Prediction using the 2D AR model. The ROS adopted for
our implementation is shown in Fig. 1. This mathematical
model, developed to describe real signals, approximates
them well but not perfectly: predictive residuals still contain
much significant information. However, the residual –
representing essentially the uncorrelated information
present in the image – can be defined mathematically too.

With this aim, the possible courses of action are two:

• interpreting this error as white noise – i.e. a stochastic
process – and applying classical decimation and quanti-
zation techniques [10,14,15];
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Fig. 1. The region of support (ROS) adopted for LP–IFS. The crossed pixel
is predicted by a linear combination of the circled pixels.



• finding an alternative model able to reduce further redun-
dancy inside the residual.

Our basic idea is to follow the second course, adopting IFS
to reduce the further redundancy present in the residual. In
fact, the residual can be considered as a fractal object, in the
sense that it is made of transformed copies of either itself or
parts of itself. The main feature of the IFS-based approach is
that it effectively detects and exploits piecewise self-trans-
formability on a block-wise basis.

Formally, the transformationT can be defined by intro-
ducing two invertible operators

A : U1 ! U2 andB : U2 ! U3

whereU1 denotes the vector space of images, i.e.gl(n,R),
while U2 is the vector space of residualsgl(n,R) andU3 the
vector spaceM1(R) of polynomials of degree# 1. Hence,
our final operator will be invertible:

T ; B+A; T21 ; A21+B21 �7�
In the case of LP–IFS,A is the LP operator andB is the IFS
operator.

The coding scheme LP–IFS consists of LP and IFS
combined in cascade on the image. In other words, once
LP is performed on the image, we are left with a residual
on which IFS is applied. The stability of the hybrid operator
is ensured by the separate stability of the two component
operators.

The decoding scheme consists of IFS and LP combined in
cascade on the data produced by LP–IFS. A schematic
diagram of LP–IFS coding and decoding is shown in Fig. 2.

Notice that LP–IFS adoptes the algorithm proposed in
Ref. [12].

4. Experimental results

The experiments performed on LP–IFS had two main
goals:

• verifying the speed-up relative to traditional IFS and
fractal based hybrid schemes;

• assessing the subjective and objective quality of the
reconstructed images relative to compression techniques
such as IFS and JPEG.

With this aim, several 512× 512 8-bit test images have been
selected, but for the sake of brevity this paper shall only
show the results obtained on the luminance components of
images ‘Lena’, ‘Peppers’ and ‘Baboon’ (the latter really

represents a mandrill). The objective results obtained are
presented in terms of bit-rate (BR), peak signal-to-noise
ratio (PSNR) and execution time.

The bit-rate is the sum of two terms:

BR� b1 1 b2 �8�
The first termb1 represents information contained in our
predictor, i.e. estimated filter coefficients and initial condi-
tions. For a single 16× 16 pixel block, we have six predic-
tive coefficients; since reflection coefficients [11] are
utilized, 48 bits are enough to guarantee stability. Further-
more, there are pixels belonging to the original image.
These LP-related data can be compressed by Huffmann
coding. The second termb2 is due to IFS coding. We have
utilized adaptive filters of order 6 so as not to complicate
excessively our model, and also because the results demon-
strate that a good quality can be achieved.

PSNR is defined as

PSNR� 10log10
M·N·2552X

m;n

�sm;n 2 �sm;n�2
�9�

where sm,n is the original image and�sm;n is the restored
image, whileM andN are the image’s side lengths.

The execution times were taken on an IBM RS/6000 and
are the CPU seconds reported bytime .

Linear prediction has been performed with (strongly
causal) filters of the sixth order and fixed-size blocks of
either 64 × 64, 32 × 32 or 16 × 16 pixels. On the
contrary, our implementation of IFS adopts the
following parameters:

1. an adaptive quadtree partitioning scheme [3], articulated
on four levels, from 64× 64 to 8× 8;

2. the pool domain divided in 272 classes [12];
3. the eight canonical isometries of a square block [2];
4. a i andb i (see Eq. (6)) respectively quantized with 3 and

5 bits.

4.1. Comparison with classical IFS

The aim of this subsection is to demonstrate that LP–IFS
can be an efficient coding if compared to classical [2,3] and
improved [4] IFS coding. In particular, LP–IFS is faster
than all IFS-based coding schemes and can achieve better
quality for high compression ratios (i.e. bit-rates lower than
0.30 bpp).

Table 1 summarizes the results obtained on ‘Lena’ with
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Fig. 2. LP–IFS coding (a) and decoding (b).



different BR. The last column of the table, labeled
‘PSNR (res)’, reports the PSNR between the original
and the modeled residual as reconstructed by IFS. The
results achieved by using block sizes of 32× 32 and
64 × 64 illustrate that larger block sizes slightly

decrease the effectiveness of LP–IFS in terms of
PSNR, yielding better BR.

Fig. 3 shows ‘Lena’ compressed at several ratios using
16 × 16 blocks.

The speed-up over traditional IFS yielded by LP–IFS can
be appreciated by looking at Table 2. Since in the case of
LP–IFS the IFS operator is applied after LP, it has to deal
with a reduced dynamical range; as a result, the number of
blocks ‘flat’ enough to be simply encoded by their average is
much higher.

The columns labeled ‘NT’ and ‘NF’ in Table 2 contain the
number of blocks encoded by an affine transformation and
the number of ‘flat’ (average-only) blocks respectively. The
columns labeled FLOPS report the number of significant
floating point operations (additions and multiplications/
divisions).

The reduced number of necessary affine transformations
has an immediate impact on the execution time, as shown in
Fig. 4. It can be seen that LP–IFS, even in its slowest
version (16× 16 pixel blocks) is faster than plain IFS by
a factor of about 4.5.

It can be seen that IFS provides a slightly better PSNR for
medium and low compression ratios at the cost of a heavier
computational burden: the number of affine transformations
required is about twice that for LP–IFS. For higher bit-rates,
however, LP–IFS outperforms IFS with regard to PSNR
(more than 1 dB), as shown also by Tables 3 and 4.

In order to assess the visual distortion introduced by LP–
IFS at high compression ratios, Fig. 5 shows zoomed details
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Fig. 3. 8-Bit image ‘Lena’ for several compression factors using 16× 16 blocks. Clockwise, from upper left: original, 0.65 bpp, 0.34 bpp and 0.21 bpp.

Table 1
Performance of LP–IFS on ‘Lena’ using adaptive filters with 64× 64, 32×
32 and 16× 16 block sizes

Block size BR b1 b2 PSNR PSNR (res)

64 × 64 1.00 0.030 0.97 33.89 35.33
64 × 64 0.80 0.030 0.77 32.73 34.21
64 × 64 0.65 0.030 0.62 31.77 33.18
64 × 64 0.46 0.030 0.42 30.80 32.17
64 × 64 0.18 0.030 0.15 29.07 30.49
64 × 64 0.15 0.030 0.12 28.55 30.14
64 × 64 0.11 0.030 0.08 27.71 29.12

32 × 32 1.00 0.067 0.93 34.30 37.10
32 × 32 0.75 0.067 0.68 33.50 36.07
32 × 32 0.60 0.067 0.53 32.90 34.81
32 × 32 0.48 0.067 0.41 32.05 33.95
32 × 32 0.19 0.067 0.12 30.10 31.88
32 × 32 0.15 0.067 0.08 29.93 31.63
32 × 32 0.11 0.067 0.04 28.11 31.17

16 × 16 1.00 0.200 0.80 36.09 38.56
16 × 16 0.81 0.200 0.61 35.61 37.63
16 × 16 0.65 0.200 0.45 34.90 36.44
16 × 16 0.34 0.200 0.14 32.76 34.52
16 × 16 0.21 0.200 0.01 30.84 33.23



from ‘Lena’. Although the bit-rate is very low, the dreaded
blocking effect is not significant: the most perceptible noise
appears as a kind of diffused blurring.

Hybrid fractal methods like the ones proposed in Refs.
[5,6] outperform both Fisher’s method and LP–IFS with
regard to PSNR. However, hybrid methods suffer from
long encoding times and cannot rival sub-band encoding
in terms of PSNR.

Table 5 illustrates that JPEG is able to achieve excellent
results at low to moderate compression ratios, but it has not
been designed for high compression in the first place. In
particular, for bit-rates below 0.30, LP–IFS is definitely
better.

5. Conclusion

In this paper we have described a new technique for still
image compression based on a hybrid scheme that combines
LP with IFS, applied in cascade on the image.

The performance of the coding schemes has been tested
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Fig. 4. Execution times for LP–IFS (16× 16 pixel blocks) and traditional IFS on image ‘Lena’.

Table 3
PSNR comparison between plain IFS (Fisher) and LP–IFS (32× 32 pixel
blocks) on image ‘Peppers’

bpp PSNR–IFS PSNR–LP–IFS

0.50 32.06 31.69
0.30 30.54 30.08
0.10 26.13 27.97

Table 2
Performance of IFS and LP–IFS (16× 16 pixel blocks) applied to image ‘Lena’ and to its residual

IFS LP–IFS

bpp NT NF PSNR FLOPS (× 106) bpp NT NF PSNR FLOPS (× 106)

0.19 1737 389 29.22 24051 0.21 423 1724 30.84 6084
0.36 3094 223 32.55 45826 0.34 1420 1600 32.76 22319
0.62 5276 161 34.97 96432 0.65 2911 1573 34.90 51300
0.83 6123 87 35.67 121300 0.81 3659 1003 35.61 62077
1.02 7076 25 36.22 146277 1.00 4361 826 36.09 78865

Table 5
Performance of JPEG on 512× 512, 8-bit ‘Lena’

BR PSNR

1.05 38.91
0.88 38.42
0.68 37.14
0.45 35.36
0.35 34.03
0.20 28.56
0.10 24.61

Table 4
PSNR comparison between plain IFS (Fisher) and LP–IFS (32× 32 pixel
blocks) on image ‘Baboon’

bpp PSNR–IFS PSNR–LP–IFS

0.49 25.67 26.34



on several test images. The main result is a significant
speed-up with respect to the traditional implementation of
IFS coding, with a negligible loss of quality. Indeed, for
high compression ratios, LP–IFS outperforms traditional
IFS as well as JPEG.

The issues that will be addressed in the improvement of
the system include:

• the parallelization of the coding scheme;
• the combination between IFS with other LP schemes or

sub-band based coding;
• the application on true color image and video coding.
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Fig. 5. Zoomed detail from ‘Lena’: original and compressed at 0.10 bpp.


