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Abstract. Previously, the use of non-separable wavelets in image pro-
cessing has been hindered by the lack of a fast algorithm to perform
a non-separable wavelet transform. We present two such algorithms in
this paper. The first algorithm implements a periodic wavelet transform
for any valid wavelet filter sequence and dilation matrices satisfying a
trace condition. We discuss some of the complicating issues unique to
the non-separable case and how to overcome them. The second algo-
rithm links Haar wavelets and complex bases and uses this link to drive
the algorithm. For the complex bases case, the asymmetry of the wavelet
trees produced leads to a discussion of the complexities in implement-
ing zero-tree and other wavelet compression methods. We describe some
preliminary attempts at using this algorithm, with non-separable Haar
wavelets, for reducing the blocking artifacts in fractal image compression.

Keywords: Haar, wavelet, image, compression, fractal, tiling, periodic wavelet
transform, non-separable.

1 Introduction

Wavelets have found applications to many diverse areas of science, engineering
and mathematics. A large part of their usefulness in applications is their ability
to capture both scale and location information of a data signal. However, the
practical application of wavelets is also driven by the existence of a fast algo-
rithm to do a wavelet decomposition on a discrete data set. This Fast Wavelet
Transform in many cases allows the real-time analysis of data.

For a finite length data signal, we have several options on how to analyze the
data. One popular method is to periodize the signal. In this case, we think of
our data as being a function on the circle S and use wavelets on S! that are
induced from wavelets on IR. There is a corresponding discrete transform called
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the Discrete Periodic Wavelet Transform that is very fast. In fact, for a data
stream of length N, the transform has time complexity O(N) (see [30]). Another
method is zero padding where you extend your finite length data signal by zeros to
make an (potentially) infinite length signal. In processing zero padded data you
need only compute with the finite length signal itself, filling in the appropriate
zeros where necessary.

One of the many areas in which wavelets have found applications is the area
of image processing. Here their ability to extract spatially localized informa-
tion is very useful in reconstructing, modifying or analyzing an image. However,
most of the wavelets used in image processing (an inherently two-dimensional
application) have been tensor products of wavelets from L%*(IR). While this is
sufficient for many purposes, in some cases it is not. For example, when using
tensor product wavelets to compress images, you often introduce artifacts from
the fact that you lose information. With tensor product wavelets, these artifacts
include vertical and horizontal lines in the image. This is undesirable since our
eyes are particularly sensitive to errors along lines. Non-separable wavelets based
on fractal or dust-like tilings introduce a natural dithering effect which helps to
eliminate these linear errors.

Non-separable wavelets are wavelets that are, in some sense, intrinsic to two
(or more) dimensions; they are not tensor products of wavelets on some lower
dimensional space. There has been much recent activity on constructing and
analyzing multidimensional non-separable wavelets (see [2,5,19-21]). However,
multidimensional non-separable wavelets are far from being well-understood.
The question of existence and properties of these wavelets is a much more delicate
and intricate one than that of one dimensional wavelets. For instance, there are
very few explicit constructions of these wavelets. On the other hand, certain
types of wavelets, namely Haar wavelets, are fairly easy to construct. These
wavelets are derived from characteristic functions.

The characterization of multidimensional Haar wavelets was given in the
paper of Grochenig and Madych [15]. These wavelets are usually non-separable
and have support on fractal tilings. This leads to the idea of complex bases,
which also produce fractal tilings of the complex plane.

Complex bases are a way of representing complex numbers, in a similar fash-
ion as the decimal system is used to represent real numbers. The study of such
bases began with the work of Katai and Szabé [18]. Many results in this area,
including algorithms for determining the representations, are due to Gilbert [9-
11]. Gilbert also provided the connection between the fractal tiles of complex
bases and iterated function systems. This allowed the development of the long
division algorithm for complex bases [14].

In this paper we present two recent algorithms to perform non-separable
wavelet transforms, one a periodic transform and one a zero padding transform.
The periodic transform requires that the dilation matrix satisfy a trace condi-
tion but will work with any valid wavelet filter sequence for the given dilation
matrix. Thus it will work for wavelets more general than Haar wavelets. The zero
padding algorithm is based on a new link between complex bases and wavelets,
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which enables an understanding of the translation of the Mallat algorithm to
the language of complex bases. This algorithm only works for Haar wavelets.
However, the dilation matrices associated with complex bases do not in general
satisfy the trace condition. Thus, while the two algorithms have a substantial
area of overlap, they complement each other in that neither one generalizes the
other.

In some sense, our periodic transform is simply the transform on the n dimen-
sional torus induced by the discrete wavelet transform on IR155™ and periodicity.
Unlike the one dimensional case, however, this turns out to have surprising com-
plications so that it doesn’t work out as simply. We indicate in this paper how
these difficulties may be overcome.

After presenting each algorithm, we give some preliminary experiments in
using non-separable Haar wavelets combined with a fractal-wavelet transform in
an attempt to reduce the blocking artifacts which are common in conventional
fractal image compression. In the case of the periodic transform, we use the Haar
wavelets primarily because of a lack of suitable wavelet filters for other smoother
wavelets. However, the benefits of non-separable wavelets are evident even in the
simple Haar wavelet case.

2 Wavelets

In this section, we summarize the necessary background of wavelet analysis. For
a more complete account of the wavelet theory the reader is referred to [6,15]
and of the fractal compression theory see [8,22,29].

2.1 Background

To start, let L?(R™) be the space of all square Lebesgue integrable functions
from IR" to IR. Recall the following definitions:

Definition 1. A matriz A on IR"™ is an acceptable dilation for Z"™ ¢f AZ™ C Z"
and if |A| > 1 for each eigenvalue A of A.

Throughout this paper we will let ¢ = |det A|. The properties of an acceptable
dilation imply that ¢ is an integer > 2.

Let A be an acceptable dilation on L?(R™), f € L?(R™) and z,y € R™. Define
the unitary dilation operator U4 by

Uaf(z) = |det A]"V/2f(A""2)
and the translation operator 7, by
7y f(z) = f(z —y).
Then for each : € Z and j € Z" let f; ; = U;iij. Hence,

fii(®) = ¢ f(A'z —j).
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Using this notation, foo = f.
We are interested in wavelet bases given by translation by integers. By a
basis we will mean a (orthonormal) Hilbert space basis.

Definition 2. A wavelet basis B, associated with an acceptable dilation A, is
a basis of L2(R™) whose members are A dilates and Z" translates of a finite
orthonormal set S = {¢,...,¥™} C L?(R"™), where m € N*t. More precisely,

B:{’L/);j :l=1,...,m; i €Z; j€Z"},

where 1/)57]- = ¢*/2¢!(A%z — j). The elements of S are called the basic (mother)
wavelets.

Consider the definition of a multiresolution analysis as given in [15] where
the lattice I' = Z™.

Definition 3. Let A be an acceptable dilation for Z™. A multiresolution analysis
(MRA) associated with A is a sequence of closed subspaces (V;)icz of L*(R™),
satisfying

i) Vi CVig1, VieZ
i) UienV; = L*(R™)
iii) Vi =U,*'Vo, Vi€ Z
i’l)) TjVO =Vo,Vy€Z™
v) there is a function ¢ € Vg, called the scaling function,
such that {T;¢ : j € Z"} is a basis for Vo.

These properties imply that {¢; ; : j € Z"} is a basis for V; for each ¢ € Z. Since
¢ € Vo C Vi, we obtain the dilation equation:

$(z) = > hig1(=)
JEL™
= ) hj|det A2 p(Az — j), Vz € R"
JEL™
where h; = (¢, ¢1,;),Vj € Z™.

Given a multiresolution analysis we define, for each ¢ € Z, the space W; as
the orthogonal complement of V; in V;11: W; = Vi1 © V. Thus, it follows that
W; = U;'W, and that L*(R"™) = @, ., Wi.

Recalling the result of Meyer [27] that there exist ¢— 1 functions ¢?,... 27!
such that {r;9' : j€Z™ I=1,...,¢— 1} is a basis for Wy, then the set

{’l/lij : l:l,_,_,q_l;iEZ;jEZn}

is a wavelet basis for L?(R™). Since Wy C V1, we get a dilation equation for each

ofthe ¢!, I1=1,...,¢—1:
¢1 = Z g;"ﬁl,ja

JEL™
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where g;» = (¢!, ¢1,5),Yj € Z" The coefficients h; and g;» are called the filter
coefficients of the scaling function and wavelet functions respectively.

Finding the scaling function ¢ and the functions 4! may be extremely difficult
in general. However, in the case where the scaling functions are characteristic
functions on self-similar lattice tilings, such basic wavelets can always be found.

2.2 Self-Similar Lattice Tilings

Let Q, R C R" be Lebesgue measurable. Denote the characteristic function of @
by X, and write |Q| to denote its Lebesgue measure. Write @ ~ R if [Q\R| =
|R\Q| = 0. We also state the following definitions.

Definition 4. A set Q is said to tile R™ by integer translates if

i) Urezn(@ + k) ~ R™ and
i) QN(Q+k)~0, vk € Z"\{0}.

It can be shown that such a set @ must have Lebesgue measure 1.
Ezample 1. The set @ = [0, 1] tiles IR by integer translates.

Definition 5. A set containing a unique element from each coset is called a
complete residue system.

One can show that a complete residue system for Z"/AZ™ contains ¢ = | det 4|
elements.

Ezample 2. Letting A=10 in Z one complete residue system for Z/AZ is {0, 1,
..., 9}. This follows since each integer is equivalent to a unique element of this
set, modulo 10.

For our applications, we will be particularly interested in the case of Haar
wavelets. Haar wavelets are wavelets where the scaling function is the character-
istic function of some set.

Definition 6. We say that a scaling function ¢ for ¢ MRA of L*>(R™) is a Haar
scaling function if ¢ = Xo for some measurable subset QQ of R™.

The fact that the scaling function has to satisfy the dilation equation means that
its support has to be a self-similar tile. In [15], Grochenig and Madych completely
characterized these scaling functions and their supports. The following theorems
summarize their results.

Theorem 1. Suppose A is an acceptable dilation for Z™ and let Q@ be a mea-
surable subset of R™. The function ¢ = |Q|_1/2X is the scaling function for a
multiresolution analysis associated with A if and only if the following conditions
are satisfied:

i) @ tiles R™ by integer translates.
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Fig. 1. Examples of self-similar tiles.

i) AQ ~ Uy cx(Q + k) for some complete residue system K of Z"/AZ".
i11) Q ~ C for some compact subset C of R™.

Since @ satisfies ii) it is called self-similar in the affine sense. These properties
imply that the filter coefficients h; of ¢ are identically g 1/2 for j € K and zero
otherwise. Figure 1 illustrates examples of two different self-similar tilings. The
first tile (the twin dragon tile) is generated by the matrix and complete residue
system (also called the digit set)

(i _11> {(0,0),(0,1)}

while the second tile is generated by the matrix and digit set

(13)  too.ao.eo

In both figures, we show nine translations of the basic tile. Since the scaling
function is a characteristic function, all the non-zero coefficients in the dilation
equation have the value 1. The tile is the attractor of the IFS {A~1(z) + A~ 1d:
de K}.

Theorem 2. Let K be a complete residue system of Z™/AZ"™. Then there ezists
a unique solution of ¢ = Y, _x q_1/2¢17k in LY(R™), up to multiplication by a
constant. Furthermore, this solution has support in the compact set

Q:{iA‘iki : kEK}
i=1

Theorem 3. Let A be an acceptable dilation for Z™ and let Q C R™. Then the
function ¢ = Xq is the scaling function of a MRA associated with A if and only

if |@Q| = 1 and Q is of the form given in Theorem 2 for some complete residue
system K of Z™/AZ™.
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Grochenig and Madych also characterized the wavelets for such MRA.

Theorem 4. Let ¢ = Xo be the scaling function for a MRA of L?(R™) associ-
ated with A and let K = {k1,...,kq} be the complete residue system generating
Q. Let U = (uy;) be a unitary g x ¢ matriz, with uy; = g 12 j=1,...,q. For
i=1,...,9— 1 define

q
=) uigaidi
j=1

Then {leﬁi ci=1,...,9—1;j € Z"} is a basis for Wy. Conversely, any set
of basic wavelets for a MRA associated with ¢ = X must arise in such a way.

An immediate corollary is that the set

{i; :1=1,...,q—1;i€Z;j €LY}
is a basis for LZ(R™).
Ezample 3. For ¢ = 2, there are only two possible matrices U:

o (UVE 1VE
T \£1/V2F1Y/V2)C
Another example, slightly different than the one in [15] is the following.
Ezample 4. For ¢ > 3, define the unitary matrix U = (u;;), by letting uq; =

¢~ 1/? and
2 —1)(25 -1
uij:\ﬁwsw,
q 2q

fori=2,...,qand j=1,...,q.

The reader is referred to [15] for further details and examples.

2.3 Reconstruction and Decomposition Algorithm

The strength of the multiresolution analysis method lies in the reconstruction
and decomposition algorithms, discovered initially by Mallat [23]. These algo-
rithms are a fundamental component of wavelet analysis applied to signal and
image processing. They will be reviewed here only briefly, mostly for notational
purposes.

Suppose (V;)icz C L*(R") is a MRA and that f € V41 = V; @ W;. We have
two bases: one for V; 11 and one for V; @ W;. Therefore,

f= E Sit1,2 Digl,z

Z2EL™

g—1
— R l l
- 317] ¢l7] + wiyj 1/)i7j,

jezm I=1j€Z™
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where the scaling coefficients smn = (f, ¢mn) and the wavelet coefficients
winjn =(f, 1l'n,n> By using the dilation equations we obtain the identities
sij= 9 haoajsipr. and wi;= Y gl sisipi, (1)
Z€EL™ z€L™

which give the decomposition of higher resolution scaling coefficients into lower
resolution scaling coefficients and wavelet coefficients. The reconstruction algo-
rithm is given by

gq—1
_ i 1
Sit+1,z — § hz—Ajsi,j + E E 9r—A; Wi 5+

jeL™ 1=1 jezn

As is well known, this procedure yields a tree structure for the wavelet coeffi-
cients.

3 Fractal Image Compression

A fractal representation of an image tries to use self-similarity within a picture
to encode the picture. The usual way of doing this in a compression scheme is to
break the image up into a regular grid of large blocks (called the source blocks or
parent blocks) and a regular grid of small blocks (called the target blocks or the
child blocks). Then for each child block we search among all the parent blocks
for the block that is the closest match. We usually allow some kind of affine
modification of the image values on the block. If we represent the image as a
function f then the usual transformation is of the form af(-) + 3.

The above “fractal block” algorithm often introduces undesirable blocking
artifacts in the reconstructed image. These artifacts arise because the image is
treated as a collection of disjoint child blocks. Mixed fractal-wavelet methods
were introduced in an attempt to reduce these blocking artifacts.

The Fractal- Wavelet Transform (see [26,29]) is based on the observation that
the wavelet coeflicients have a very natural tree structure, as illustrated in the
following diagram (depicting the situation where the dilation is by a factor of

2).

wo,0
w1,0 wi,1
Bio|B31|Ba3|Bas

In this diagram, each entry B;; represents a tree of infinite length. Using this
notation, an example of a simple type of Fractal-Wavelet Transform is the trans-
formation W defined by:

Wi : Byg — Bag, Ws: Bjg — Bag,

and
W3 : Byg — Bz, Wy : Big — Bag,
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with associated multipliers a;, 1 < ¢ < 4. Diagrammatically, this IFSW trans-
forms Bgg into

wo,0
w1,0 wi,1
a1 Biglaa Bii|asBiglay Biy

where |a;| < 1/4/2. The restrictions on the ; follow from the condition that the
wavelet coefficient sequence w; ; is square summable.

The map W has a unique fixed point function % whose wavelet coeflicients
decay geometrically according to the a;’s.

All the previous work on fractal-wavelet methods have used separable wavelets.
This was mainly due to the lack of an algorithm to do the wavelet transform
for non-separable wavelets. In this paper, we concentrate on using non-separable
wavelets.

4 Periodic Non-Separable Wavelet Transform

In this section, we present a brief discussion of the algorithm for the discrete
periodic wavelet transform for non-separable wavelets (for a more complete de-
scription and discussion of the algorithm see the paper [24]). Our algorithm
is general in the sense that you can use any valid scaling function filter and
wavelet filters for an appropriate dilation matrix. However, in our applications
we concentrate on the case of Haar wavelets. We do this mainly because very
few wavelet filters for smooth non-separable wavelets are known [2].

For simplicity, we restrict ourselves to two dimensions. The extension to
higher dimensions is reasonably straightforward.

We assume that we are given a dilation matrix 4 and that our signal is of
size det(A)Y by det(A)N for some N. Furthermore, we make the assumption
that

trace(A4) = 0 mod det(4) (2)

and that the only solution to A(a,0)T = (0,0)7 is a = 0. It is possible to weaken
these assumptions, but the algorithm is slightly more complicated.

The basic idea is that (1) tells us how to filter and downsample our given
signal, so we implement these equations. We use the proper arithmetic on the
subscripts to keep track of where to subsample and how to convolve. However,
this is not entirely straightforward.

First, the data is downsampled by a factor of det(A) on each iteration of
the wavelet analysis algorithm. This may make the storage and indexing of the
data complicated. For example, if the image is square and det(A) = 2, then after
one iteration you no longer have a square. This also complicates the periodiza-
tion (performing the arithmetic correctly). The indexing problem can be solved
by using A to help with the indexing from one “level” to the next. The peri-
odization problem (performing the correct arithmetic) can be solved by noting
that after one subsampling we are on the sublattice A(A) = A/ker(A), where
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A = Zges(ayy X Lgeycayw is the lattice (module) of integers modulo det(A)N.
Thus, we perform our arithmetic modulo det(A)Y and then reduce modulo
ker(A).

This leads to the second problem. In general, the subsampling lattices A™(A4)
get more complicated with each iteration. Thus, in order to perform the correct
arithmetic on the n" stage it would be necessary to reduce modulo ker(A™).
It would be necessary to know ker(A™) for all n to do this and this reduction
would make the algorithm very slow.

Finally, suppose A has an eigenvector v over Zg.4(4) associated with an eigen-
value A which is invertible modulo det(A). Then det(A)Y~1v is an eigenvector of
A over A with eigenvalue A. So after repeatedly sub-sampling the lattice 4 using
A, we will eventually get to a stage where our sub-sampling points are no longer
changing; the wavelet analysis algorithm cannot be completed. The only way
around this problem is to restrict our possible dilation matrices to those that
have no such eigenvectors. It is easy to see that if A has an invertible eigenvalue
modulo det(A)Y then A must necessarily have an invertible eigenvalue modulo
det(A). Thus it is sufficient to check for eigenvalues modulo det(A4).

Our assumption given in equation (2) eliminates these problems. Since 4 is
a 2 X 2 matrix, the characteristic polynomial of 4 is

22— trace(A)X + det(A).

If trace(A) = 0 mod det(A4), then A has no non-invertible eigenvalues modulo
det(A), and thus has no associated eigenvectors. Furthermore, by the Cayley-
Hamilton Theorem (which remains true for matrices over commutative rings,
see [4]) we have

A? = 0 mod det(A)
which means that each entry of A? is a multiple of det(A) so that
A%(A) C det(4)A.

In fact, this equation is an equality. Thus, while A(A) might be some arbitrary
submodule of A, A2(A) sits in A very simply. In order to do arithmetic in A%(A)
we simply perform our arithmetic modulo det(4)Y~! in each coordinate! Thus,
we can go from our “square” arrays of data to “rectangular” and then back to
“square”.

Here is an example to illustrate these ideas.

Ezample 5. Let A be the dilation matrix

21
A= (1 4> .
Then A(2,1)T = 6(2,1)T mod 7 so A has an eigenvector modulo 7 corresponding
to the invertible eigenvalue 6.
In Figure 2 we use the lattice A = Z49 X Z4g and show A(A) and A?(A). For
this example A™(A4) = A?(A) for n > 2.



335

Fig. 2. A(A) and A"(A) for n > 2

Application to Image Compression

The motivation for using non-separable wavelets in image processing is that any
“blocking” artifacts created by these wavelets would be less noticeable to the
human eye. This is especially true if we use Haar wavelets. In this case, using
separable wavelets creates very noticeable blockiness in the image since separable
Haar wavelets are characteristic functions of squares. When we use non-separable
wavelets, this blockiness is considerably reduced.

Figure 3 illustrates the basic difference between the use of separable and non-
separable Haar wavelets. The first image uses the separable Haar wavelets and
represents truncating the bottom 2 levels of the wavelet tree while the second
uses Haar wavelets based on the twin dragon tiling (the first tiling in Figure (1)
and represents truncating the bottom 4 levels. The information content is similar
in the two pictures since for the separable Haar wavelets each level represents
downsampling by a factor of 4 (det(A4) = 4 since A = 2I) while for the non-
separable one each level represents downsampling by a factor of 2.

In Figure 4 we illustrate the use of Haar wavelets based on the second tiling
in Figure 1. In this case we have truncated the finest three levels of the wavelet
tree (which corresponds to subsampling by a factor of nine, since det(4) = 3).
The second image in Figure 4 is the result of using the wavelet analysis and
synthesis algorithm for wavelets whose dilation matrix A does not satisfy the
assumption in equation (2). This matrix is the same one whose subsampling
lattice is shown in Figure 2.

Figure 5 shows the result of two types of encoding: zero-tree and fractal-
wavelet. First we performed a wavelet decomposition using the twin dragon
Haar wavelets. Next we traversed the wavelet tree truncating the tree when the
total energy of the branch was less than some specified threshold. The image on
the left is the image reconstructed from this pruned wavelet tree. The image on
the right shows the result of fractal-wavelet compression using the twin dragon
Haar wavelets. We first computed the wavelet tree for the lenna image and store
the first 12 levels of the tree. Next we used these levels to predict the higher
resolution levels in the manner described in Section 3.
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Fig. 3. Left: Separable Haar 4:1. Right: Twin-dragon Haar 4:1.

\

Fig. 4. Left: Non-separable Haar. Right: Improper subsampling.

Fig. 5. Left: Zero-tree encoding. Right: Fractal-Wavelet encoding.
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This periodic transform has the benefit of generating a full tree so that fractal
type methods are easily implemented. However, periodizing the data sometimes
introduces undesirable wrap-around effects on the edges of the image. Another
benefit of this transform is that we can use smooth wavelets. For the purposes of
llustrating the algorithm it is sufficient to use Haar wavelets; however, an area
of future research is using more general smooth non-separable wavelets.

5 Complex Bases

Now we turn to a discussion of the wavelet transform algorithm for Haar wavelets
based on the connection between self-similar lattice tilings and complex bases.
In order to do this, we first give some background on complex bases. We use a
base and digits from an integer set to represent the numbers in a given system.
For more on the theory of complex bases, we refer the reader to some papers
by Gilbert [10-12]. Most of the details for the results that follow can be found
there.

5.1 Background

The concept of representing numbers in a base is a very simple and familiar
one. In real numbers, the most common examples are the decimal and binary
systems.

Ezample 6. Representing positive real numbers with NN as the integers.

Base 10, digits {0,1,2,...,9}
19310 = 1-10% +9- 10 + 3 - 10°.
Base 2, digits {0,1}
11010, =1-2*+1-2% 4+0-22 +1-2' +0-2° = 264,.

The same idea carries over to complex numbers. In this case, the integers are
the Gaussian integers:

Definition 7. The set of Gaussian integers, denoted by 7Z[i], is the set of com-
plex numbers of the form a+ bi, where a,b € Z. The norm of a Gaussian integer
a + bi is defined as

norm(a + bi) = a’ + b2

Definition 8. A valid base is a pair (b, D) where b is a Gaussian integer and
D C ZJi], such that 0 € D and every integer z can be represented uniquely as a
sum of powers of b, with coefficients in D. More precisely, each z € Z[i] can be
written uniquely as

t
z:Zajbj, where a; € D and t € N.

7=0
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If z has this form, write z = (atat—1---a1a0)s- This is called base b positional
notation. The integer b is often referred to as the base, and the set D is called the
digit set. When the base is understiood, the subscript b in the positional notation
is often omitted.

A result below will show that (—1+4,{0,1}) is a valid base.

Ezample 7. We can expand 3 in (—1 + ¢, {0, 1}):
3=(-1+4+4)°+(-1+4)* + (-1 +4)° = (1101)_1 44

Definition 9. Let (b, D) be a valid base. If z € C has the form

t
z= E ajbj, where a;j € D and t € N,

Jj=—oc0
then the radix expansion of z in base (b, D) is defined as
z = (a‘tat—l cee@1QQ . QG_1G_2 " * ')b-

The point between the digits ag and a_1 is called the radix point. The string of
digits to the left of the radiz point is called the integer part of z, while the string
to the right is called the radix part. Another name for the radiz expansion of a
complex number is the address of the number.

Ezample 8. The complex number (—1 — 8i)/5 can be expressed in base (—1 +
1,{0,1}) as

(—1—82)/5 = (111.10)_144-
where 10 indicates that the string 10 is repeated indefinitely. This can be seen
by considering a geometric series in (—1 + 7).

Proposition 1. (Gilbert [11]) If (b, D) is a valid base, then D is a complete
residue system for Z[i] modulo b and hence contains norm(b) elements.

Theorem 5. (Gilbert [13]) Each z € C has an infinite radiz ezpansion in a
valid base. However, this expansion may not necessarily be unique.

It therefore makes sense to define the fundamental tile of a valid base.

Definition 10. Given a valid base (b, D), define the fundamental tile T'(b, D)
as the set of complex numbers with zero integer part in the base.

By Theorem 5, C = U,¢z;1(T(b, D) + z). The following result shows that there
are many valid bases.

Theorem 6. (Davio, Deschamps and Gossart [7]) Given any b € Z[i] with mod-
ulus larger than one, except 2 and 1+ i, there exists a complete residue system

D such that (b, D) is a valid base for C.
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The following result gives an entire class of complex bases.

Theorem 7. (Kdtai and Szabd [18]) If b € Z[i], with norm N and D = {0, 1, 2,
..., N —1}, then (b, D) is a valid base for C iff b = —n + 4, for some positive
integer n.

Further generalizations can be found in [9, 17].

Corollary 1. The pair (—1+4,{0,1}) is a valid base.

5.2 Representation in a Complex Base

There are various algorithms for determining the representation of Gaussian
integers in a valid base. These are due to Gilbert [9,12-14].

(Gilbert [13]) Let (b, D) be a valid base. Since D is a complete residue system for
Z[i] modulo b then, given z € Z[1], there exist unique integers ¢; € Z[i] and a; € D,
j=1...t,t € Nt such that

z=q1b+ao
g1 =¢q2b+ax
qt=0b—|—at.

Hence, z = (at...a1a0)s.

Ezample 9. Let z = 5+ 124. Find the address of z in (—2 + 4, {0, 1, 2, 3,4}).
Using the Division Algorithm

5+12i= (2—56i)(—2+14)+4
2 — 55 =(—14 2i)(—2 + i)+2
—1+42i= 2(—2+1)+3
2= 0(—2 4 14)+2

Hence the address of 5 + 127 is (2324).

A fast algorithm, called the Clearing Algorithm, also exists for finding the ex-
pansion of integers in bases of the form (b, D) where D C Z. For simplicity, we
consider only bases (—n +1,{0, 1,...,n%}), n € N*. The reader is referred to [9]
for the general result.

Ezample 10. Determine the expansion of 5 + 124 in base (—2 + ¢, {0, 1,2, 3,4}).
The minimal polynomial of b = —2 + ¢ is =2 + 4z + 5. Hence, b> +4b+5=10
and, by abuse of notation, we can write this as (14 5); = 0. (Note that 5 is not
in the digit set.)
Begin with the expansion 5+ 12¢ = 12b + 29 = (12 29);. Then, we clear the
polynomial in Z[b] as follows:
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(Gilbert [9]) Consider the valid base (—n+1, {0, 1,...,n%}) and let p(z) be the minimal
polynomial of b = —n + 2. Thus

p(z) = 22 4L 2nz 4+ n? 4 1.

Then the representation of any integer z € Z[7] in the base can be obtained as follows.
Begin with z = m(b) =ab®* 4+ -+ ab+ ao, an expansion of z in powers of b with
integer coeflicients. For instance, any Gaussian integer c¢+1d can be expanded in powers
of b= —n+1ias c+ id = db+ (¢ + nd). Consider this expansion as an element m(b)
of the polynomial ring Z[b]. Let 7 be the least integer such that a, ¢ D. If no such r
exists, then m(b) is the unique expansion of z in the base. We call such a polynomial
clear.

If r exists, then let s be the integer such that 0 < a, + s(n2 + 1) < n?. Add sb” times
p(b) to m(b). Remember that we perform this operation in the polynomial ring Z[b].
Call this new polynomial m;(b).

However, p(—n + i) = 0, thus m(b) and m;(b) are equal in C. Hence, m;(b) is an
expansion of z in Z[b]. In addition, the coefficient of the r-th power of b in m;(b) is a
digit. We say that a, has been cleared.

Repeat the process of clearing coefficients, by induction on r, until a clear polynomial
is obtained. The resulting polynomial is the expansion of z in (b, D). This process must
terminate after a finite number of steps.

12 29
-5 -20 -25
-5 -8 4
2 8 10

2 3 2 4

Hence, the expansion of 5 + 127 in base (—2 + ¢, {0, 1,2, 3,4}) is (2324). A quick
calculation verifies that this is indeed correct.

6 Linking Complex Bases to Wavelets

6.1 Addressing

The theory of MRA and complex bases are related. Multiplication by the base
b=c+1idin Cis equivalent to multiplication by the acceptable dilation

c—d
4= 7)

in R2 via the natural association s + it « (s,t)T. Here, det A = % + d? =
norm(b) and A = ¢+ id. The fundamental tile T'(b, D) for a valid base (b, D) is
simply the basic tile () of A, where the complete residue system K is identified
with D through the natural association. Therefore,

T(b,D): Z a]’b] :a; €D {E:A_Zkz : kiEK}:Q.

=1

j=—oc0
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6.2 Reconstruction and Decomposition Algorithm

Consider the reconstruction and decomposition algorithms for a Haar MRA as-
sociated with an acceptable dilation A for Z2, with complete residue system K.
Assume A is associated with a complex base (b, D) in the sense of Section 6.1.
Rewriting the equation for the wavelet decomposition, we have

85 = E ha_aj8it1,z
z€ZL2

= g hrsit1, Aj+k,
keK

since hy = 0 when k ¢ K. We can translate this identity to the language of
complex bases as

Sij = E haSip1bjtds
deD

where the scaling filters and coeflicients are re-indexed, via the natural associa-
tion given above.

By looking at the decomposition algorithm in the language of complex bases,
we can consider bj + d as the address of j shifted to the left by one place, with d
added as the zero-th order digit. We can then think of the index ¢ as the length
of the address of j. The scaling coeflicient associated with the point j is thus a
linear combination of the coefficients of the points whose addresses are one digit
longer than that of j, and start with the address of j. In other words, letting j
have address (a;...a1) in base b we have

St,(as...ar) — Z hd3t+1,(at...a1d)-
deD

This gives a precise and implementable tree structure for the coefficients. A
similar relation holds for the reconstruction algorithm.

6.3 Application to Images
We present here an example of this process applied to images.

Ezample 11. Perform the decomposition of the function f in base (—1+1, {0, 1}),
where f is the simple funciion given by the following diagram:

1]2
01

By this representation, we take the boxes to be unit squares in C, with the left
hand corner at 0. The value of the function on each square is the number written
inside the square.

The addresses of the values are
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Integer | Address | Value
0 0000 0
1 0001 1
1 0011 1
1+i 1110 2

The decomposition begins at level 4, the length of the longest address.

Choose the standard Haar wavelet basis as given in Example 3. We then
obtain the scaling and wavelet trees using the decomposition algorithm. The
lowest level on the scaling tree represents the initial values of the function. Going
down the left branch in a tree represents the digit 0. The right represents the
digit 1. For example, the value of the function on the square i, which is at
address 0011, is placed in the node down the scaling tree left, left, right, right.
We normalize the scaling filters in this example for the purposes of clarity. The
correct tree would reduce the values by /2 at each level, beginning with level 3.
Empty nodes are set to zero.

Scaling Tree Wavelet Tree
/4\ / 0 AN
2 2 2 -2
SN/, SN,
1/ \1 / \2 _1/ \_1 / \2
0/ \1 / \1 2/ \

Notice the number of empty nodes in the trees. This demonstrate the asym-
metrical nature of the trees generated by this process. This occurs since the
support of the original function sits inside the principal tile, but is not the entire
tile; it is a consequence of the zero padding of the function.

Ezample 12. An illustration of the above method applied to a 512 x 512 image
of Lena is shown in Figure 6. The wavelet decomposition was performed on this
image, using the complex base (2 + ¢,{0,1,4, —i,—2 — 3¢}). The wavelets are
given by the 5x5 unitary matrix of Example 4. A threshold of 50 was used to
set individual wavelet coefficients to zero. In this case, 94% of the coefficients
were set to zero. The tile of this base is disconnected and dust-like. It is shown
in Figure 7 along with the first basic wavelet.

The implementation of compression methods on wavelet trees of complex
bases might not be trivial. Current compression methods, such as the zero-tree
(see [3]), rely on extremely symmetric and balanced distributions of the coef-
ficients in the expansion tree. The trees created by complex bases are tremen-
dously unbalanced, as is seen in Example 11, above. This asymmetry is much
greater with larger numbers of points such as in images. There may also be
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Fig. 6. Wavelet compression on dust. Left: Original 512 x 512 of Lena. Right: Recon-
struction of Lena from pruned wavelet tree. PSNR=27.22 dB.

-3 -z -1 o 1

Fig. 7. Fundamental tile of the base (2 + 1, {0, 1,7, —, —2 — 31}) with a basic wavelet.
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fractal-wavelet transforms (see [26,29]) which could utilize the structure of the
complex bases. This could lead to a general fractal-wavelet transform for non-
separable wavelets.

However, it is possible that the asymmetry of the trees does not permit the
construction of a viable compression method. If this is the case one could inves-
tigate compression on translations of the image which result in more symmetric
trees. It may even be necessary to assume that the image is exactly the tile by
mapping it onto the tile of an appropriate size. Computational complexity of
such methods may result in algorithms which are slower than the standard ones.
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