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Images Fractal Compression Optimization
by Means of Artificial Kohonen Neural Networks

R.V. LOTOTSKIY

We considered the method of images fractal compression. The algorithm of clustering by
means of artificial Kohonen neural networks was constructed. Results of work of the algorithm
on real images at different parameters of the used neural networks are given.

Key words: images, fractal compression, optimization, Kohonen network, computational
complexity.

Fractal compression of images distinguishes essentially from another known methods of compression
with losses. The principal difference is that compression of information is not a result of unitary
transformation of input data as, for example, in the case of Wavelet [1] or JPEG [2] compressions. The
fractal compression represents coefficients of some contracting transformations for which an input image is
a fixed point. For the first time the method of construction of such transformations for any image was
developed by Barnsley [3].

The main problem of fractal compression is a computational complexity of work of the algorithm,
To construct a contracting mapping, one is to transform and then compare a large quantity of parts or blocks
of an image. For every block from some set, which is called the set of objective blocks, one looks for
a block from another set, which is called the set of domain blocks, in such a way that the distance between
two blocks would be minimum among all domain blocks from the corresponding set. A few methods of
optimization of exhaustive search [4-9], which were based on clustering of the set of domain blocks, were
suggested. But the majority of these methods either decrease lightly the computational complexity or result
in high losses of the quality of an image. The method of clustering by means of artificial Kohonen neural
self-optimizing network is least afflicted with these disadvantages [10]. For the first time, the Kohonen
network was used for optimization of fractal compression by Bogdan and Meadows [11].

In this paper we construct the algorithm which enables to determine optimal domain blocks more
accurately than it has been done in [11]. We have carried out comparative analysis of time of work of the
developed algorithm and coefficients of compression with another known methods of fractal compression.

Let us cite the main definitions of the fractal theory which are necessary for understanding of further
statement.

Definition 1. ([12]) Let (X, 4) be a metric space. The transformation 72 X— X is called the contracting
mapping (or compression), if there exists the number s, 0 < s < 1 such that

d(T(x), T ssd(x, y), %, yek. )

The number s is called the coefficient of compression.
Theorem 1 ([12]). Any contracting mapping T defined in the complete metric space X has one and only
one fixed point xj € X :

T(x0)== Xg-
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Definition 2. ([13]) Let X be a space of all nonempty compacts from R? with the Hausdorff metric.
A totality of the contracting mappings

Wi Wosoory Wy, WiiX =X,
with the coefficients of compression correspondingly s, <1, 85 <1, ..., 5,, <1, along with a totality of the sets

EyeX, E| =W(Eg), Ey=W(E), By = W(Ey_1), os

where

W(E, )= ["J Wi(Ep). 2)

i=1

we shall call the iterative functional scheme (IFS) acting in the metric space (X, d).

It may be proved that the space (X, d) is the complete one and the mapping W is contracting with the
coefficient of compression 5 =max{s, $3,...8,} [13]. It follows from this that, as provided by theorem 1,
there exists a single fixed point of the mapping W.

IFS is a main instrument for construction of fractal sets.

While iterative construction every next set consists of m "diminished” copies of the previous set, and the
sought-for fractal set is a fixed point of the contracting transformation W. The initial set of such iterative
process may be any nonempty compact from the corresponding space X.

The inverse problem is to find IFS for some given fractal set. The algorithm of IFS construction makes
a search for subsets which are similar to the given fractal set, and constructs the corresponding contracting
mappings. ‘

Contracting transformations, which are built for images, have a structure similar to fractal IFS, and,
consequently, this method has been called fractal.

The algorithm of fractal compression of images

Let us consider at first the mathematical model of an image which will be used for description of the

algorithm,
Definition 3. The two-dimensional function

2= f(x,y), (ny)eld I=[ablcR, ze{ziz=j, j=0N-1},

N is a number of levels of a gray color, we shall call the gray image or simply image.
To compute a distance between the images fand g we shall use the formula

1
a(f.g) =( 1 7Cx, )~ (%, ) Izdxdsz- 3)

12

Here integration is carried out in the Lebesgue measure. Let us denote by F the space of all the image
functions £ with the metric d. It may be proved that (F, d) is a complete metric space, and, therefore, for any

contracting transformation in this space there exists a single fixed point.
In practice one deals with real computer images and, therefore, instead of the image function f(x, y) we

shall consider a matrix of the values [ S B DINE Ln,j= 1, m.. Correspondingly, formula (3) will get the

form of a mean square error
i=1j=1

nom P)
ddiscr(f’ g)’"‘(z Z(f(xifyj)_g(xhyj))z} .

Further, we shall call the points (x;, Y 1) the pixels as it is accepted in computer technology.
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Let 7 eF be a given image function. If there exists some contracting transformation 7', (e) on the space

F such that /is a fixed point of this transformation, i.e.,

T/ (f) =1,
then to generate /' with some accuracy &, it will suffice to apply Ty certain times to any initial image g:

an:d (T (g), 1) <z

If for holding of coefficients of the constructed image smaller resources are used than for holding of f
in an uncompressed form, than we shall get a compression of the initial image.
In the general case we shall look for such transformation T(e) that for the given &

d(T(f), f) <.

The less is &, the closer the fixed point fy of the transformation T is to £, The following theorem determines

this relationship between the distances d(T(f), f) and d(fr, f).
Theorem 2 (theorem about collages {13]). Let f/ be some image. Assume, that for some contracting
transformation T

d(T(f), f) <e,

then

d(fr. ) s]—fm,
-8

where s is the compression coefficient T, fi is its fixed point.

As has been said, the structure of contracting transformations in the space F is similar to IFS for fraclal
sets. Since real images, as a rule; are not self-similar, instead of dividing an image into parts which are
similar to a whole image, we shall look for similar parts of an image and construct the corresponding
contracting transformations between these parts.

Let us construct some partition of an image into a set of the blocks R; which we shall call the objective
or range-blocks. Assign another block of an image D;, which is called the domain block, and some affine
transformation 7, to every such block in such a way, that

Rizﬁ(Dl)a

ay a

—~ X
Ti(x, )= Ar‘(yJ'*'bi’ A; =(

12, . .
] is & non-singular matrix.
21 4n

For every T; we shall determine the transformation in the space of images F
LN yy=ei /U7 e p)+0; Y(x, y)eR,, ®)

This transformation maps the domain block D; of the image £ into the range-block R, changing at that

the contrast range and brightness of a domain block with the use of the coefficients c; and o
correspondingly,
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Theorem 3 ([7]). In order that the map T be contracting, it is sufficient the fulfiliment of the condition

|c,-|\/_|Eet—AJ<1, (6)

where det A, is a determinant of the matrix A;, c; is a cocfficient of change in a contrast range.

Proof. By definition 1, T; will be contracting, if
d(Tp (f ]Rl')’ Ti (g lR,- )) < Sd(f lD," g ]D,'):

where 0<s <1, f IR:‘ is a restriction of the function f on the set R;.

Using (4), (5) and substituting the variables of integration, we have:

BT r) Tig g )= [T =T}, ) dxdy =
R;

=l [ £ ) - 8T w0 P dxdy =
B

an 4dp

! dudy =
Ay G922

=le;l? [l faw) - g |

Dj

2
= le |2 detA, | I fu,v) - g, v)| dudv=|c;|*|detA; |d*(f |p;, &lp,)-
D;

From this it follows condition (6).
The theorem is proved.
Let us define the transformation T: F— F:

T(f)(x:}’)=Ti(f)(an/)a if (an)ER;=f=1,m- (7)

Since {R,;} is a partition of 12, then T(f) will also be an image in the sense of definition 3. Since all the
transformations T; are contracting, T will also be contracting {13]. From here and by the theorem about
a fixed point it follows, that T has a single fixed point fy € F:

T(fy) = fr.

Let us consider the algorithm of construction of such range-partition at which the fixed point fr, of the
corresponding transformation T, is as close as possible to /. By means of & we shall govern the coefficient of
distorsion f relative to 1.

Algorithm I ([3, 4])

1. The initial partition of an image into range-blocks.

Let us construct some partition of an image into the set of range-blocks Range:

UR;=1% RNR; =D, i=].
R;e=Range

Let us construct also the totality of domain blocks of different sizes Dom:

Up, e
D je Dom

53



The larger the number of domains in Dom is, the more possibilities there are 10 construct the "good"

transformation T. )
2. Search of a domain block, coefficients of the contrast range and brightness. '
ive domain from the corresponding set we shall look for a domain area, affine

For every object
ansformation T}, would be

transformation, the contrast range ¢y and brightness oy in such a way that the tr
contracting and the condition

A s e f T 0 ) +0g) <8 V(x, y) € Ry € Range (8)

be valid.
If for some range-block Ry it is impossible to find the corresponding domain area, we shall divide this

block into a few range-blocks of a less dimension and look for domain areas for each of them. It follows

from theorem 2 that the less is g, the closer to £ will be the fixed point fr-
3. We shall continue the iterative process on stage 2 as long as for every objective block such domain
area will be found for which condition (8) is fulfilled. For the case of computer images this partition will be

necessarily completed, since for any range-block Ry of the dimension one pixel the coefficients of the

contrast range and brightness can always be selected thus that (8) will hold true for any fk .
As a result of work of such algorithm, we shall obtain the necessary information for construction of the

transformation T: {{R;}, {T;}, {c;}, {o;}}.
Search of optimal ¢;, o; in (8) for computer images we shall carry out so that to minimize the distance

dgiger (F iy ¥1), €1 (T py i) +0;) . Assume that a; are values of the intensity of the pixels f TR,
by are values of the intensity of pixels of the objective block f(R;), and the number of pixels in the block R;
is equal to z. Then the values of the contrast range and brightness, which minimize the distance

E=zn:(b1 ~(c;a+0,)?, ®
=]

will be the following;:

i ‘
. Ci= 2 s (10)
Hn 5 n
nYa —(ZWJ
=1 I=1
. n n
b 2 a
o,-==l=] =1 an

In algorithm 1, namely on step 2, partition of the input image into objective and domain blocks is not
detailed. One of methods of such partition is a method of partition inte squares, Let us consider it rather
more detailed. '

Ideally, we assume that the set Dom consists of all kinds square blocks of an image. In practical
realizations, to simplify exhaustive search, the number of domains is noticeably less and is regulated, for
example, by some step of "cutting" of image blocks. As it has been noted, the more there are such blocks, the
more there are possibilities of construction of the "good" mapping T. Construction of the set Range is an
iterative process. On the first stage we divide an input image into four equal squares (by means of addition of
missing rows or columns of pixels, one can transform any image to the one of the dimension 2k><2k) and
record them in the set Range. For any recorded block we compute the distance between this block and every
domain block from the set Dom using formula (8). Those range-blocks for which there exist domain blocks
such that this distance is less then €, and the condition of contracting transformation (6) is fulfilled, are
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unchanged. The rest are again divided into four squares, and the described procedure is repeated. Figure 1
shows an example of partition of an image into range-areas.

Figure 1

The compressed file has a block structure, at that every block contains the information which is
necessary for construction of the transformation T.

Decompression, as it has been noted, is realized by means of recursive application of the transformation
T to any input image which has the same size as the image which is to be restored.

Speed compression optimization by means of a self-organizing Kohonen network

A self-organizing Kohonen network is used for clustering of a set of vectors [7]. Figure 2 represents the
sketchy scheme of such neural network. It consists of two levels. Vectors from some totality come in the first
level, at that the number of neurons at the input level is not equal to the dimension of input vectors. The
number of neurons at the second level is equal to the number of clusters this assemblage is to be divided
into. Every output neuron is connected with some memory which, after work of the clustering algorithm, will
contain all vectors from the corresponding cluster. The weight vectors w; = (wy) are varying during the

work of the algorithm and after its termination will be close to the geometric centers of the corresponding
clusters. '

Figure 2

The considered Kohonen network enables to optimize the problem of search of the nearest domain block
for some range-block by means of clustering of the totality of all domain blocks. The search of the nearest
domain will be realized among domains of a few clusters instead of the totality of all domains.

Formulas (10), (11) define the optimal values of the contrast range and brightness for minimization of
a distance between objective and domain blocks. If one uses a Kohonen network for domains classification,
there is no necessity to optimize the contrast range and brightness — it is only necessary to determine
a minimally possible distance between the range-block and domain block. The results of work [8] enable to
construct the algorithm of search of minimum distances without finding the optimal values of contrast range

and brightness.
Let us rewrite formula (9) in the vector form, assuming that r; eR”

s a vector of the intensity of the domain block D; which is transformed to the size

is a vector of the intensity of the

range-block R;, d; e R" i
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of the corresponding range-block:

E(r;,d;)=min|r; - (cd; +0C) l, ceR,0eR,
c,0

where C eR”, C =(1,...1)/Vn. Let O be an aperator of orthogonal projection which projeets R" on the
orthogonal complement ©; Q is a linear envelope of the vector C. For Z =(zp,-02y) € R"\Q we shall

define the operator

0Z
9 (2)= ==
10z
Theorem 4 ([12]). Assume thatn > 2 and X =R"\Q. Let us define the function A: X x X —» [0, \/E] in
the following way: '

Ad,r) = min([ (@) +o(d) [, @)~ @) ).
For r;,d; e X the minimum distance E(r;, d;) will be determined by the formula

E(r;, dp) = (r;, o(r; ) g(A(r, 4,)),

’ Az
g(A) =A l-—*—4—

This theorem enables to minimize the distance dgige ((x;), £(d;)) instead of minimization of
E(r;,d,) . A set of all the vectors +¢(d;) we shall denote by Dom,,, and the set {p(r;)} — by Range,.
The vectors cpv(r,-) we shall call the range-vectors, and ¢(d ;) — the domain vectors, correspondingly.

Let us consider the Kohonen network algorithm as applied to our problem, namely, to clustering of
domain vectors. In the beginning, vectors from domain (learning), and, later on, objective (choice of an
optimal domain) sets will input the network.

Work of such network consists of two stages.

1. Training. A learning sample consists of the vectors {+¢(d,)} of the same dimension. In what follows,

where

the vectors dimension @(d;) we shall call the network dimension. After the stage of training, the domain

vectors will be divided into subsets or clusters, the weight vectors w; = (wy, W5, ...W,,) being close to

geometric centers of the corresponding clusters.

2. Choice of the nearest domain vector from a training sample for every objective vector,

The following algorithms for training and choice of the nearest domain are proposed.

Algorithm 2 (training of the network),

1. Network initialization.

We initialize in some way the weight vectors w;. One of sets of initializing elements may be some
subset of domain vectors,

2. Search of the nearest weight vector for ¢(d jy€Domy,.

From the learning sample Dom, we choose the element ¢(d ;) and input it the network. Among the

weight vectors w; we find such vector w/ that
Aiser (Wies 9(d;)) < dyiger (W, 9(d ) Vi,

and record the vector o(d ;) into the corresponding memory cby. .

3. Modification of the found weight vector.
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We modify the weight vector wy in the following way:
W =wi+y(e(d;)-wy), O<y<l.

The parameter y regulates the degree of an influence of the input vector upon changing of the
corresponding weight vector. The rest weight vectors do not change. We remove the element o(d;) from the

set Dom, and further, if the set Dom,, is empty, terminate the algorithm, otherwise, return to item 2.

After fulfillment of this algorithm the weight vectors w; will be close to the geometric centers of the

corresponding clusters ¢b;. The proof of this fact in the general form can be found, for example, in [10].
It should be observed that, for reduction of the computational complexity in this algorithm, only one training
iteration is realized.

Algorithm 3 (choice of the nearest domain vector for the range-vector ¢(r)).
In this algorithm three variables ch_min, ind_dom_min, d_min are used. After work of the algorithm they
will contain the cluster index in which the nearest vector ¢(d;) is located, index of this vector in the found

cluster and distance between this vector and @ (r) correspondingly.
1. For every cluster c¢b; we shall find the distance between each vector from this cluster and the

corresponding "center" of this cluster w;. This distance we shall call the vector orbit:
0jf = dyiser (9 (), W;) Vo(dy) ech;.
Let o;nin = mjino,j and Ojmax = mj\xov- be minimum and maximum orbits in the cluster c¢b;
correspondingly. Let us find the distance between the given range-vector ¢(r) and centers of every cluster ch;:
d; = dgisee (0(1), W) VW,

Let us order the values d; with respect to a magnitude. Let diyy digs s d;, be an ordered sequence. Let us
initialize the variable-iterator / and d_min:
l'=1,d min=+®,

2. We shall find in the cluster ¢b;, the domain vector which is nearest to @(r). If the distance between

this vector and @(r) is less than d_min, then we assign to cb_min, ind_dom_min, d_min the new values:
ch_min:=1i,

ind_dom_min = arg Jmin d(p(d;;),9(r),
d_min:= mjin d(e(d;;) o ().

3. I:=l+1.
4. If I > m, the algorithm is terminated. If 1 < m also for the vector cb;, the condition

dj = Oymax = d_min, (12)

holds true, then we proceed to item 2, otherwise, proceed to item 3.
After work of this algorithm the nearest vector ¢ (dep_min, ind_dom_min) will be found. Condition (12)

ensures that search in clusters, which certainly do not contain the sought nearest domain vector, will not be

carried out.
57



The results of experimentation

Let us consider real examples of using algorithms 1--3. As a test example, we have chosen the most

the dimension 512x512. This image is most often used while demonstration of

known image "Lenna" of ‘
s to compare results of compression

results of investigation in images processing and, therefore, enable
sufficiently objectively. The table gives the obtained results.

Table
Compresion pgynap  Tmase  olGd et
5.25 34.58 13 4.00 8.00
6.80 34.38 9 4.00 8.00
8.00 33.89 7 4.00 8.00
9.90 32.84 4 4.00 8.00
10.14 32.67 4 4,00 8.00
16.40 30.89 18 8.00 16.00
20.97 30.84 12 8.00 16.00
24.11 30.67 10 8.00 16.00
26.11 30.39 9 8.00 16.00
28.53 29.93 8 8.00 16.00
30.11 29.71 8 8.00 16.00
31.82 29.36 6 8.00 16.00
37.09 28.53 6 8.00 16.00
65.54 27.13 7 16.00 16,00
84.58 26.68 26 16.00 32,00
100.00 26.05 23 16.00 32.00
114.26 25.54 22 16.00 32.00
123.23 25.00 27 16.00 32.00

In the forth and fifth columns the minimum and maximum dimensions of range-blocks are given. These
parameters regulate a number of the constructed networks, since a separate network will be built for every
set of range-vectors of the same dimension. The table shows that increase of the minimum dimension of
range-blocks results in considerable change of the compression coefficient and, correspondingly, the quality
of a restored image (peak signal-to-noise ratio) — PSNR. It is obvious, the more ”large"‘ range-blocks there
are in a compressed file, the better is the compression coefficient (and, correspondingly, the worse is the
quality of a restored image). Increase of the minimum and maximum dimensions of blocks leads to increase
of time of work of the algorithm, since training of the network which contains "larger” blocks engages more
time than in the case of lesser blocks.

Figure 3 gives a dependence of PSNR upon the compression coefficient for algorithms 1-3 (a), median
split clustering [9] (b), clustering with the use of Kohonen networks. These results can be found in [7] (¢),
Fisher clustering (). The data are cited by [8].
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Figure 3

act time data were available only for the case of Fisher classification. Therefore,

Figure 3 gives comparison of only two methods.

Figure 4 gives a

F dependence of time of work of the algorithm upon the compression coefficient for
algorithms 1-3 (Pentium ILI, 800 MHz, 256 Mb RAM) (a), Fisher clustering (SGI Indigo2, R4400 processor) (b).

These results are cited by [9].
Tire, sec
Loy —<— - fractal compression using algorithms 1-3
o] for search of the nearest domains
X X b- Figher clustering
X

Corpression coefficient

Though the high

being saved.

The degree of compression can be increased using the additional entropy coding methods [14].
It appears, that the use of elements of pattern recognition for more precise partition into clusters is also

promising,

1. Lototskiy R.V., A

w b 20 10 Ly Ly ) 0 % 80 110 120

Figure 4

Conclusion and further developments

compression coefficients being achieved in the fractal method of compression of
images, the main problem of this method is still the large computational complexity of the algorithm. In this
work the effective method of optimization of the classical fractal algorithm is considered. This method
speeds up considerably the search of optimal domain blocks, the sufficiently high compression coefficients
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