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Abstract

We are concerned with the fractal approximation of multidimensional functions
in £2. In particular, we treat a position-dependent approximation with no search
using orthogonal bases of £2. We describe a framework that establishes a connection
between the classic orthogonal approximation and the fractal approximation.

The main theorem allows easy and univocal computation of the parameters of
the approximating function. From the computational perspective, we can avoid
to solve linear systems often suffering from ill conditioning and needed in former
fractal approximation techniques. Moreover, using orthogonal bases we obtain the
most compact representation of the approximation. As a direct application we show
some results on the compression of gray scale digital images.

Key words: deterministic fractal geometry, approximation theory, image
compression, orthogonal bases

1 Introduction

Some years ago it has been shown that the deterministic fractal geometry is
capable to produce complex behaviors even with simple mathematical models
[3]. Fractal models appear suitable to represent real world images [6,14,20,21].

In 1987, Barnsley originally proposed the idea to use deterministic fractal
geometry to obtain a compressed representation of digital images. Some years
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later, one of his students devised the first algorithm capable to partially achieve
that goal [10].

The idea of fractal coding is to represent the signal, or better, the function that
one wants to approximate, solely by the relations that are present between
affinely transformed parts of the signal and the signal itself. Through the
removal of of “self-affine redundancy”, one hopes to obtain a more compact
representation than the original one.

Barnsley [4], Jacquin [10-12] and Fisher [9] presented different methods for
looking for the similarities present in digital images. For simplicity of imple-
mentation the search for similarity was performed only between blocks in which
the image was preventively decomposed. The brightness of a block was being
approximated by a linear transformation of the brightness of another bigger
block. Among all the bigger candidate blocks it was chosen the one which
approximates better the original, together with a particular transformation.

The whole image was hence represented through the relationship between
blocks and by the coefficients of such brightness transformation. They orig-
inally chose linear transformations with a constant translation term (with
respect to the position inside the block). Although later many other strate-
gies has been proposed (see e.g., [1]) the search process was always highly
computationally intensive.

A different approach, motivated by the desire to reduce substantially the com-
putational cost, has been proposed by Monro and Dudbridge in which the ap-
proximation is applied independently on each single block [16]. The method,
although simple to implement and very fast, does not perform well. Tt con-
strains too strong auto-similarities inside the blocks, that are generally not
present in real word images. To obtain a better quality of the approximation
the authors propose to substitute the constant translation term with a poly-
nomial in the pixels coordinates. The polynomial approximates the residual
error that cannot be captured by the fractal approximation.

Barnsley himself introduced, in the one-dimensional case, a class of fractal in-
terpolation functions which have a self-similarity property [2]. It is possible to
reformulate that theory in terms of fractal approximation functions in £?(R").

The work described in this paper should be intended as a way to accomplish
such purpose. In particular, since we are going to treat the problem of image
coding (i.e., the approximation of a brightness function) we treat, without loss
of generality, the two-dimensional case.

We describe a more general type of position dependent approximation than the
one by Monro and Dudbridge, in which the translation term is a function that
belongs to the subspace generated by a chosen orthogonal basis. In literature



other orthogonal techniques used in fractal coding are [19,18].

The main result of this work is a theorem that builds such approximation from
an approximation of the gray scale function expressed with respect to the same
basis. Since the resulting approximation is optimal with regards to the chosen
basis we will call it the best fractal orthogonal approximation (BFOA).

In practise, if you suppose to have a ‘classic’ place dependent approximation
the simple rules of the theorem ‘turn it’ into a fractal approximation. In this
way we can avoid to use heavy numerical methods to overcome the ill condi-
tioned problems associated to the kind of polynomials in [16,17,15].

We will show some results obtained with cosine and Haar basis. We want to
emphasize that the initial approximation can be computed with any algorithm,
for example with fast technique like FF'T or DW'T.

Our work proposes a new approximation model, and not yet another compres-
sion technique.

Section 2 recall some notations used in the rest of the paper. In section 3 we
introduce a theory for fractal approximation in £*(R?) with a variant of the
Collage theorem. In section 4 we present the main result of the BFOA and an
issue on the contractivity of the operator.

The application of BFOA to image is described in section 5. We show the use of
different orthogonal bases in a block coding framework. Our approach allows
to obtain a reconstruction error, at a parity of parameters, lower than the
polynomial approximation. Moreover we investigate the best splitting point
of the blocks as a searching method and we show the advantages given by the
utilization of bigger blocks than the one usually found in literature.

2 Notations

We briefly recall some notation used in the paper. We consider functions in
LP with the metric

d(f,9) = If = gllo

where

1/p
11l = @/ \f(l“)lpdu>



If f is a function in LP, with best approximation of f in LP we denote the
function f* € LP that satisfies
1f = f*llp = inf IIf =gl

geLP

We chose p = 2 because £? is rich of properties and because the £2-norm
is the easiest norm to handle. We will denote with (-,-) the scalar product,
with o the operator that composes two functions and with 77 (f) the iterated
application of 7" to f, n times.

3 Fractal approximation in £*(R?)

We identify a continuous gray scale image with a function f € L£? which
domain is a compact set A, attractor of an IFS {A; wy,...,wy} (see [3])

where the maps w; are affine, contractive and non-overlapping! i.e., w;(z) =
Liz +7;, € R?, L; are 2 x 2 scaling matrices, and 7; are translation vectors.
The maps w; describe the underlying “geometry” of the domain A of the
function f.

A fractal approximation of f is a function f* associated with an £2-contractive
operator such that f* is the fixed point of 7', that is T'f* = f*.

Since the metric space (£2(A), || - ||2) is complete, by the Banach’s theorem
there is only one fixed point that can be obtained by the following reconstruc-
tion algorithm

lim T"(g) = f*, Vg€ L*(A) (1)

n—0o0

The procedure (1) permits to obtain f* by the iterations of the operator T
starting from any initial function g.

The operator T is usually built from the IFS maps w; and from some appro-
priate functions F;

(Th)(z) = Fy(h(wi}(2)), Vo€ Ay he L£2(A)

1

D wi(4) Nwg(4) =0 Vjk=1,...,N with j # k.



In a more general case, we can consider a place-dependent operator

(Th)(z) = Fi(w; (), h(w ' (2))), Vz € A;, h € L(A) (2)

where F; : Ax|c,d] — [c,d], i =1,..., N are functions satisfying the Lipschitz
condition

\Fi(z, 1) — Fi(z,y2)| < silyr —ye2l,8 >0, Vo e A, Yy, ys € [c,d]

When (XN, |det L;| s?)'/2 < 1 then T is contractive in £2(A). Indeed, since
the sets A; are disjoint, we have

ITh —Tgll; =

;/ Fy(w; (z), h(w; ™ (2))) — Fi(w; (), g(w; " ()))

3 [det Li] [ |Fi(a, h(@)) - Fi(a, 9(ax))[" dyu <

=1

N
> ldet Ll 52 [ h(x) - g(z)* du =
i=1 “

N
> [det Li| s} [|h — gl (3)

i=1
Of particular interest is the linear case

Fi(z,y) = iy + ¢;(z), o €R, ¢ € L2(A) (4)

in which the operator 7" becomes

(Th)(z) = aih(w; *(2)) + ai(w; *(z)), Vo € A;, h € L2(A) ()

i

From (3) it follows that if (X, |det L;|a?)'/2 < 1 then T is contractive in
L%(A). Tt is interesting to remark that 7' can be contractive even if not all the
maps satisfy |a;| < 1.



3.1 The inverse problem

The problem of finding a contractive operator 7' whose fixed point is f, or
better, close to f, is called the inverse problem. The Collage theorem provides
directions on how to evaluate a given operator.

Theorem 1 Let f € L*(A), T : L2(A) — L2(A) be the contractive operator
defined in (2) with contractivity factor 0 < K <1, and f* its fized point. If

|lf =Tfllz2<e
then

€
1-K

If* = fll2 <

or equivalently,

1/ = flle < @ = K)7 I f =Tl

PROOF. The proof proceeds as for the classic IFS theory [3]. O

The theorem states that once we want to approximate a particular f € £2(A),
if T is such that f and its image under 7" are ‘near enough’, then f will be
‘near enough’ to f*.

Note that theorem is not constructive. It provides a measure of the quality
of the approximation without having to calculate the fixed point of 7', but it
does not suggest any method to find explicitly 7.

3.2 Best fractal approzimation in L

In the rest of the paper we consider the case of the linear operator described
in (5). In particular, we assume that the functions ¢; have been chosen in a
subspace U of L?(A).



We call best fractal approrimation of f the fixed point f* of the operator T
such that f has minimum distance from 7'f. That is

inf — (a; fow; ' + gyow;*
qiEU,K<1”f (i fow; giow; )lf2

where K = (2N, |det L;| o?)'/2.

Alternatively, the search for the best fractal approximation of f can be carried
out by looking for the parameters o; and the functions ¢; which minimize

| fow; — (cuf +aq)|l5 Vi=1,...,N (6)

since

If = (o5 fow; ' + gow; ")||5 =
2

> [17@) = (@uf (wi @) + as(w @) du =
S ldet I [ 17(wi(e) ~ (@l (2) + ai(o)) P dye =

N
> [det Li || fow; — (euf + ¢i)ll3
=1

4 The best fractal orthogonal approximation

When the functions ¢; belong to the subspace generated by an orthogonal
basis, the operator 7' can be obtained by fairly simple rules.

The following theorem allows to construct the function that approximate
fow;, i.e., the function that minimizes || fow; — (c;f + ¢;)||2 with respect to
g; € U, a; € R. We call such approximating function the best fractal orthogonal
approzimation of fow; in U.

Theorem 2 Let f € L?(A), A C R? be a compact with u(A) < +oo and
{wy, ..., wy} be non-overlapping contractive affine maps, such that A is the at-
tractor of the associated IFS. Let {ug,u,...,u,} denote an orthogonal system
in L2(A), U the subspace generated by its elements, Yo cjuj and 37, 6§Z)uj,
respectively the best approrimation in U of f and fow;. Then, for each i =
L,..., N, there is an element in U, g; = 3774 gog-z)uj, univocally determinate
by



n -
[ 1+ fowsdu =Y Juj ;)
. i . . ]:0
o) = &) —duej, 6 =14 - (7)

[ 12 dn =3l
A J=0

such that &; f + g;, © = 1,..., N 1is the best fractal orthogonal approximation
of fow; in U.

n
If/f2 dp — Y ||u]||§c§ = 0, we have to set &; = 0; in this case g; agrees
=0

A
exactly with the best approrimation of fow; in U.
PROOF. First of all, note that if 3>, cju; and }°7_ d;u; are, respectively,

the best approximation of f and g, with respect to the orthogonal basis
{u;}j=o0,...n, we have

(f - chu], g - Zd“J> =(f, g 2”%”261 (8)

The reason is explained in the following steps

{f = chu,-, 9= _Zdjuj) =
Z (f, us) = _cilg, w +chjdk Uj, U) =
Jj=0 j=0 j=0k=0
le%”zcy

where

(ug, ug) =0, then k # j, {uj, u;) = [l |
& = ()5 i) s dy = (luglB) o, wy)
=0 n, ol = [ dp= u(a),

A

and where u is the unitary function.

Fixed the coefficients o, let g; = 377 <p§-i)uj be the best approximation in U
(1)

of fow; — a;f. Therefore, o, are the Fourier coefficients of fow; — a;f.



We define now an auxiliary function

G(oy) = || fow; — (aif + g)ll3 = [|(fow; — as f) — gill5
It is well known that
Glo) = min_|(fow, - auf) - a3

g €

In addition to this, the minimum is unique. It follows that

D = (Jul12) 7 (fow; — auf, uy) =

(lwill3 )~ (f owi, uz) — o (Jugll3) 7 (f, ug) = 5§i) — o4Cj

and hence

where

¢; = (lull3) 7HF, ug), &7 = (lwll3) ~(Fows, uy).

Substituting in (9) we have
Glaw) = |(fowi — aif) — (3 & u; — i 3 eju; )2 =
j=0 =0

| (fow; — Zé”%‘) —oi(f =Y ciuy)ll =
j=0 Jj=0

JitFowi =3 &) = aalf = 3 ejus) P
°€ =0 =0

Now, once we consider G a function of «;, we can see that it is derivable and

it has a unique stationary point given by the solution of

/(f — > cjuy) (fow; — ZEY’uj) dp = o /(f = > cjuy) dp
=0 =0

A Jj=0 A

(10)



J=0

By (8) we have G® (o) = 2(/ f2dp =Y |lujl3 ¢5). Using the Bessel’s in-
A

equality and the hypothesis of the theorem it follows that G® (a;) > 0, that
means the point is a minimum. The equation (10) can be rewritten as follows

ailf =Y ciug, f = cup) = (f =3 cjuy, fow; — 3 & uy)
j=0 j=0 j=0 j=0

Finally, using (8), we have

o (f, 1) = L llgl3 ) = {F, Fows) =3 llus3 ;2
=0 =0
and we obtain, as a solution, the value &; in (7). O

4.0.1 Remark

Actually, we do not have any guarantee that using (7) we will satisfy the con-
dition K < 1, since the parameters are obtained through an unconstrained
minimization. However, we have always verified experimentally the contrac-
tivity condition in our test cases with different approximation orders, i.e.,
choices of n. We can conjecture the general result which formal proof seems
pretty difficult. However, under some particular condition, we can show that
the operator 7" obtained by (7) is contractive in £2(A).

Proposition 3 Let f € L*(A) be non-negative function with || f||la # 0. When

considering the zero-order approrimation, i.e. n = 0, and o; > O,QD(()Z) >0,

gp((f) are not all zero, the operator T whose parameters are obtained by (7) is

contracting in L*(A).
PROOF. Rewriting (7) when j = 0 we have
o (11113 = &) = (£, fows) — o &

and hence

@ IFI3+ 11 8 = (f, fows)

being cp(()i) = é&® — ayco, and f non-negative. By the Schwartz’s inequality

10



@ |13+ 1F 1) < N1 fllz - [l fowills (11)

For convenience of notation, we indicate D; = |det L;|. Raising (11) to square,
multiplying by D; and summing over ; we get

1712 ZD o + [I£11F ZD )+ 201£15 11 ZD aipy) <1113

since

N
1£113 =" D; || fowill3
i=1
Hence

I1F112 ZD of —1) +||fIIZZD )+ 2[IF1I3 £l ZD aipy) <0

When «; > 0, go(()i) > 0 and go(()i) are not all zero, the left member is strictly
greater than ||f||3 (XN, D;a? — 1).

Finally, we have

N
1£115 Q> Diai =1) <0
i=1
that guarantees the required contractivity since || f||2 # 0 by hypothesis. O

5 Applications to block image coding

In order to discuss the application of the BFOA to image coding we consider
the image decomposed in square blocks of 8 x 8 or 16 x 16 pixels. A single
block becomes the domain A of the brightness function f, the function we
want to approximate. We choose wy, wq, w3, w4 as the functions that map a
square in its four equal sub-quadrants. Later we will discuss a more general
subdivision of blocks.

The orthogonal system {u; }i—o, .., we chose first were Legendre and Chebychev
polynomials. However, the best results were obtained with the cosine basis

11



0 2 4 6 8 10 12

number of parameters per transformation

Fig. 1. RMS error for ‘Lena’ choosing different bases: & cosine basis, + Haar basis,
O Monro-Dudbridge polynomial.

which is briefly described in the appendix. Also we employed a Haar wavelet
basis (see appendix).

For each block we compute from (7) the coefficients «; and (pg-z), 1=1,...,4
which build the best fractal orthogonal approximation. The encoding of the
block is represented only by these coefficients. The problem of quantization
of the encoding is outside the scope of this paper. Our work proposes a new
approximation model, and not yet another compression technique.

However, we compare our results with a similar place-dependent method
which uses standard polynomials for the ¢;, called the Bath Fractal Trans-
form [17,16,15], when no search is performed. In the BFT, the authors obtain
the coefficients of the polynomials and «; by a least square optimization per-
formed by a numerical resolution of linear systems.

In table 1 and in graph 1 we show the approximation error evaluated in the £2—
norm for the image of ‘Lena’ (Fig. 3) using the BFOA with different orthogonal
bases. Our approach gives a reconstruction error, at a parity of parameters,
lower than the polynomial approximation in [15]. Moreover, not having ill con-
ditioned problems present in the BFT, it is possible to get an approximation
error as low as we want, by simply raising the order.

Finally, in order to evaluate the benefits of a more general partition of the
block, we implemented an adaptive searching of the best splitting point of the

12



Cosine basis
Monro-Dudbridge polynomial order | parameters | RMS

order | parameters RMS 0 2 7.73009
0 2 7.73009 1 4 4.75527
1 4 4.81795 * 6 3.42942
2 6 4.01304 2 7 3.09499
3 8 3.80255 * 8 2.73753
3 11 2.05501

Haar basis

resolution factor | parameters | RMS

0 2 7.73009

1 3 7.10770

2 5 5.00614

3 9 4.17559

4 17 0.00000

Table 1

RMS error for ‘Lena’. Blocks 8 x 8 pixels. With * we indicate a choice of intermediate
order. The order for cosine basis is m as in (12). The resolution factor is m as in
(13).

IF'S describing the domain A. The motivation was to understand how much a
better representation, in the fractal sense, of the domain of f could contribute
to a better overall approximation.

Let us assume that the block dimension is P x P pixels. Each choice of (r, s)
in the set of admissible points

D= {(2.2) | (b k) e (1, P = 1] x 1., P~ 1]}

has associated an IFS { A, w1, ws, w3, ws} with attractor A. An example of the
choice of the maps w; in shown in Fig. 2. We consider the best splitting point
that one whose IFS minimizes the equation (6).

The optimization problem in D is solved through a gradient descent method,
starting from the center of the block. We verified that our algorithm converges
almost surely to the global minimum and it checks on average one fourth of
the points in D.

13



O
(0,0)

Fig. 2. the subdivision of A in w;(A).

block size | basis | parameters | data/total parameters | RMS

8 x 8 Haar 4 4:1 5.36103
8 x 8 Cosine 4 4:1 4.34129
16 x 16 Cosine 16 4:1 3.80247

Table 2
RMS error for ‘Lena’ with searching for the best (7, s).

Table 2 summarizes our experiments. Since we can afford to increase the order
of the approximation we can safely have a bigger block dimension. If one
chooses, for example, 16 x 16 blocks with 16 parameters per transformation, we
have the same ratio data/parameters as for the 8 x 8 blocks with 4 parameters
per transformation, but the reconstruction error is lower (compare Figures 4

and 5, 6).

6 Conclusions

We introduced a general theory for the position-dependent fractal approxima-
tion of functions in [,Z(R”), called “best fractal orthogonal approximation”,
that connects IF'S and orthogonal bases. Loosely speaking, our method is ca-
pable to “transform” a classic place dependent approximation into a fractal
approximation.
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Fig. 3. ‘Lena’ digitized 512 x 512, 8 bit per pixel.

Fig. 4. Blocks 8 x 8 pixels, cosine basis, 4 parameters per transformation with
searching for the best (r,s), RMS = 4.34129.

Our approach can be very useful in multidimensional signal processing. In par-
ticular, we showed an application to two-dimensional discrete data. Compared
with other position-dependent approximation described in literature [16,17,15]
it yields better quality of the approximation and less computational efforts.

More adaptive geometry, better methods of searching block similarities and
more adaptive functional approximation, seems to be the main goals of the
future progresses in fractal image compression.

Recently appeared papers [22,13,7,5] propose to search the similarity relations
in the wavelet domain of the images. The results are comparable to state of the
art methods for image coding and they are attracting new research interests.
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Fig. 5. Blocks 8 x 8 pixels, Haar basis, 4 parameters per transformation with search-
ing for the best (r,s), RMS = 5.36103.

Fig. 6. Blocks 16 x 16 pixels, cosine basis, 16 parameters per transformation with
searching for the best (r,s), RMS = 3.80247.
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8 Appendix: remarks on orthogonal bases used

In the following we outline the more interesting basis we used in our experi-
mentations: the cosine basis and the Haar wavelet basis.
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8.0.2 Cosine Basis
It is well known that the functions

ui(z) ui(y), 4,7 =0,1,---  where ug(t) = cos knt,

form a complete orthogonal system on the set IZ = [0, 1] x [0, 1].

The decomposition of f(z,y) of order m is given by

Z aij ui(z) u;(y) = Z a;; ui(z) uj(y) (12)
1=0 j=0 0<i+j<m
where
1 11
A5 = h_//fxyuz u]()dxdy,
700
with

1=0=7

11
//uf u2 (y dacdy_{l/4 ij>0
00 1/2 ZIO,OrjIO,Z#j
8.0.3 Haar Basis

The theorem 2 is also remarkable because it allows to use the wavelets. We
chose the following orthogonal basis of elementary wavelets — a set of function
generated by dilation and translation of single function referred to as the
‘mother wavelet’ 1) —

Y () =22 p(Blex—k), z€R,j€L, keZ?
where the mother wavelet is
s@={11 SEp %
and the matrix B, called matrix dilation, is

(—01 (2))

17



This two-dimensional orthogonal basis of wavelets can be considered a gener-
alization in £?(R?) of the Haar’s system [8].

If one chooses the orthogonal basis v;;, the decomposition at the resolution
factor m is given by

m
) Z aj i (z), z €I (13)
j=0 keZ2

where the coefficients aj; are

ajk = [ F(z) i (@) do

The sum in (13) is taken over multi-index k such that = € I*.

Note that the integrals involved in the computation of the coefficients, with
respect to the bases above described, can be easily implemented as summation
of brightness. Moreover it is possible to compute directly the coefficients by
using efficient algorithms like the FF'T for the cosine basis, or the DWT for
wavelets.
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