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Abstract—In this paper a hybrid fractal and Discrete Cosine
transform (DCT) coder is developed. Drawing on the ability of
DCT to remove inter-pixel redundancies and on the ability of
fractal transforms to capitalize on long-range correlations within
the image, the hybrid coder performs an operationally optimal, in
the rate-distortion sense, bit allocation among coding parameters.
An orthogonal basis framework is used within which an image
segmentation and a hybrid block-based transform are selected
jointly. The selection of coefficients in the DCT component of
the overall block transform is made a part of the optimization
procedure. A Lagrangian multiplier approach is used to optimize
the hybrid transform parameters together with the segmentation.
Differential encoding of the DC coefficient is employed, with the
scanning path based on a 3rd-order Hilbert curve. Simulation
results show a significant improvement in quality with respect to
the JPEG standard, an approach based on optimization of DCT
basis vectors, as well as, the purely fractal techniques.

I. INTRODUCTION

FRACTAL image coding takes advantage of image self sim-
ilarities on different scales. The fractal method of compres-

sion is based on the observation that there exists a class of arti-
ficial images, such as Mandelbrot and Julia sets [1], which are
rich in detail, but contain little information in the sense that they
can be generated by the recursive application of scale-varying
transformations to some simple initial images. The idea of using
image self-similarities to achieve compression is first attribut-
able to Barnsley [1].

Mathematically, if is the image to be encoded, a transfor-
mation is sought such that , where

(1)

for any arbitrary initial image . For a certain class of trans-
formations , this limit exists, in which case is called the
attractor of . It is also called the fixed point of because
is invariant under , i.e.,

(2)

Compression is achieved due to the fact that usually an initial
image together with a transformation require fewer bits to
be described than the grey-level image directly. Application of
fractal methods to natural images, however, is not straight-for-
ward, since the self-similarity assumption is not always justi-
fied, at least not under simple affine transformations. An ar-
bitrary image is not guaranteed to possess such a constructive
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transformation at all and, if it does, the transformation may re-
quire more bits to be described than the original image. Fortu-
nately, in many practical applications, some reconstruction error
is tolerated. With the error between the original and recon-
structed images, a lossy version of the encoding is

(3)

for any arbitrary initial image . When the transformation is
applied to the original image, the output, , is called the col-
lage of under . A metric , usually the square norm, is chosen
to quantify fidelity of the reconstructed image to the original.
As shown in [6], the collage error, defined as , can
be used to estimate the reconstruction error, which is used in
the encoding process as the objective function to be minimized.
Optimality of fractal transform coefficients, using the collage
theorem, was investigated in [9].

Most fractal algorithms, beginning with Jacquin’s imple-
mentation [10], operate on a segmented image consisting
of nonoverlapping square regions, called ranges, with

. In order to avoid certain artifacts associated
with square segmentation, alternative (triangular, hexagonal)
segmentation schemes have been investigated [4], [7], [20].
The block-based segmentation, nevertheless, remains the most
popular approach. In a fractal coder, each square range block
is encoded by a nonexpansive transformation
operating on the whole image and mapping a domain block,

, twice the size of the range block, onto. For each range
block, the encoder seeks the transformationoperating on the
whole image , minimizing the collage error , which
is much simpler to do for one range region at a time than for
the entire at once. The collage theorem guarantees an upper
bound on the reconstruction error as a function of the collage
error and the contractivity of [6].

Unlike transform coding methods, where the goal is to decor-
relate pixels in an image region by taking advantage of intra-re-
gion redundancies, the fractal method addresses redundancy on
the region-to-region basis. In other words, the premise is that
for every range region, we can find a contractive transforma-
tion operating on a different part of the image, which results in
a close approximation of the range under consideration. This
also means that the amount of distortion in the decoded image
is dependent on how much self-similarity there is present in the
given image. Description of the contractive transformation,
therefore, constitutes a lossy code for image.

The structure of each transformation is fixed and consists
of a decimation operator, an isometry, a multiplication by a
scalar, and addition of an intensity translation block. Alterna-
tively, some range blocks can be encoded by a translation block
only. The function of the encoder is to make an optimal selection
among all possible combinations of these parameters, hence-
forth referred to as quantizers. Cardinality of the set of quan-
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tizers determines how computationally expensive a given fractal
algorithm is. In the proposed approach, this cardinality is lim-
ited through the use of coarse quantizers for domain-range dis-
placement, the scaling parameter, and by restricting the number
of isometries.

Compression achieved by a fractal code is directly related to
the number of transforms. The fewer regions the image is par-
titioned into, and the shorter the description of each transfor-
mation the higher, the compression ratio. On the other hand,
large range blocks are less likely to be found elsewhere in the
image on a different scale, and the coarse quantization of the
transform parameters leads to larger collage distortion and, ul-
timately, larger error energy at the decoder. With the proposed
method, we let the encoder select the most efficient image par-
tition, based on the quad-tree (QT) structure, and the most effi-
cient quantizer for each block, based on the target rate-distortion
tradeoff for the entire image.

Blocks for which a good approximation, under a contractive
transformation, can be found elsewhere in the image, can be
efficiently coded using a fractal transform, which is designed to
take advantage of long-range correlations within an image. The
self-similarity assumption which is central to fractals, however,
may not be justified for all blocks. In these cases, spending more
bits on the fractal transform, by employing more isometries or
finer quantizers is not very efficient [7], [19], [14].

The Discrete Cosine transform (DCT) has been the transform
of choice for most codecs due to its decorrelation and energy
compaction properties. Operating on a single block, it can be
thought of as capitalizing on short-range correlations within an
image. Complicated image features, however, require a signifi-
cant number of DCT coefficients for good fidelity of represen-
tation. The coarse quantization of the DCT coefficients in this
case results in blocking artifacts and unsharp edges.

The complementing nature of the fractal and the discrete co-
sine transforms suggests their joint use when the task at hand
is the maximal removal of redundancies in an image. One way
to integrate the two within the same codec is by assigning par-
titioned blocks to either of the two transforms. The proposed
method goes much further by allowing both transforms to op-
erate on the same block in an orthogonal setup. It combines
fractal based coding with DCT coding and within the chosen
algorithmic structure, arrives at an optimal code.

In the proposed approach all coding takes place in the fre-
quency (DCT) domain. It is the function of the encoder, for
each range block, to determine the position of the DCT coef-
ficients treated as nonzero, i.e., coded using the (zerorun, mag-
nitude) mechanism, employed by JPEG. Alternatively, we also
investigate the effectiveness of using a fixed number of predeter-
mined nonzero DCT coefficient sets, which can be described by
indexing. In both cases, the remaining range DCT coefficients
are then approximated by their DCT-transformed domain block
counterparts or by zeros, depending on the Lagrangian cost.

The Lagrangian multiplier method is used in Section II to
convert the constrained problem of finding the hybrid code and
segmentation which minimize the distortion measure for a given
bit budget, into an unconstrained minimization problem. Sec-
tion III describes how fractal and DCT transforms can be com-
bined in the encoder, based on either dynamic or fixed DCT co-
efficient sets. The use of inter-block predictive coding in the

algorithm couples code selection and segmentation decisions
among blocks. A dynamic programming first-order backward
dependency scheme, described in Section IV, is used to arrive
at the optimal sequence of quantizers in a quad-tree (QT) de-
composition. Finally, experimental results and conclusions are
presented in Sections V and VI, respectively.

II. PROBLEM FORMULATION

The problem at hand is to simultaneously segment an image
into blocks of variable sizes and, for each, to find a hybrid code
such that any other choice of segmentation and coding parame-
ters would result in a greater distortion for the same rate, or, al-
ternatively, higher rate for the same distortion. Mathematically,
for a given image , we want to solve the following optimiza-
tion problem:

subject to (4)

where is the encoded image, the distortion metric, a
member of the set of all possible image segmentations, a
member of , the set of all possible codes given segmentation
, the bit rate associated with segmentationand code
, and the target bit budget. The distortion metric chosen here

is the -norm. The constrained optimization problem stated in
(4) is converted into an unconstrained problem using the La-
grangian multiplier method. That is the following problem is
solved

(5)

The multiplier , with corresponding optimal segmen-
tation and code , for which , can be effi-
ciently found using the monotonicity of the operational rate-dis-
tortion (ORD) curve, as in [21]. The same framework is also
suitable for solving the dual problem when the average image
distortion is constrained and the rate is to be minimized, in
which case and in (5) must be interchanged. Using this for-
mulation, we overcome a disadvantage of conventional fractal
coders which is their inability to provide good rate control when
high fidelity is required. It stems from the fact that allocating
more bits per transformation, or in other words, by allowing a
greater domain pool or more isometries, after a certain point,
does not lead to increased reconstruction quality. With the above
formulation, on the other hand, the rate is inversely related to,
and thus can be controlled.

III. T HE HYBRID TRANSFORMATION

The hybrid transformation, proposed in this paper, aims to
exploit both short-term and long-term correlations present in a
typical image. The stated objective is achieved by making the
two components (fractal and DCT) orthogonal to each other
and by adapting the partition to the image. Among all possible
partitions and block quantizers the encoder selects the image
partition and the appropriate balance of DCT and fractal trans-
form per block, such that the overall problem, expressed in (4),
is solved.
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Fig. 1. Optimal segmentation (R = 0:45 bpp,PSNR = 30:33 dB).

A. Segmentation

The set of all possible segmentationsis restricted to be on
the quad-tree lattice as a compromise between local adaptivity
and simplicity of description. It ensures that the segmentation
overhead is low, since only 1 bit is required to indicate whether a
parent square block is split into four subblocks, with no such bit
required for blocks of the smallest predetermined size. Keeping
all ranges square makes the application of fractal and frequency
domain methods straightforward. Without lack of generality, for
a 256 256 image we use a 3-level quad-tree with the max-
imum and minimum block sizes of 16 16 pixels and of 4
4 pixels, respectively. Fig. 1 demonstrates a QT partition of the
Lena image that resulted from the application of the proposed
algorithm with target rate of 0.45 bpp.

B. Code Structure

Making components of the fractal transform orthogonal to
each other carries many benefits [15]. Among these are fast con-
vergence at the decoder, noniterative determination of scaling
and intensity translation parameters, and removal of the magni-
tude restriction on the scaling coefficient for convergence. Here
we explore another such benefit, the local continuity of the DC
value of the intensity translation term. Frequency domain inter-
pretation lends itself naturally to the concepts of orthogonality
and energy compactness, which is why, as in [26], we perform
the collage error minimization in the DCT domain. In agreement
with the terminology in [17] and [16], we use the vector space
representation of domains, ranges and translation terms.

Let us first denote by the original image. The vector
, henceforth referred to as domain vector, is obtained by the

fractal transformation of the domain block through the applica-
tion of the following sequence of operators:

(6)

where is the “fetch the correct domain block” operator,
the isometry operator, the spatial decimation by 2 operator,

the 2-D DCT transform of size , the zigzag
scan operator transforming a block into a vector, andthe “put
in the correct location” operator.

Let us also denote by an vector the zigzag scanned
DCT coefficients of an range
block. The objective now is to provide a lossy approximation
of each such range block of the original image given an image
partition. We will use the low frequency coefficients
in approximating the block but will replace the remaining co-
efficients by the corresponding coefficients in in (6). More
specifically the vector is approximated by

(7)

where is the projection of onto the orthogonal complement
of the subspace spanned by the mutually orthogonal vectors,
for , and are scalars. It should be noted that
in general can represent any orthogonal basis, in which case

are the projection coefficients in that base.
With the code structure defined by (6) and (7), the task of the

encoder is to optimally select, for the range vector, operators
and , and the subspace (with its dimension ) defined

by vectors . Clearly, it is desirable to keep , the number
of basis vectors , as small as possible if a high compression
ratio is desired. Note that the other operators in (6) are purely
deterministic, i.e., they do not involve any decision making by
the encoder. Similarly, the scalars , , are
found deterministically as lengths of projections ofonto the
basis vectors .

A noniterative procedure for finding in (7) that yields a
least-squares approximation of in an -dimensional vector
space is given in [17]. A similar approach was tried in [8] in
which multiple orthogonalized domain vectors were allowed.
DCT domain modeling of range vectors was used in [2], but
that approach suffered from the lack of orthogonality ofto
vectors , a prescribed uniform partition, a restriction placed
on the scaling coefficient , and an independent encoding of all
transform coefficients.

In the following two sections, we describe two alternative
methods for defining the DCT component of the overall trans-
form. One is based on the idea of using an indexed bank of fixed
subspaces , and the other allows more flexibility at the en-
coder by employing the JPEG model to specify the retained co-
efficients (bases), per block.

C. Fixed DCT Subspace

In this section, we describe an approach based on the use of
a bank of fixed subspaces [11], [13], generated by DCT coef-
ficients, to model a range vector of a given size. To illustrate
how a fixed subspace is formed, let us, for simplicity, consider
a 2 2 block of DCT coefficients. Let us also assume that the
lower three of these coefficients are used to form a subspace of
dimension 3, when the full space is of dimension 4. Each
corresponds to one coefficient in the two-dimensional DCT of
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Fig. 2. Mapping of selected DCT coefficients into basis vectors.

Fig. 3. Four subspaces for block size of 4.

size , as shown in Fig. 2 for . Each vector has
zeros in all positions, except the one corresponding to the zigzag
ordered location of the DCT coefficient it represents, where it
has the value of one. Generally, in larger blocks more DCT coef-
ficients tend to be significant. Hence, the fixed space used for the
coding of a 16 16 range block will be allowed to be of a higher
dimension than that of a 4 4 block. Limiting the number of
available subspaces has the advantage that only its index needs
to be sent to the decoder, whereas in [2] individual coefficient
positions had to be sent as well. Although in general one could
optimally design the fixed subspaces to be used, it is not ad-
dressed in this section, because it is done adaptively (i.e., for a
nonfixed subspace) in Section III-D. As an example, shown in
Fig. 3 are the subspaces used in this work for block sizes 44.
They are created using respectively the 1, 2, 3, and 4 45di-
agonals. The function of the fractal component of the overall
transform, expressed through in (7), is to approximate
all the remaining DCT coefficients. A bank of subspaces with
different numbers of retained coefficients is equivalent to an or-
dered set of quantizers, ranging from the coarsest to the finest.
The encoder thus can achieve local adaptivity by selecting, for
a given block, the subspace resulting in the desired rate-distor-
tion tradeoff. Therefore, relatively flat regions or regions well
approximated through the fractal component will require a sub-
space of a small dimension.

The subspaces for block sizes 88 are generated similarly
from the 1, 3, and 4 45diagonals, and for block sizes 1616,
the maximum allowable size in a partition, from the 1, 4, and 5
diagonals, respectively. Thus we allow energy carrying low-fre-
quency DCT coefficients to provide the subspace vectors.
For each domain vector, only the component orthogonal to the
subspace spanned by is used to approximate a given range
block. Making orthogonal to this subspace is trivial and is
accomplished by setting to zero those positions ofthat corre-
spond to the retained . Clearly, here the subspace dimension
uniquely identifies the basis vectors used.

The fact that and , for , are mutually
orthogonal vectors can be used to compute in general the least
squares solution of (7) for the scaling coefficientand weights

[17]. In our formulation, the latter are simply the quantized

magnitudes of the corresponding range block DCT coefficients.
The coefficient is computed by [17]

(8)

where denotes inner product, is the projection of
onto the subspace complement to that spanned by vectors,

and . Is-
sues related to the encoding of parameters describing the fractal
and DCT components of the overall transform, includingand

, are discussed in Section III-E.

D. Optimized DCT Subspace

In this section we describe an algorithm for optimally se-
lecting a set of DCT coefficients forming the subspace, defined
by , in (7). In the previous section we described a method of
selecting the DCT component based on the idea of using a bank
of available subspaces. That approach benefits from simplicity
of description (a subspace index uniquely identifies the set of re-
tained DCT coefficients), but suffers from its inherent inability
to efficiently model image blocks whose significant DCT coef-
ficients do not follow one of the predefined templates.

We generalize the idea of the previous section by allowing
the encoder to retain any sequence of DCT coefficients, while
still maintaining its orthogonality to the fractal component.
For a known fractal domain vector (6) and a fixed encoding
scheme, each particular set of block DCT coefficients results
in a rate-distortion pair. The ability to optimally solve the
coefficient selection problem for a given is a building block
of the proposed method and is necessary if the joint partition,
fractal and DCT component optimality is desired.

Clearly, operational optimality in selecting the set of DCT co-
efficients forming the basis , for , requires
specification of the coefficient encoding scheme, as well as, the
distortion metric used. Section III-D-1 describes the former—a
JPEG-like scheme based on zeros and runs. Having quantified
the block distortion by the mean squared error (MSE) metric,
we then proceed, in Section III-D2, to cast the problem of op-
timal coefficient selection as that of finding the shortest path in
a Directed Acyclic Graph (DAG).

1) The Rate:The appeal of DCT as a transform of choice
for many compression applications has to do with its ability to
pack most of the information of an image block into a few low-
frequency coefficients. Thus, coarsely quantizing or eliminating
altogether the remaining high-frequency coefficients (by setting
them to 0) is a reasonable strategy to achieve compression with
minimal degradation in quality.

We utilize the JPEG model of encoding DCT coefficients
[18] both because of its efficiency and because JPEG is used to
benchmark rate-distortion performance of the proposed method.
Based on the statistical observation that nonzero AC coefficients
are sparse, they are encoded by an aggregate symbol consisting
of a run of zeros followed by the magnitude category of a given
coefficient. Additionally, a number of bits (equal to the magni-
tude category) need to be appended to the aggregate symbol to
identify the coefficient within the category. Thus, for example,
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if and are two consecutive nonzero AC co-
efficients, the code for consists of a run of 1 and category
5, which, according to JPEG defaults and this implementation,
requires 11 bits for the aggregate symbol plus 5 additional bits.
Hence, the rate required to encode coefficientfollowing co-
efficient is denoted by and is equal to 16 bits.

Note that the encoding step described here operates on DCT
coefficients after quantization, which is what makes high com-
pression ratios possible and makes JPEG a lossy scheme. Based
on the statistical observation that after quantization higher-index
coefficients in DCT are very likely to be zeros, a special end-of-
block (EOB) symbol is incorporated into the symbol alphabet.

One crucial difference between standard JPEG and the
proposed method of encoding the DCT components lies in
the fact that the latter is not restrained to encode each and
every nonzero AC coefficient. Rather, that decision is made
based on the global (block) rate-distortion considerations. This
feature is especially useful when the complementing fractal
component of the transform does a good job of approximating
many significant (nonzero) AC coefficients.

2) DAG Formulation: Let de-
note the indices of the set of retained significant nonzero coeffi-
cients, henceforth referred to simply assignificant coefficients.
Then the problem to be solved in selecting the optimal sequence
of these coefficients for the DCT component of the transform,
given the fractal component, can be stated as follows:

subject to:

(9)

where is the distortion measure, quantifying the error be-
tween the approximation and the original block, is the
bit rate required to encode the significant coefficients, and

is the maximum bit rate permitted for the encoding of the
block’s DCT component. Note that
is the DCT component’s bit budgetafter encoding the fractal
component with bits. Note that the above minimization
is performed over coefficient indices, as well as, their number

.
The problem of (9) can be posed in terms of finding the

shortest path in a DAG, for which efficient solutions are known
[3], [22]. Let , for , denote the zigzag-or-
dered set of DCT coefficients of the block under consideration,
with —the DC coefficient. Also, let be the end-of-block
(EOB) symbol, terminating encoding of a block, as described
in Section III-D1. We associate the ordered set

with the vertices of a DAG, in which nonnegative di-
rected edges exist between vertices of increasing order. That is,
there is an edge from to , if and only if, . Fig. 4 il-
lustrates a simple example for (DCT of a 2 2 block),
with all valid edges shown by arrows. There is a one-to-one cor-
respondence between a path from vertexto on one hand
and a particular code (in terms ofzero runsand levels, as de-
scribed in Section III-D1) of the block, on the other.

Let be the squared-error distortion attributable to DCT
coefficients , i.e., both the retained significant co-

Fig. 4. Simple DAG for selecting the optimal subspace.

efficients and the complementing coefficients generated by the
fractal component. Note that even though all processing takes
place in the DCT domain, Parseval’s theorem guarantees equiv-
alence of this metric in the spatial domain. In the case ,
the EOB vertex, calculation of distortion terminates with coef-
ficient . An exception to this rule is the transition from
vertex to , which is associated with zero rate and zero
distortion, in compliance with JPEG.

The hard to solve constrained minimization problem of (9)
is converted into its unconstrained counterpart with the use of
the Lagrangian multiplier . The unconstrained Lagrangian cost
function can then be expressed as follows:

(10)

It has been shown in [5], [25] that if there is a such that,

(11)
and which leads to , then

is also an optimal solution to (9).
Besides removing the constraint, the problem formulation of

(10) and (11) is more useful because is never given ex-
plicitly. On the other hand, it can be shown [12], that the same

must be used in every subproblem in order to maintain global
optimality of the solution. Therefore, thein (10) is equal to
that of (5).

The (Lagrangian) cost associated with transition from vertex
to vertex can be expressed as

(12)

where is the rate required to encodeif the last encoded
coefficient was . Then the cost of a path starting with coeffi-
cient and terminating with is equal to

(13)

Note that the starting and the terminating points are fixed to
be the vertex corresponding to the DC coefficient and the EOB
symbol, respectively.

Having formulated the optimal significant coefficient selec-
tion problem as a shortest path in a DAG, we employ a modified
Dijkstra’s algorithm [23], of time complexity , to
quickly arrive at the solution.
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Fig. 5. Optimal code as the shortest path in a trellis.

E. Implementation Issues

In order to employ JPEG’s model for encoding DCT coeffi-
cients, we used the default 88 block quantization table, given
in [18]. Quantization tables for 4 4 and 16 16 blocks were
obtained from the default one byad-hocdecimation and inter-
polation. Overall, the obtained rate-distortion curves, shown in
Section V, showed very little sensitivity to the quantization ta-
bles used.

The relative position of a domain block with respect to the
range block was encoded using a variable length code (pro-
gressively more bits are used for farther distances). A 3232
search window centered around the range block, with step size
of 2 pixels was used to generate codebooks. Isometries were
limited to identity, horizontal and vertical symmetries, and ro-
tation by 180, requiring 1, 2, 2, and 3 bits, respectively. For
the fixed DCT subspace approach the scaling parameterwas
nonuniformly quantized using a Max–Lloyd quantizer with 5
bits, while with the optimal subspace approach it was kept con-
stant at 0.7, requiring 0 bits. Experiments have shown no signifi-
cant performance gains from extending the range of allowed,
while the complexity was increased. In the fixed DCT subspace
approach coefficients [(7)] were encoded using JPEG’s vari-
able length codes, except that no zero-runs were used. In that
case, the overhead information consisted of 1 or 2 bits to in-
dicate what fixed subspace was used (depending on the block
size).

Additionally, a 1 bit flag was included to signal the decoder, in
both approaches, whether the fractal component is present, i.e.,
whether domain vector is used as the th basis vector in (7).
If no fractal component is used, all coefficients complementing
the DCT component were set to zero. The decision whether to
use the fractal component is included in the overall optimization
process.

In order to reduce computational complexity the number of
candidate domains for joint fractal/DCT optimization is limited
by a preprocessing step. In it, the bestdomains are retained
per block, based on collage error minimization without the com-
plementing DCT component, i.e., using the standard fractal dis-
tortion metric. While, in principle, this preprocessing step intro-
duces suboptimality, experiments have shown that there is very
little performance gain if is increased beyond 100.

Fig. 6. Hilbert curve of 2nd-order. Scanning paths within a 16� 16 block
(each cell is a 4� 4 block).

IV. DYNAMIC PROGRAMMING SOLUTION

Sections III-C and III-D dealt with two alternative ways to
combine the DCT and fractal transforms in order to approximate
an image block. While it was shown how to arrive at an optimal
representation of a block given the image partition, the struc-
ture of the problem is such that partition and coding decisions
are not independent. To take advantage of the expected average
intensity continuity between blocks, as is done in JPEG, the

coefficients in (7), are encoded differentially, with respect
to the previously encoded block. Furthermore, some blocks in
the employed three-level QT image decompositions can have
up to three predecessors, and, hence, the rate of a current block
exhibits a 1st-order dependency. This situation is illustrated by
the trellis structure in Fig. 5. Approximating an image block
by the proposed hybrid DCT/fractal code can be thought of as
quantizing the block. A particular way of combining these two
components, characterized by a specific domain block and an
isometry, as well as a specific set of significant DCT coeffi-
cients, is called a generalized quantizer. Although the number
of these quantizers is large, for simplicity, only two are shown
in Fig. 5 per block. Differential encoding of the DC coefficient
of each range block makes these quantizers dependent. How-
ever, for a given range block, no forward dependency exists
since the DC coefficient is always quantized to the nearest in-
teger, regardless of the predecessor. In practice, we preprocess
each range block to identify the best quantizers [based on the so-
lution of (11)] per predecessor. This step significantly reduces
the number of possible paths in the QT decomposition without
causing suboptimality.
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Fig. 7. Rate distortion performance of various techniques (Lenaimage).

Fig. 8. Rate distortion performance of various techniques (cameramanimage).

The task of the encoder is to select the image decomposition
and the hybrid code for each block such that (5) is satisfied. The
Hilbert curve which is known to satisfy certain adjacency re-
quirements [21], fits naturally into the QT decomposition and
is efficient for predictive coding. Without lack of generality,
in our experiments, we use the 3rd-order Hilbert curve for the
256 256 input image. Possible scanning paths within a 16
16 block are shown in Fig. 6.

The overall problem of finding the optimal segmentation
and the hybrid fractal/DCT code is posed as that of finding
the shortest path through the leaves of the quad-tree decom-
position, with each leaf having one to three possible codes,
corresponding to one to three predecessors of a block in our
Hilbert curve. If denotes the transition cost
associated with encoding blockwith block as its prede-
cessor, the solution is found as the shortest path in the trellis in
Fig. 5, in other words, the problem has the optimal substructure

Fig. 9. Proposed algorithm (R = 0:20 bpp,PSNR = 26:71 dB).

property. This motivates the use of dynamic programming (DP)
for finding this solution.

Operational optimality, in our case, is achieved by finding
the ordered sequence of generalized quantizers ,
minimizing the overall cost function,

(14)

where both the quantizers (generalized codes) and their number
have to be determined by the encoder, with the optimal par-

tition the byproduct of the above minimization.
Due to the fact that the total cost function minimization can

be broken down into subproblems in the following recursive
manner

(15)

DP is the natural method to find the shortest path in our QT
decomposition [3].

Each value of that is kept constant throughout the solu-
tion process generates one point in the rate-distortion plane.
These points are operationally optimal for the obtained bit rates

. In order to obtain the RD plots, discussed in Sec-
tion V, we sweep lambda in some interval .
Alternatively, had a specific operating point been the objective,
bi-section or other fast search methods [21] could have been ap-
plied to arrive at .

V. EXPERIMENTAL RESULTS

Fig. 7 compares rate-distortion performance of the proposed
hybrid fractal/DCT algorithm, run on a 256 256 Lena
image, with both fixed and optimal DCT subspace selection
with that of JPEG, the optimized DCT component only, as
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Fig. 10. JPEG (R = 0:20 bpp,PSNR = 23:19 dB).

Fig. 11. Proposed algorithm (R = 0:45 bpp,PSNR = 31:16 dB).

well as, the purely fractal approach. The hybrid algorithm
with the optimal subspace is shown to outperform all other
competing techniques, with JPEG outperformed by 2.5–3.5 dB
and DCT component only by 0.5–1.5 dB across the range of
bit rates. Similar results were obtained with other images. As
an example, Fig. 8 demonstrates performance of the proposed
algorithm (with an optimized DCT subspace) and that of JPEG
when executed on thecameramanimage.

The images compressed by JPEG and the proposed algorithm
(with the fixed DCT subspace) at roughly the same bit rate (0.20
bpp) are shown in Figs. 9 and 10, respectively. The hybrid algo-
rithm reduces the blocking artifacts by modeling high frequency
information through the fractal transform. Fig. 1 shows how the
optimal segmentation adapts to the image by using larger size
range blocks in relatively uniform areas. These show that the

Fig. 12. Proposed algorithm: DCT component only (R = 0:45 bpp,
PSNR = 30:44 dB).

Fig. 13. Proposed algorithm: fractal component only (R = 0:45 bpp,
PSNR = 28:26 dB).

fractal transform is efficient for representing high frequency in-
formation, and the DCT for representing low frequency infor-
mation.

It is interesting to observe how the proposed algorithm (with
the optimal subspace selection) compares to its two constituent
methods run in isolation. Figs. 11–13 show the decoded images
generated by using the hybrid transformation, DCT component
only (based on an optimal coefficient selection), and the fractal
component only, respectively, at the rate of 0.45 bits per pixel
(bpp), corresponding to approximately 18 : 1 compression ratio.

Clearly, adding the orthogonal fractal transform to the opti-
mized DCT component significantly improves its performance.
It is noteworthy to observe how a small percentage of fractal
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TABLE I
BREAKDOWN OF BITS AMONG FRACTAL, DCT, AND SEGMENTATION COMPONENTSUSING THEOPTIMIZED DCT METHOD (LENA IMAGE)

Fig. 14. Distribution of domain-range displacement.

bits can have the said impact on performance. Table I details the
breakdown of bits between the fractal and DCT components at
various bit rates using the optimized DCT subspace method. It
also shows the overall percentage of blocks (DCT only blocks
column) in which the fractal component was not used.

Fig. 14 shows the distribution of domain-range displacements
in the codedLenaimage at 0.61 bpp. In general, the variance of
the distribution increases with bit rate, which suggests that the
use of multiple VLC tables at different rates may lead to further
gains [12].

A similar observation can be made with respect to the distri-
bution of block sizes in the codedLenaimage at the same rates.
Fig. 15 illustrates the change in the histogram of coded block
sizes with the rate. As expected, at high bit rates, more 44
blocks are used. At low bit rates, however, 88 and 16 16
blocks dominate the histogram.

Fig. 1 demonstrates a QT partition (overlaying the original)
that resulted from the application of the proposed algorithm (op-
timal DCT subspace) to theLenaimage with the target rate of
0.45 bpp and the resulting distortion of 30.33 dB. Again, be-
cause the hybrid code and the partition were optimized jointly,
the encoder adaptively selected larger blocks in relatively uni-
form areas and smaller blocks in areas with significant high fre-
quency content.

Fig. 15. Distribution of block sizes.

VI. CONCLUSIONS

In this paper we have presented a novel image compression
technique based on the hybrid fractal/DCT approximation.
Using a QT decomposition, we jointly optimized the image
partition, and the fractal and the DCT components of the code.
We obtained rate-distortion efficiency from the hybrid coder
surpassing that of its constituent components used in isolation.

The derived results confirm the original hypotheses that the
combination of DCT and fractal transforms is efficient at cap-
italizing on both short and long-range correlations present in
typical images, and that the two transforms are better suited at
decorrelating low and high frequencies, respectively.

It should be noted that the optimality claimed here applies
only in the operational sense. The experimental results sug-
gest that hybrid parameter distributions are very sensitive to
the operating point (bit rate). A carefully chosen set of VLC
tables for various coding parameters is likely to result in Rate
Distortion curves superior to those presented in Section V. One
possible way to extend the claim of optimality to the VLC
tables used is through the use of iterative VLC refinement, as
was done in [12].

REFERENCES

[1] M. F. Barnsley,Fractals Everywhere. San Diego, CA: Academic,
1988.



422 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 4, DECEMBER 2002

[2] K. Barthel, J. Schuttemeyer, T. Voye, and P. Noll, “A new image coding
technique unifying fractal and transform coding,” inProc. IEEE Int.
Conf. Image Processing, vol. 3, 1994, pp. 112–116.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algo-
rithms. Cambridge, MA: MIT Press.

[4] F. Davoine, M. Antonini, J.-M. Chassery, and M. Barlaud, “Fractal
image compression based on Delaunay triangulation and vector quanti-
zation,” IEEE Trans. Image Processing, vol. 5, pp. 338–346, Feb. 1996.

[5] H. Everett, “Generalized Lagrange multiplier method for solving
problems of optimum allocation of resources,”Oper. Res., vol. 11, pp.
399–417, 1963.

[6] Y. Fisher and A. Lawrence, “Fractal image encoding: S.B.I.R.—Phase
I,”, Final Rep., 1990.

[7] Y. Fisher, Fractal Image Compression—Theory and Applica-
tions. New York: Springer-Verlag, 1994.

[8] M. Gharavi-Alkhansari and T. Huang, “Fractal-based techniques for a
generalized image coding method,” inProc. IEEE Int. Conf. Image Pro-
cessing, vol. 3, 1994, pp. 122–126.

[9] B. Hurtgen, “Performance bounds for fractal encoding,” inProc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 1995, pp.
2563–2565.

[10] A. E. Jacquin, “A fractal theory of iterated Markov operators with ap-
plications to digital image coding,” Ph.D. dissertation, Georgia Inst.
Technol., Atlanta, 1989.

[11] G. Melnikov, “Hybrid fractal/DCT image compression algorithms
using an orthogonal basis and nonsquare partitions,” M.S. thesis,
Northwestern Univ., Dept. ECE, Evanston, IL, 1997.

[12] G. Melnikov, G. M. Schuster, and A. K. Katsaggelos, “Shape coding
using temporal correlation and joint VLC optimization,”IEEE Trans.
Circuits Syst. Video Technol., vol. 10, pp. 744–754, Aug. 2000.

[13] G. Melnikov and A. K. Katsaggelos, “A non uniform segmentation
optimal hybrid fractal/DCT image compression algorithm,” inProc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 1998, pp.
2573–2576.

[14] D. M. Monro and F. Dudbridge, “Fractal approximation of image
blocks,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, vol. III, 1992, pp. 485–488.

[15] G. E. Oien and S. Lepsoy, “Fractal-based image coding with fast decoder
convergence,”Signal Process., vol. 40, pp. 105–117, 1994.

[16] G. E. Oien, S. Lepsoy, and T. Ramstad, “An inner product space
approach to image coding by contractive transformations,” inProc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 1991, pp.
2773–2776.

[17] B.-B. Paul and M. H. Hayes, III, “Video coding based on iterated func-
tion systems,” inProc. IEEE Int. Conf. Aqoustics, Speech, and Signal
Processing, 1995, pp. 2269–2272.

[18] W. B. Pennebaker and J. L. Mitchell,JPEG Still Image Data Compres-
sion Standard. New York: Van Nostrand Reinhold, 1993.

[19] D. C. Popescu, A. Dimca, and H. Yan, “A nonlinear model for fractal
image coding,”IEEE Trans. Image Processing, vol. 6, pp. 373–382, Mar.
1997.

[20] M. A. Robers and A. K. Katsaggelos, “Reducing blocking artifacts
within vector quantization algorithms,” inProc. IEEE Int. Conf. on
Consumer Electronics, Chicago, IL, June 11–13, 1997, pp. 144–145.

[21] G. M. Schuster and A. K. Katsaggelos,Rate-Distortion Based Video
Compression. Dordrecht, The Netherlands: Kluwer, 1997.

[22] , “An optimal polygonal boundary encoding scheme in the rate-
distortion sense,”IEEE Trans. Image Processing, vol. 7, pp. 13–26, Jan.
1998.

[23] G. M. Schuster, G. Melnikov, and A. K. Katsaggelos, “Optimal shape
coding techniques,”IEEE Signal Processing Mag., pp. 91–108, Nov.
1998.

[24] Y. Shoham and A. Gersho, “Efficient codebook allocation for an arbi-
trary set of vector quantizers,” inProceedings of IEEE International
Conference on Aqoustics, Speech, and Signal Processing, 1985, pp.
1696–1699.

[25] , “Efficient bit allocation for an arbitrary set of quantizers,”IEEE
Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 1445–1453, Sept.
1988.

[26] B. Wohlberg and G. de Jager, “Fast image domain fractal compression
by DCT domain block matching,”Electron. Lett., vol. 31, pp. 869–870,
May 1995.

Gerry Melnikov was born in Odessa, Ukraine.
He received the B.S. degree from Illinois Institute
of Technology, Chicago, and the M.S. and Ph.D.
degrees from Northwestern University, Evanston,
IL, both in electrical and computer engineering.

He is a Senior Member of Technical Staff at Inge-
nient Technologies, Rolling Meadows, IL, where he
is responsible for the development of several video
products. Previously, he was with Motorola Corpo-
rate Research Labs, doing work in the field of multi-
media communications.

His research interests include, but are not limited to, image and video coding,
real-time optimization, shape coding, fractals, and object-oriented signal pro-
cessing. He has published more than a dozen conference and journal papers,
and co-wrote a book chapter on the subjects of optimization, shape coding and
fractal compression.

Aggelos K. Katsaggelos(S’80–M’85–SM’92–F’98)
received the Diploma degree in electrical and me-
chanical engineering from the Aristotelian Univer-
sity of Thessaloniki, Thessaloniki, Greece, in 1979
and the M.S. and Ph.D. degrees both in electrical en-
gineering from the Georgia Institute of Technology,
Atlanta, in 1981 and 1985, respectively.

In 1985, he joined the Department of Electrical
Engineering and Computer Science at Northwestern
University, Evanston, IL, where he is currently Pro-
fessor, holding the Ameritech Chair of Information

Technology. He is also the Director of the Motorola Center for Communica-
tions. During the 1986–1987 academic year, he was an Assistant Professor with
the Department of Electrical Engineering and Computer Science, Polytechnic
University, Brooklyn, NY. His current research interests include image and
video recovery, video compression, motion estimation, boundary encoding,
computational vision, and multimedia signal processing and communications.

Dr. Katsaggelos is an Ameritech Fellow, a member of the Associate Staff,
Department of Medicine, at Evanston Hospital, and a member of SPIE. He is a
member of the Publication Boards of the IEEE Signal Processing Society and
the PROCEEDINGS OF THEIEEE, the IEEE TAB Magazine Committee, the IEEE
Technical Committees on Visual Signal Processing and Communications, and
Multimedia Signal Processing, Editorial Board Member of Academic Press,
Marcel Dekker: Signal Processing Series,Applied Signal Processing, andCom-
puter Journal, and editor-in-chief of theIEEE Signal Processing Magazine.
He has served as an Associate Editor for the IEEE TRANSACTIONS ONSIGNAL

PROCESSING(1990–1992), an area editor for the journalGraphical Models
and Image Processing(1992–1995), a member of the Steering Committees of
the IEEE TRANSACTIONS ON IMAGE PROCESSING(1992–1997) and the IEEE
TRANSACTIONS ON MEDICAL IMAGING (1990–1999), a member of the IEEE
Technical Committee on Image and Multi-Dimensional Signal Processing
(1992–1998), and a member of the Board of Governors of the IEEE Signal
Processing Society (1999–2001). He is the editor ofDigital Image Restoration
(Heidelberg, Germany: Springer-Verlag, 1991), coauthor ofRate-Distortion
Based Video Compression(Dordrecht, The Netherlands: Kluwer, 1997), and
co-editor of Recovery Techniques for Image and Video Compression and
Transmission(Kluwer, 1998). He has served as the General Chairman of the
1994 Visual Communications and Image Processing Conference (Chicago, IL),
and as technical program co-chair of the 1998 IEEE International Conference
on Image Processing (Chicago, IL). He is the coinventor of eight international
patents, and the recipient of the IEEE Third Millennium Medal (2000), the
IEEE Signal Processing Society Meritorious Service Award (2001), and an
IEEE Signal Processing Society Best Paper Award (2001).


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


