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Abstract

This paper describes three color image coding schemes combining linear prediction and iterated function systems.
Linear prediction is based on the known autoregressive model, while iterated function systems (IFS) are implemented
using quadtree partitioning. After describing the coding schemes, comparisons are carried out in terms of objective
results. Simulation studies indicate that the proposed coding schemes produce images of quality ranging from fairly good
to good, while performing significantly better than IFS alone with respect to computing time. © 1997 Elsevier Science
B.V.

Zusammenfassung

In diesem Artikel werden drei Farbbildkodierschemata beschrieben, die lineare Pridiktion und iterative Funktionen-
systeme kombinieren. Die lineare Pridiktion basiert auf dem bekannten autoregressiven Modell, wihrend die iterativen
Funktionensysteme (IFS) durch eine Baumstruktur mit vierfachen Abzweigungen implementiert werden. Zunichst
werden die Kodierschemata beschrieben und nachfolgend Vergleiche mit Hilfe von objektiven Resultaten durchgefiihrt.
Auswertungen von Simulation zeigen, daB die vorgeschlagenen Kodierschemata eine Bildqualitit von recht gut bis gut
liefern, wihrend die Rechenkomplexitit geringer ist als die von IFS allein. © 1997 Elsevier Science B.V.

Resume

Cet article décrit trois méthodes de codage d’images combinant prédiction linéaire et systémes de fonctions itérées. La
prédiction linéaire est basée sur le modéle autorégressif classique, alors que les systémes de fonctions itérées (IFS) sont
implantées & I'aide d’un partitionnement quadratique. Aprés la description des méthodes de codage, des comparaisons
sont faites en termes de résultats objectifs. Les simulations indiquent que les méthodes de codage proposées produisent
des images d’une qualité allant de raisonnablement bonne a bonne, tout en se comportant significativement mieux que les
IFS seuls vis-a-vis du temps de calcul. © 1997 Elsevier Science B.V.
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1. Introduction

Coding techniques based on linear prediction
(LP) have a good computing time, but the compres-
sion ratios that they achieve are suboptimal by any
modern standard [2,6,7]. On the other hand,
iterated function systems (IFS) have the opposite
problem: good compression is achieved at the ex-
pense of long computing times [4, 5, §].

Our goal is to find a transformation having
basically two properties. Firstly, it should trap
information due to strong correlation existing
among contiguous pixels. The second property
should ideally succeed in eliminating the remaining
redundancy.

In order to satisfy the first property, we
employ linear prediction using the 2D autoregres-
sive (AR) model [2]. This mathematical model
approximates real signals well but not perfectly,
since predictive errors or residuals contain still
much significant information. The residual, repres-
enting essentially the uncorrelated information
in the image, can be defined mathematically too.
In fact, it can be considered a fractal object
in the sense that, within a reasonable approximation,
it is made of transformed copies of either itself
or parts of itself. Because of these considerat-
ions, the residual can be effectively modeled by
IFS instead of the usual decimators and/or
quantizers.

This paper describes a hybrid approach combin-
ing AR-LP and IFS, called ARIFS, intended to
exploit the best features of the two aforementioned
techniques, with particular emphasis on the encod-
ing of 24-bit, true-color images.

The rest of the paper is organized as follows.
Section 2 introduces the ARIFS coding/decoding
schemes, while the results of computer simulation
are reported in Section 3. Some concluding remarks
are finally made in Section 4.

2. The ARIFS coding scheme

For a given image S, any pixel s,,, can be pre-
dicted from a number of past samples using linear
prediction [3, 6]. Formally, the autoregressive mov-
ing-average (ARMA) model is represented by the

relation
S = — Z a; Sm-in-;+ G Z byt ty—pn-1 (1)
ij Kl

where G is gain factor, a;; and b, are predictor
coeflicients and u,,, is the input sequence. If the
latter is ignored, the second term on the right-hand
side of Eq. (1) is null and we have an AR model
[2,6,7]. Thus, the amplitude of the predictable
signal becomes

Smn= — X GijSm—in—j )
i,jeROS

where ROS is the region of support. We stress that
this model is not able to trap all information:
there is always a difference between original and
predictable signal. The predictive error is e,, =
Smn = Smm = Sma + Dijeros Gi,j Sm—in—; and
intervenes in the estimate of the g;; parameters.
Indeed, using the least-squares method, we can
minimize the mean-squared error (MSE) by impos-
ing 0E/ da;; = 0 <>d( Y enq)/0a;; = 0. This yields
a set of p equations — where p is the number of
parameters in our model — well known as normal or
Yule-Walker equations [6].

The linear prediction operator just introduced is
completely characterized by Eq. (2). It turns out to
be linear and shift invariant; if we want filter stabil-
ity, i.e., minimum phase, all poles lie inside the unit
circle [6].

Techniques employing LP alone do not achieve
any compression; the data can be reduced if we
eliminate some of the predictive error coefficients
or reduce the number of quantization levels [7].
Here, we make the choice of eliminating further
redundancy, i.e., we look for another transformation
able to find self-similarity in the residual signal.

The theory of IFS [1], based on the concept of
contractive function (CF), can provide the trans-
formation that we are looking for.

Banach’s fixed-point theorem and Barnsley’s Col-
lage theorem [1] are the foundations for IFS-based
image coding [4, 5, 8].

The IFS of an image can be constructed by an
algorithm [4, 5] that first partitions the image into
regions, which are then encoded by finding CFs
(typically affine transformations) to transform a
region (which in this context is called a domain) into
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a similar smaller region (called a range). The stability
of IFS is implied by their continuous dependance
on their coefficients [1].

The compound operator T that we are looking
for is obtained from the cascaded application of LP
and IFS. More formally,

T = BeA. 3)

In Eq. 3), A:U, - U, is the LP operator, that
maps an image SeU,; from the vector space
of images, U, =gl(n,R), into a residual
R=S—SeU,. B:U;—U, is the IFS operator,
mapping a residual ReU, into a point PeU,,
where U, is the vector space M;(R) of all poly-
nomials of degree < 1.

[nvertibility and stability of the compound
operator T are ensured by the separate invertibility
and stability of the two-component operators A4
and B.

The coding scheme ARIFS consists of AR-LP
and IFS combined in cascade on the image in
an open loop: once LP is performed on the
image, we are left with a residual on which IFS is
applied.

ENCODING

2.1. Generalization to multi-channel images

The technique just illustrated is a 1-channel
coding scheme. In order to generalize such a model
to M-channel data, we can rewrite Eq. (3) as

T®:BD4®  i=01,...,.M — 1. 4)

In order not to complicate the formalism, we
simply introduce a channel index i. For example, if
we want to apply our model to a color image, three
channels (M = 3) are enough.

If we analyze the morphological structure of
the three component images, it is possible to
ideate several alternative models to obtain very
high compression ratios with a relatively good
quality. The following were found to be particularly
effective:

e ARIFSI1: Applying the same ARIFS coding inde-
pendently on the three channels, as shown in
Fig. 1.

e ARIFS2: Sharing LP filters on the two chro-
minance channels, with luminance encoded with
a different set of LP coefficients, as depicted in
Fig. 2.

DECODING

@M - RES —> J——» Lo — RES1—> [LPGC LUM1)
T L)

(o1 — Res —= [1Fs J|— oo — ([iFs ]

RES1—> ICH1 ]
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(QCH — RES —> J—-—»occ——— [ RES1—> QCH1]
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LUM: Luminance

ICH: inphase Chrominance
QCH: Quadrature Chrominance
RES: LPC Residus

LUM1: Modeled Luminance

ICH1: Modeled Inphase Chrominance
QCH1: Modeled Quadrature Chrominance
RES1: Modeled Residue

LPC: Linear Prediction Coding

IFS: Iterated Function System

FCs: Filter Coefficients

LC: Luminance Coding

ICC: Inphase Chrominance Coding
QCC: Quadrature Chrominance Coding

Fig. 1. ARIFS1: ARIFS performed independently on luminance and chrominance channels.
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o ARIFS3: Applying ARIFS to the luminance chan-
nel but only IFS on the chrominance channels, as
illustrated in Fig. 3.

The execution parameters for method ARIFSI1

approximate luminance with finer detail than

ENCODING

chrominance, since the latter is less important
perceptively.

Along the same lines, the second method ARIFS2
calculates the LP filter coefficients based on the
first chrominance component, and then uses them

DECODING

[LUM — RES —= )—» LC — ( RES1 — LUM1J

K

[ICH — RES —> —-—>ICC——> RES{ —> |ca
i

¥

i
[QCH—» RES —> ]—>QCC—-—- RES1 — Qcm]

LUM: Luminance LUM1: Modeled Luminance

ICH: inphase Chrominance ICH1: Modeled Inphase Chrominance
QCH: Quadrature Chrominance QCH1: Modeled Quadrature Chrominance

RES: LPC Residue RES1: Modeled Residue

LPC: Linear Prediction Coding

PALPC: Pseudo Adaptive LPC

IFS: lterated Function System

FCs: Filter Coeflicients

LC: Luminance Coding

ICC: Inphase Chrominance Coding
QCC: Quadrature Chrominance Coding

Fig. 2. ARIFS2: full ARIFS on luminance channel and shared LP filters on chrominance channels.
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DECODING

(LUM — RES —> — LC— [ RES1— LUM1]

FCs
ICH — | IFS ICC IFS ICH1
QCH — | IFS QCC IFS QCHH1
LUM: Luminance LUM1: Modeled Luminance LPC: Linear Prediction Coding
ICH: Inphase Chrominance {CH1: Modeled Inphase Chrominance

QCH: Quadrature Chrominance QCH 1: Modeled Quadrature Chrominance

RES: LPC Residue RES1: Modeled Residue

IFS: Herated Function System

FCs: Filter Coefficients

LC: Luminance Coding

ICC: Inphase Chrominance Coding
QCC: Quadrature Chrominance Coding

Fig. 3. ARIFS3: full ARIFS on luminance and IFS on chrominance.
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to encode the second component as well. A specific
filter is calculated for the encoding of the sensitive
luminance information.

Finally, method ARIFS3 provides good
compression because no filter coefficients have
to be stored for the chrominance. In order to
avoid the long computing times typical of IFS
coding, the latter is performed with large tolerance
values.

3. Experimental results

In order to evaluate the performance of ARIFS,
several 24-bit 512 x 512 test images have been se-
lected, but for the sake of brevity this paper shall
only show the results obtained on Lena. The results
obtained are presented in terms of two measures:
peak signal-to-noise ratio (PSNR) and bit-rate (BR).

The BR is the sum of two terms: it is simply given
by BR = b, + b,, where the first term b; accounts
for information contained in the predictor, ie.,
estimated filter coefficients and initial conditions,
while the second term b, is due to IFS coding.

Both 16 x 16 and 32 x 32 blocks were used for
LP. For each block there are p =6 predictive
coefficients; since reflection coefficients are utilized
[6], 48 bits are enough to guarantee stability.
Furthermore, there are pixels belonging to the
original image.

IFS coding is always implemented with a 3-level
quadtree (8 x 8, 16 x 16 and 32 x 32). Table 1 shows
the outcome of computer simulations meant to
compare the three hybrid-coding schemes. The
PSNR values are averaged over the three channels
of the RGB-reencoded image, while the partial bit-
rates under b, can be reduced by a further 10-15%
using Huffman coding.

The first two schemes (ARIFS1 and ARIFS2)
provide the best results as far as PSNR is concerned.
In particular, ARIFS2 performs better than ARIFS1
since the sharing of the filters allows for an improved
bit-rate without significantly worsening the PSNR.
In some cases, the PSNR/BR tradeoff of ARIFS2 is
even better. Besides, ARIFS2 is the fastest of the
three schemes.

The scheme ARIFS3 provides the best bit-rates
but cannot reach the other schemes’ PSNR values.

Table 1
A comparison between the three hybrid-coding schemes.

BR by b, PSNR
ARIFS1

0.45 0.33 0.12 28.00
0.54 0.33 0.21 28.51
0.65 0.33 0.32 28.64
0.77 0.33 0.44 29.05
0.89 0.33 0.56 29.97
0.96 0.33 0.66 31.30
1.20 0.33 0.87 31.89
1.71 0.33 1.38 34.86
1.97 0.33 1.64 36.69
ARIFS2

0.39 0.27 0.12 27.99
0.44 0.27 0.17 28.58
0.51 0.27 0.24 28.67
0.66 0.27 0.39 28.72
0.75 0.27 0.48 29.14
0.88 0.27 0.61 30.32
1.00 0.27 0.73 31.93
1.38 0.27 1.11 34.16
1.90 0.27 1.63 36.78
ARIFS3

0.23 0.20 0.03 26.53
0.26 0.20 0.06 27.07
0.41 0.20 0.21 27.51
0.47 0.20 0.27 27.62
0.68 0.20 0.48 27.83
0.86 0.20 0.66 27.96
1.00 0.20 0.80 28.04
1.52 0.20 1.32 30.72
2.04 0.20 1.84 3234

An important result coming out from the experi-
ments is that, as expected, it makes a big difference
for IFS to work on the original image or on an LP
residue: since the residual signal has a reduced
dynamic range, it contains a larger number of ‘flat’
blocks, which do not require IFS computation since
they can be simply represented by their average
value — much more efficient than calculating a con-
tractive transform.

Table 2 shows a comparison between a full IFS
transform and the same transform performed on an
LP residual: the columns labeled ‘N1’ contain the
number of blocks represented by actual transforms,
while ‘N¢ is the number of flat blocks.
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Table 2
Performance of IFS applied to the original luminance component of image lena and to its residue
Whole luminance Residue
bpp Ny N PSNR bpp Ny Ny PSNR
0.19 1737 389 29.22 0.21 471 1724 30.54
0.36 3094 223 32.55 0.34 1513 1600 31.77
0.62 5276 161 3497 0.65 3052 1573 33.90
0.83 6123 87 35.67 0.81 4127 1003 34.81
1.02 7076 25 36.22 1.00 5215 826 3593
The performance of the coding schemes has been
tested on several images. Among the considered
500 ¢ FS o coding schemes, the sharing of LP filters yields the
ARIFS -+ best bit-rate and PSNR. An interesting feature of
4oy the proposed schemes is their speed, which compares
= favorably to classic IF'S techniques.
o . . . .
g 300r An interesting issue to be addressed in further
H study of this system might be the development of
To200¢ a related technique for video coding.
wor cdemennasen -
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