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ABSTRACT

In this paper we presenta fast algorithmfor perceptuallybased
fractal image compression. The algorithm is based on a

refinementof the fractal codefrom an initial coarselevel of a

pyramid.Assumingthe block matchingerroris modeledasa first

orderLaplacianautoregressiv@rocesswe derivethe threshold
sequencefor the objective function in each pyramidal level.

Computationalefficiency dependson the depth of the pyramid
and the searchstep size, and could be improved by up to two

ordersof magnitudeover the computationakffort requiredfor a
full searchof the original image.The algorithmis quasi-optimal,
in termsof minimizing the weightedleastabsoluteerror. Its main
advantageis the greatly decreasedccomputationalcomplexity

whencomparedo full searchalgorithms.

1. INTRODUCTION

During the last decadefractal geometryhascapturedincreasing
attentionandinterest.The applicationof fractal modelsto image
compressiorhas beenpromotedby Barnsleyet al [1]. Fractal
imagecompressiors basedn the observatiorthatall real-world
imagesare rich in affine redundancy That is, under suitable
affine transformationdargerblocks(domainblocks)of theimage
look like smallerblocks (rangeblocks) in the sameimage.The
encodingprocessconsistsof finding for every rangeblock an
affine transformationof a domainblock, which fits bestin the
senseof the used image metric. These affine maps give a
compactrepresentatiorof the original image and are usedto
regeneratehat image, usually with someamountof loss. Since
Jacquinpresentedhe first automaticfractal image compression
method[2], many additional contributions[3] havebeenmade.
In [4], we introduceda perceptuallyappropriatecriterion for
perceptually losslessfractal image compression.The method
significantlyimprovedthe encodingfidelity by usingthe human
visual (HVS) model. The initial definition of the new metric is
given in termsof the averagelocal contrastof the block. After
the conversionbetweenthe physical and digital representation
underthegivendisplaycondition,for perceptualljiosslessmage
compressionwe havethe following inequality:
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where N is the block size, I, is the original image, 'A,. is the
fractal encodedmage, I is the block meanand Ty is the visual
contrastthreshold. I, canbe representedsan affine transform

of the contracteddomainblockl,, ,, i.e., in:SHH,n +t, wheresis
the contrast scaling factor and t is the brightness offset.
Obviously the encodingerror is measuredn termsof weighted
I, norm. Thus, the encodingprocessneedsto make the block
matchingundertheleastabsolutedeviation(LAD) criterion.Like

other fractal-basedmethods,its major disadvantages the high
computationalcost. This is mainly due to the fact that a full

searchof the domainblocksis neededn orderto find the fractal
code.To speedup the encodingprocessin this paper we extend
the pyramidalalgorithm for 1, norm [5] to the one for I, norm.
However the encodingerror thresholdsequencdor I, normis
invalid for I, norm.Basedon the Markov randomprocesgheory
we redesignthe encodingerror thresholdfor each pyramidal
level. For the perceptuallylosslesscompressionthe encoding
error thresholdat the finest pyramidallevel will be the sameas

thevisualthresholdI T,. Furthermorethe leastsquareline fit is
different from the LAD line fitting, whose parameters
determinationneedsan iterative procedure.Therefore,for the
parametersof the LAD line, we need to reconsider the
propagationrule from the coarseto fine pyramidallevels. The
pyramidalsearchis first carriedout on aninitial coarselevel of
the pyramid. This initial searchincreasesthe encodingspeed
significantly becausenot only the numberof the domainblocks
to be searcheds reducedbut alsothe datawithin eachdomain
block areonly a fraction of thosein the finestlevel. Then, only
a few numbersof the fractal codesfrom the promisingdomain
blocksin the coarselevel arerefinedthroughthe pyramidto the
finestlevel with little effort.

)

2. FAST PYRAMIDAL DOMAIN
BLOCK SEARCH

Pyramidal image models employ several copies of the same
imageat different resolutions. Let f{x, y) be the original image
of size2"x2", An imagepyramidis a setof imagearraysf(x, y),

k=0, 1, ..., M, eachhavingsize 2*x2*, The pyramidis formedby

low passfiltering and subsamplingof the original image. The
pixel fi (x, y) at level k of a meanpyramidis obtainedfrom the
averageof its four neighbourd,; (X', y') at level (k+1):
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At the coarsestevel (k=0), the imagehassize 1 andrepresents
the averagegrey level of the original image. The finest level
imagef,, is the original imageof size 2"x2", As the numberof
the levels decreaseshe image detailsare gradually suppressed
and spuriouslow spatial frequencycomponentsare introduced
due to the effect of aliasing. Becausethe pyramidal structures
offer anabstractiorfrom imagedetails,they havebeenprovento
bevery efficientin certainimageanalysismotion estimationand
imagecompressiorapplications.

Notice thatthe contracteddomainblock imagel,, , , in the
last sectionis the correspondingblock in (M-1)-th level of the

pyramid f,,_,(x, y). When rangeblocks are of size 2"x2", the
previous optimization objective function for the best matched
domainblock searchcan be rewrittenas:
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whereD,( s, t)=s |, ,+t is anaffine of the scaleddomainblock
andR= 1, =f(x, y) is the rangeblock to encode. Note that for
consistencywith (1), we usea single subscriptn asthe index of

the pixel at location(x, y). Clearly, n = 2™y +x.

From the original imagea pyramidis createdthe depthof
which is determinedby the rangeblock size. Becausehe range
block is definedin the image,the rangeblock pyramid will be
containedin the imagepyramidwith the k-th level of the range
block pyramid correspondingto the (M-m+k)-th level of the
imagepyramid. Insteadof a directsearchof the minimum of the
objective function at the finest level m, we proposea fast
algorithm by introducinga smaller approximateversionof the
problemat a coarserlevel k of the rangeblock pyramid:
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for k< k<m.

Therefore,at range block pyramid level k, the encoding
amountsto finding the bestmatchingdomainblock of size 2x2*
in the image of the size 2""™*x 2M™k For example,for an
original image of size 512x512 (M=9) and range block size
32x32(m=>5), the searchcomplexityat k,=2 is that of imagesize
64x64 andrangeblock of size 4x4. The k=k, level of the range
block pyramid is said to be initial and every location of the
imagefrom the (M-mtky)-th level of the imagepyramid needsa
test.A new featureof the algorithmis the needof the parameter
(fractal code) optimization during the block matching. Now,
generatea 2¢*x 2! promisinglocation matrix G***:

,if EXuv) <Tk 5
(G k+1)2u,2v: ) ( )
[0, otherwise

where (u4, V) is the upperleft cornercoordinatesof the domain
block and T* is the thresholdat level k. Matrix G** is usedasa
guidein the searchof the domainlocationat the nextlevel k+1.
Testsareto be performedonly at the locations(i, j) for (G***),;
=1 and its neighbour locations. Other parametersP* of the
promising locations are also propagatedto P*! for further
refining at level k+1. For the rotation index and the domain

block location, we have 8'-8% D;'-2D/ D/S*-2D,"
Parameters** andt*"* canbe obtainedfrom the refinemeniof ¢
and t“. For the LAD line fitting, it is known that the desired
absoluteminimum line mustpassthroughat leasttwo points of
the given data[6]. Sincethe refinementof the line parameters
only slightly changethe position of the absoluteminimum line,
the first referencepoint in the iterative processof the fine level
k+1 is bestchosenasthe last referencepoint throughwhich the
absoluteminimum line of coarselevel k passesSuch a choice
of the initial referencepoint will lead to a smallernumber of
iterationsto locatethe line of the minimum deviationsof level
k+1. The algorithm providesa gradualrefinementof the fractal
code.The procesds repeatedecursivelyuntil the finestlevel m
is reached.At the finest level, if there exist more than one
locations(u, v), suchthat (G"),,=1, selectthe parametersvith
the smallestmatcherror asthe fractal code.Different thresholds
are usedto determinepromisinglocationsin the corresponding
pyramidallevels. The next sectionshowshow to estimatethese
thresholdsusing a Markov randomprocessmodel.

3. DETERMINATION OF THRESHOLDS

Thetwo dimensionakncodingerrorimagecanbe convertednto

a one dimensionaltime seriesX, after row-by-row scanning.
Accordingto equation(1), X, = I, - s ly,4, - t. Then, the time

seriesis modeledas a stationaryfirst-order Markov process.
Since the serieshas mamginal Laplaciandistribution, it can be

representeds a first-order Laplacian autoregressivéLAR(1))

process:

X =pX , +¢, (6)

where|p| < Land {¢,} isasequencef independentidentically
distributed (iid), zero meanrandomvariables(RVs). It can be
shownthat E® is an approximategammavariable. Given the
finest block size 4™, parameterof Laplacian distribution a,
correlation coefficient p, probability of finding the best match
P,, then, the thresholdsare derivedas follows.

(1) At the finestlevel k=m:
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Parameterp_ anda, follow the iterative equations:
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with theinitial a,=a, p, =p. In theabove y, is a numberlisted

in the incompletegammafunction table[7].

Example. Consider a block of size 8x8 (m=3), given
correlation coefficient p=0.2 and the probability P;=0.9. By
equation(7) and(9), we getthe thresholddor pyramidlevel k=3,
2 and1 as follows:
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wherel/a is the meanvalue of the encodingerror at the finest
level. From the example,we notice that T® is a monotonic
increasingfunction of the pyramidal level, that is, fine levels
havelarger thresholdsghanthe coarseievels.

4. COMPUTATIONAL EFFICIENCY

In this paper we have used Karst's iterative procedure[6] to
determinethe parameters andt. Computersimulationresultsfor
generalleast absolutedeviations curve-fitting showedthat the
actualcomputatiorcomplexitygrowslinearly with the numberof
datapoints[8]. Thus,the computationefficiency analysisin [5]
is still valid andis listed here:
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where C, and C, are the computationalcost of full searchand
pyramidalsearchyespectively h(k )is the searchstepsizeat the
initial pyramidallevel k,, andQ is a computationakavingfactor.

As in [5], the pyramidcomputationakavingfactor Q (relativeto

the LAD full search)dependson the depthof the pyramid and
the searchstep size. For the extreme case,the computation
efficiency could be improved up to two orders of magnitude
whencomparedwith the LAD full searchof the original image.

5. EXPERIMENTAL RESULTS

The algorithm in this paperis implementedserially on KSR

computer Figure 1 showsthe 512x512original image Lenna.
Quadtreepartition is usedfor range blocks. The initial range
block sizeis 16x16.The encodingerrorwasdeterminedor each
range block. Blocks which had an error exceedingthe visual

suprathresholdéwvhen Gain Factor= 5)[4], were split into four

8x8 blocks.Theinitial levelk, is setto 1. The contractivefactor

s and grey level shift t are codedusing 5 and 7 bit uniform

quantizersfollowed by Huffman encoding,respectively Figure

2 is the plot of the speedup factor Q asa function of the search
step size h. When h=16, full searchtook 601 minutes while

pyramidal search took 8 minutes. Figure 3 shows the

reconstructedmage using full searchmethod at compression
ratio 26.3:1and PSNR=30.5dB. Figure 4 is the result of the

pyramidalsearchat the samecompressiomatio and PSNR=30.2
dB. Consideringthat other fast searchtechniquessuch as the

conjugate direction search, the 3-step search and the 2D

logarithmicsearchwill leadto relative larger matchingerrorsas
in motion estimation thus,we concludethat the pyramidsearch
algorithm is quasi-optimalin terms of minimizing the least
absoluteerror The mainadvantagef the pyramidalalgorithmis

the greatlyreducedcomputationatomplexity whencomparedo

full search.
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