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ABSTRACT
�

In this paper, we presenta fast algorithmfor perceptuallybased
fractal image compression.The algorithm is based on a
refinementof the fractal code from an initial coarselevel of a
pyramid.Assumingtheblock matchingerroris modeledasa first
orderLaplacianautoregressiveprocess,we derivethe threshold
sequencefor the objective function in each pyramidal level.
Computationalefficiency dependson the depthof the pyramid
and the searchstepsize, and could be improvedby up to two
ordersof magnitudeover the computationaleffort requiredfor a
full searchof theoriginal image.Thealgorithmis quasi-optimal,
in termsof minimizing theweightedleastabsoluteerror. Its main
advantageis the greatly decreasedcomputationalcomplexity,
whencomparedto full searchalgorithms.

1.
�

INTRODUCTION

During the last decade,fractal geometryhascapturedincreasing
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attentionandinterest.Theapplicationof fractalmodelsto image
compressionhas beenpromotedby Barnsleyet al [1]. Fractal
imagecompressionis basedon theobservationthatall real-world
imagesare rich in affine redundancy. That is, under suitable
affinetransformations,largerblocks(domainblocks)of theimage
look like smallerblocks(rangeblocks) in the sameimage.The
encodingprocessconsistsof finding for every rangeblock an
affine transformationof a domainblock, which fits best in the
senseof the used image metric. These affine maps give a
compactrepresentationof the original image and are used to
regeneratethat image,usually with someamountof loss.Since
Jacquinpresentedthe first automaticfractal imagecompression
method[2], many additionalcontributions[3] havebeenmade.
In [4], we introduceda perceptuallyappropriatecriterion for
perceptually losslessfractal image compression.The method
significantly improvedthe encodingfidelity by usingthe human
visual (HVS) model.The initial definition of the new metric is
given in termsof the averagelocal contrastof the block. After
the conversionbetweenthe physical and digital representation
underthegivendisplaycondition,for perceptuallylosslessimage
compression,we havethe following inequality:
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fractal encodedimage, is the block meanandTB is the visualI
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the contrast scaling factor and t is
�

the brightness offset.
Obviously, the encodingerror is measuredin termsof weighted
l1 norm.� Thus, the encodingprocessneedsto make the block
matchingundertheleastabsolutedeviation(LAD) criterion.Like
other fractal-basedmethods,its major disadvantageis the high
computationalcost. This is mainly due to the fact that a full
searchof thedomainblocksis neededin orderto find the fractal
code.To speedup theencodingprocess,in this paper, we extend
the pyramidalalgorithm for l2 norm� [5] to the one for l1 norm.�

However, the encodingerror thresholdsequencefor l
�
2 norm is

invalid for l
�
1 norm.Basedon theMarkov randomprocesstheory,

we redesignthe encodingerror threshold for each pyramidal
level. For the perceptuallylosslesscompression,the encoding
error thresholdat the finestpyramidallevel will be the sameas

thevisual threshold . Furthermore,the leastsquareline fit isI T
�

B

different from the LAD line fitting, whose parameters’
determinationneedsan iterative procedure.Therefore,for the
parametersof the LAD line, we need to reconsider the
propagationrule from the coarseto fine pyramidal levels. The
pyramidalsearchis first carriedout on an initial coarselevel of
the pyramid. This initial searchincreasesthe encodingspeed
significantly, becausenot only the numberof the domainblocks
to be searchedis reduced,but also the datawithin eachdomain
block areonly a fraction of thosein the finest level. Then,only
a few numbersof the fractal codesfrom the promisingdomain
blocksin the coarselevel arerefinedthroughthe pyramidto the
finest level with little effort.

2. FAST PYRAMIDAL DOMAIN
BLOCK SEARCH

Pyramidal image models employ several copies of the same
imageat different resolutions. Let f

�
(x� , y� ) be the original image

of� size2M×2M.� An imagepyramidis a setof imagearraysf
�

k
� (x� , y� ),

�

k=0, 1, ..., M
�

,� eachhavingsize2k
�
×2k

�
. The pyramidis formedby

low passfiltering and subsamplingof the original image.The
pixel f

�
k

� (x� , y� ) at level k of� a meanpyramid is obtainedfrom the
averageof its four neighboursf

�
k

�
+1 (

�
x’� ,� y’� ) at level (k

�
+1):



At the coarsestlevel (k
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=0), the imagehassize1 and represents
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the
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averagegrey level of the original image. The finest level
imagef

�
M is the original imageof size2M×2M. As the numberof

the levels decreases,the imagedetailsare graduallysuppressed
and spuriouslow spatial frequencycomponentsare introduced
due to the effect of aliasing.Becausethe pyramidal structures
offer anabstractionfrom imagedetails,theyhavebeenprovento
bevery efficient in certainimageanalysis,motionestimationand
imagecompressionapplications.

Notice that the contracteddomainblock image in theIM 1,n

last sectionis the correspondingblock in (M-1)-th level of the

pyramid . When rangeblocks are of size 2m ×2m , thef
�

M 1(x
� , y� )

previous optimization objective function for the best matched
domainblock searchcanbe rewrittenas:

whereDn
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 +t is an affine of the scaleddomainblock
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�
is the rangeblock to encode. Note that for

consistencywith (1), we usea singlesubscriptn" asthe index of

the pixel at location(x� , y� ).
�

Clearly, .n" 2m y� x�

From the original imagea pyramid is created,the depthof
which is determinedby the rangeblock size.Becausethe range
block is definedin the image,the rangeblock pyramid will be
containedin the imagepyramidwith the k-th level of the range
block pyramid correspondingto the (M-m+k)-th level of the
imagepyramid. Insteadof a directsearchof theminimumof the
objective function at the finest level m# ,� we propose a fast
algorithm by introducinga smaller, approximateversionof the
problemat a coarserlevel k of the rangeblock pyramid:

for k 0
� ≤ k ≤ m.
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)

at range block pyramid level k
�
,� the encoding

amounts* to finding thebestmatchingdomainblock of size2k
�
×2k

�

in the image of the size 2M-m +k
�
× 2M-m +k

�
.� For example, for an

original� image of size 512×512 (M=9) and range block size
32×32
+

(m# =5), thesearchcomplexityat k
�

0
� =2 is thatof imagesize

64×64andrangeblock of size4×4. The k
�
=k

�
0

� level of the range
block pyramid is said to be initial and every location of the
imagefrom the (M-m# +k0

� )-th level of the imagepyramidneedsa
test.A new featureof the algorithmis theneedof the parameter
(fractal code) optimization during the block matching. Now,
generatea 2k+1

�
×2k

�
+1,

promisinglocationmatrix Gk
�
+1:

where(u- ,� v. )
�

is the upper left cornercoordinatesof the domain
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otherwise

block andTk
�

is the thresholdat level k
�
.� Matrix Gk

�
+1,

is usedasa
guidein the searchof the domainlocationat the next level k

�
+1.

Testsareto be performedonly at the locations(i
4
,� j
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) for (Gk
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+1,
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=1 and its neighbour locations. Other parametersPk
�

of the
promising locations are also propagatedto Pk

�
+1,

for further
refining at level k+1. For the rotation index and the domain

block
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location, we have θ
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Parameters
<

s! k
�
+1 andtk

�
+1 canbeobtainedfrom therefinementof sk

�

and tk
�
.� For the LAD line fitting, it is known that the desired

absoluteminimum line mustpassthroughat leasttwo pointsof
the given data [6]. Since the refinementof the line parameters
only slightly changethe positionof the absoluteminimum line,
the first referencepoint in the iterativeprocessof the fine level
k+1 is bestchosenasthe last referencepoint throughwhich the
absoluteminimum line of coarselevel k passes.= Such a choice
of the initial referencepoint will lead to a smaller numberof
iterationsto locatethe line of the minimum deviationsof level
k+1. The algorithmprovidesa gradualrefinementof the fractal
code.The processis repeatedrecursivelyuntil the finestlevel m#

is reached.At the finest level, if there exist more than one
locations(u- ,� v. ),

�
suchthat (GM

>
)u/ ,0 v1 =1, selectthe parameterswith

the smallestmatcherror asthe fractal code.Different thresholds
are usedto determinepromisinglocationsin the corresponding
pyramidallevels.The next sectionshowshow to estimatethese
thresholdsusinga Markov randomprocessmodel.

3.
?

DETERMINATION OF THRESHOLDS

Thetwo dimensionalencodingerror imagecanbeconvertedinto
a one dimensionaltime seriesX

@
n
 after row-by-row scanning.

According to equation(1), X
@

n
 = I
�

n
 - s IM-1,n
 - t. Then, the time
seriesA is modeledas a stationaryfirst-order Markov process.
Since
B

the serieshas marginal Laplaciandistribution, it can be
representedas a first-order Laplacianautoregressive(LAR(1))
process:=

where|ρC | < 1
�

,a nd { n
 } is a sequenceof independent,identically
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distributed(iid), zero meanrandomvariables(RVs). It can be
shown that E(

D
k

�
)

E
is an approximategammavariable. Given the

finest block size 4m , parameterof Laplacian distribution αF ,�
correlationcoefficient ρC , probability of finding the best match
P0

� ,� then,the thresholdsarederivedasfollows.
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At the finest level k=m:
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� follow the iterativeequations:
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with the initial In theabove,µk
� is a numberlistedαF m αF , ρC Lm

ρC .�

in the incompletegammafunction table[7].
Example. Consider a block of size 8x8 (m=3), given

correlation coefficient ρC =0.2 and the probability P
N

0
� =0.9. By

equationO (7) and(9), we getthethresholdsfor pyramidlevel k
�
=3,

2
P

and1 as follows:

whereQ 1/αF is
�

the meanvalue of the encodingerror at the finest
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From the example,we notice that T
R (

D
k

�
)

E
is a monotonic

increasing
�

function of the pyramidal level, that is, fine levels
have
T

larger thresholdsthanthe coarserlevels.

4.
U

COMPUTATIONAL EFFICIENCY

In this paper, we have usedKarst’s iterative procedure[6] to
determinetheparameterss! andt. Computersimulationresultsfor
generalleast absolutedeviationscurve-fitting showedthat the
actualcomputationcomplexitygrowslinearlywith thenumberof
datapoints [8]. Thus,the computationefficiency analysisin [5]
is still valid andis listed here:

whereC1 and* C2
M are* the computationalcost of full searchand
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pyramidal= search,respectively, is thesearchstepsizeat theh
W
(
�
k
�

0
� )

�

initial pyramidallevel k0
� ,� andQ

Y
is a computationalsavingfactor.

As in [5], thepyramidcomputationalsavingfactorQ
Y

(relativeto
the LAD full search)dependson the depthof the pyramid and
the searchstep size. For the extreme case, the computation
efficiency could be improved up to two orders of magnitude
whencomparedwith the LAD full searchof the original image.

5.
Z

EXPERIMENTAL RESULTS

The algorithm in this paper is implementedserially on KSR
computer. Figure 1 showsthe 512×512original image Lenna.
Quadtreepartition is used for range blocks. The initial range
block sizeis 16×16.Theencodingerrorwasdeterminedfor each
range block. Blocks which had an error exceedingthe visual
suprathresholds(when Gain Factor= 5)[4], were split into four
8×8 blocks.Theinitial level k0

� is setto 1. Thecontractivefactor
s! and grey level shift t� are codedusing 5 and 7 bit uniform
quantizers[ followed by Huffman encoding,respectively. Figure
2
P

is the plot of the speedup factor Q asa function of the search
stepA size h. When h

W
=16, full searchtook 601 minutes while

pyramidal= search took 8 minutes. Figure 3 shows the
reconstructedimage using full searchmethod at compression
ratio\ 26.3:1 and PSNR=30.5dB. Figure 4 is the result of the
pyramidal= searchat the samecompressionratio andPSNR=30.2
dB.
]

Consideringthat other fast searchtechniquessuch as the
conjugate^ direction search, the 3-step search and the 2D
logarithmicsearchwill leadto relativelarger matchingerrorsas
in
�

motion estimation,thus,we concludethat the pyramidsearch
algorithm* is quasi-optimal in terms of minimizing the least
absolute* error. Themainadvantageof thepyramidalalgorithmis
the
�

greatlyreducedcomputationalcomplexity, whencomparedto
full search.
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Figure2. Speedup asa function of searchstepsize

Figure1. Original imageLenna

Figure3. Full search,CR=26.3:1,PSNR=30.5dB

Figure4. Pyramidalsearch,CR=26.3:1,
PSNR=30.2dB


