A Fuzzy Image Metric With
Application to Fractal Coding

Junli Li, Gang Chen, and Zheru Chi, Member, IEEE

Abstract—Image quality assessment is an important issue
addressed in various image processing applications such as
image/video compression and image reconstruction. The peak
signal-to-noise ratio (PSNR) with the LZ-metric is commonly used
in objective image quality assessment. However, the measure does
not agree very well with the human visual perception in many
cases. In this paper, a fuzzy image metric (FIM) is defined based
on Sugeno’s fuzzy integral. This new objective image metric,
which is to some extent a proper evaluation from the viewpoint
of the judgment procedure, is closely approximates the subjective
mean opinion score (MOS) with a correlation coefficient of about
0.94, as compared to 0.82 obtained using PSNR. Comparing to
the L?-metric, we demonstrate that a better performance can be
achieved in fractal coding by using the proposed FIM.

Index Terms—Fractal coding, fuzzy integrals, image metrics,
image quality assessment, quadtree partition.

I. INTRODUCTION

N IMAGE quality assessment, a subjective evaluation seems

to be more meaningful and practical since there are no satis-
factory mathematical models serving this task. In the evaluation
of a compression algorithm, where a mathematical model must
be used, the L2-metric is usually chosen as a de facto model for
its simplicity. The L?-metric, except for its mathematical ele-
gance as a metric, has little to do with the human visual system.
A few other metrics, for example, the Hausdorff metric, have
been applied primarily to binary images.

Human vision, which has been studied in many disciplines, is
a very complex phnomena. From psychological ophthalmology
to optical physics, vision spans the full aspect of understanding
the human visual mechanism. Although many efforts have been
made to discover the mechanism of “how we see” and establish
computational models for the human visual perception [1]-[4],
the knowledge of this subject is still quite primitive.

In image quality assessment, many studies have been carried
out on subjective measures [5]-[7]. The Mean Opinion Score
(MOS) is the most commonly used subjective assessment
method, which is equivalent to using the human brain as a tool
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for quantification. The main drawback of MOS is time con-
suming and experimentally difficult, and the results obtained
may vary depending on the test conditions. Using subjective
evaluation and fuzzy aggregation techniques, Tizhoosh et al.
[8]-[10] developed an observer-dependent five-phase system
for image enhancement. At the third phase of processing, the
MOS values were mapped into the interval [0, 1], which were
regarded as fuzzy density values to construct a fuzzy measure.

As a traditional method for objective image quality assess-
ment, PSNR is merely a good distortion indicator for random er-
rors but not for structured or correlated errors, which are preva-
lent in image compression and degrade local features and per-
ceived quality much more than do random errors. As a con-
sequence, the correlation between PSNR and visual quality is
known to be poor [11].

Research results have been reported on various objective
image quality assessment methods in literature. Miyahara et
al. presented a picture quality scale (PQS) for the coding of
achromatic images over the full range of image quality defined
by the subjective MOS [12]. The main feature of the measure
is that it takes into account the properties of human visual
perception for both global and local image characteristics.
In modeling a degraded image as an original image that has
been subject to linear frequency distortion and additive noise
injection, Damera-Venkata et al. proposed two parameters, a
distortion measure (DM) and a noise quality measure (NOM),
to grade the effects of these two distortion sources [13]. Both
measures are based on the research results on the human visual
system. In an attempt to simulate the subjective evaluation of
image quality, Bock er al. used fuzzy rules to evaluate image
distortion based on a model of human visual system [14]. All
these methods mentioned above require complex techniques
such as edge extraction or multivariate analysis, so they surely
gain some advances while lose the simplicity that PSNR has.

In the n-dimensional vector space R™of real numbers, the
most frequently used metric is L”-metric, which is defined as

n 1/p
d(z, y) = (Z |z — yi|p> (1)
=1
forallz = (z1, Z2, ..., Zn), ¥ = (Y1, Y2, - -+, Yn) € N™ and

p 2> 1. In the extreme case, when p tends to infinity, the metric
becomes the supremum metric, i.e., the L°°-metric, which is
given by

d(z,y) = sup |z; —yi. )

1<i<n

The case p = 2 is the most frequently used metric, L2-metric.
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Given a metric d on the n-dimensional space ", the Haus-
dorff metric of d, denoted by H D, is defined in a space of sub-
sets of k" by

HD(A, B):max{sup{inf d(z, y)}, sup{inf d(z, y)}}
zeA (YEB yeB (@€4
(3)
for any subsets of ", A and B.
The conventional image metrics, such as L*, L?, Hausdorff,
have some drawbacks in measuring the image distortion, which
is discussed as follows.

1) The golden locality, e.g., L°°-metric. The measure of the
difference between two images based on these metrics
will become much greater when the difference of some
pixels is greater. However, human perception will usually
be unable to notice the big difference of a small number
of image pixels.

2) The computation of a metric such as Hausdorff is too
complicated to make the metric practical.

Peak Signal-to-Noise Ratio (PSNR) commonly used in evalu-
ating image processing can describe the image quality to a cer-
tain extent but fails to produce a measure that is consistent with
the human visual perception. Meanwhile, since PSNR is not a
metric, its usage is quite limited.

In this paper, we present a new image metric, Fuzzy Image
Metric (FIM), which can reflect the human visual perception
while remaining the computability and simplicity. Our proposed
FIM, which is discussed in Section III, can overcome some
drawbacks of the conventional image metrics to a certain extent.
Although the proposed FIM is also based on pixels differences,
the experimental results reported in Section IV show that as an
objective image metric it is more consistent with the human vi-
sual perception than PSNR. Moreover, it is simple in computa-
tion and it has a good anti-golden-locality capability. Section V
demonstrates the application of our fuzzy image metric to fractal
coding and compares its performance with that of the L?-metric.
Finally, concluding remarks are drawn in Section VL

II. Fuzzy INTEGRALS

Fuzzy measures and fuzzy integrals were first introduced by
Sugeno [15] to evaluate nonadditive or nonlinear quantity in
systems engineering. Since then, they have been applied to var-
ious problems such as expert systems, decision making, pattern
recognition, image enhancement, risk analysis, and so on [16].

Definition 2.1: Let C be a Borel field of nonempty X. A set
function p: € — [0, 1] defined on C is called a fuzzy measure
if p satisfies

1) boundary conditions: (&) = 0; (X) = 1;
2) monotonicity: if A ¢ B C X and A, B € C, then
u(A) < pu(B);

3) continuity: if A; C A2 C -~

then

CA,C ..., 4, €C,

H ( U A"") = nl_ijlolo /‘(An)'
n=1

The triple (X, €, p) is called a fuzzy measure space.

Definition 2.2: Let f be a measurable nonnegative
real-valued function on X, and let A C X . The Sugeno’s fuzzy
integral (S) [, fdu of f over A with respect to 4 is defined by

(5) / fdu = supmin (@, u(Na(f) N 4) &)
JA a>0
where

No(f) = {z|f(z) 2 a}. )

Let X be an object that has n quality factors z1, 2, ... %,. For
a subset A of X, we use u(A), which ranges from 0 to 1, to
measure the maximum grade that X can achieve for the quality
factors of A. Actually, we use p(A) to indicate the importance
of A. It is reasonable to assume that the value of the importance
of X is equal to 1 and the value of the importance of empty set
@ is equal to 0. In addition, if a factor set A is included in a
factor set B, then the importance of A is lower than that of B,
i.e., u(A) < pu(B). The set function 4 satisfies the following
conditions:

D) p(@) = 0; p(X) = 15

2) If A C B C X, then u(A) < u(B).
Considering a factor vector always consists of a finite number of
factors, 4 naturally becomes a fuzzy measure. The importance
measure plays a key role in the judging procedure. It is a sound
way to quantize experts’ experience and well received as an ac-
credited judging criterion.

III. IMAGE METRIC BASED ON Fuzzy INTEGRAL

We denote two images by

X =(z1, 9, -, )y Y =(Y1, Y2, - -» YK

where x;, y; are pixel intensities. Their difference is defined by
X Y| = (lar — vl le2 =2l -, lox —yx])  (6)

where 0 < x;, y; < 1 (after normalization) and K is the number
of pixels in the images. We define a fuzzy image metric as fol-
lows:

dps)(X,Y) =(5) /D | X —=Y|dp
= sup min (o, u (No(|X = Y1) 7

a>0

where D is the image plane and
p={-}/ K 8)

where |{-}| is the number of elements in {-} and u(D) = 1. It
is easy to verify that 4 is in fact an additive measure, i.e., prob-
ability measure. Furthermore, we can easily prove that dp(s)
(X, Y) is a metric according to the properties of the fuzzy in-
tegral and absolute value inequality. We call such dp(s) fuzzy
image metric (FIM).

Note 3.1: For gray images, X and Y, we have

FIM(X, Y) = (S) / |X = Y|du
JD

= Jnax min (3/255, 1 (N;/255 (| X — YD)). O



There must exist some (49/255) such that FIM achieves its max-
imum as shown in Fig. 1. Hence FIM can be interpreted as
searching for the maximal agreement between the pixel differ-
ences (i/255, 4 = 0, ...255) and the proportion of the pixels,
on which the errors are no less than (:/255).

Note 3.2: Compared to the conventional image metrics such
as L*>°, LP, and Hausdorff, and the PSNR measure, FIM not only
takes into account the difference between the corresponding
pixels, but also the proportion of the pixels whose corresponding
differences are no less than a given value.

Note 3.3: FIM is considered as an objective evaluation with
a certain nature of subjective evaluation. We regard | X — Y| as
an object to be evaluated and each pixel as a quality factor. In
addition, we take y (additive) as the importance measure on the
image because

1) The definition of 1 is simple and easy to compute. For an
image with tens of thousands of pixels, the determination
of a nonadditive fuzzy measure on it is in fact infeasible.

2) p is an additive measure that is the abstract of some im-

portant objective concepts such as length, area, value,

mass, etc., which is accepted by most people.
We treat the difference of the gray levels of the corresponding
two pixels [ie., |z; — y;|, (¢ = 1,2, ..., K)] as an intrinsic
quality index such that the evaluation of | X — Y| is comprehen-
sive and objective. Then FIM is an objective and ideal evaluation
of | X —Y'|. For the details of the importance measure and sub-
Jjective judgment, the reader may refer to [15], [17].

Next, we give the three theorems that will be used in the
quadtree partition based fractal coding to be discussed in Sec-
tion V.

Theorem 3.1: For a given > 0, FIM(X, Y) < « if and
only if u(No(|JX =Y|)) < a.

Proof: Assume FIM(X, Y) < «a foragiven o > 0. Then
we have

min (o, u (No (| X = Y))) < «

which implies that u(No(|X - Y])) < a.

Conversely, assume that 4(N,(]X —Y|)) < a. For any 8 >
a > 0,since u(Ng(|X = Y)) < u(Na(|X = Y))) [refer to (5)
and (6)], we have

min (8, (N (|1X = Y]))) < u(Na (X = Y])) <.
On the other hand, for any 0 < 3 < «, obviously, we have
min (8, u(Ng (X - Y]) < f <

Thus, we prove FIM(X, Y) < «. Similarly, we have the fol-
lowing.

Theorem 3.2: For a given & > 0, FIM(X,Y) < « if and
only if u(Ng(|X —Y|)) < « forany 8 > a.

Theorem 3.3: For a given a > 0, u(No(|X = Y])) < «
implies that FIM(X, Y) < a.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Normally, the smaller the FIM measure, the greater the PSNR
measure, and therefore the more similar the two compared im-
ages (see Fig. 2). But it is not always the case. Judging from

FIM

\

0 iy /255 1

Fig.1. Relationship between min(i/255, u(N; 255(]X —Y]))) and (i/255)
with the maximum being the FIM value.
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Fig.2. Fuzzy image metric versus PSNR for the fractal coding of Lena image.

the PSNR measure of Fig. 3(b), the compressed image is un-
satisfactory. However, based on the FIM measure, its quality is
fair, which is consistent with human visual perception. Based
on the PSNR measure, the image shown in Fig. 3(c) is poorer
than that shown in Fig. 3(d), which is different from the human
perception. The FIM measure does indicate the similar result as
the human visual perception. Fig. 3(a) is corrupted by changing
the gray level of one pixel (the difference is 200 in 256 grey
scales) of the original image and it is visually the same as the
original image. However, L shows the golden locality in this
case, while FIM does not. The behavior of the FIM measure
from these experiments is similar to that of the human visual
perception.

In order to verify the consistence of FIM with Mean Opinion
Score (MOS), we selected eight commonly used test images
shown in Fig. 4. Normally, for a more reliable image quality
assessment, we will use noiseless and good original images.
However, for the evaluation of image compression, since we
are mainly concerned with the difference (distortion) between
the original and the decoded image, the original image has not
necessarily to be noiseless and/or good. The test images used for
our experiments are noiseless since we want to have a reliable
MOS measure. We compressed each image with 15 different
compression ratios using the JPEG technique. According to
the recommendations of ITU (International Telecommunication
Union) [6], each compressed image was evaluated by 15
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Fig.3. (a)Lenaimage with artificial artifact, L> = 0.78 (maximum is 1) and FIM = 1.5 e-05; (b) Lena image compressed with fractal coding, PSNR = 21.58
and FIM = 0.0586; (c) Missa image compressed with JPEG, PSNR = 38.41 and FIM = 0.0195; and (d) Missa image compressed with fractal coding, PSNR =

38.64 and FIM = 0.0273.

observers who judged the image quality against the original
image using a grading scale from five to one where five stands
for excellent, four for good, three for fair, two for poor, and one
for bad. Finally, the average of 15 scores given by participants
was taken as the total quality measurement.

Recommendation ITU-R BT 500-10 [6] proposed two ap-
proximation functions, of which one is symmetrical and the
other is nonsymmetrical. We found out that the nonsymmet-
rical function is suitable for fitting the Image Quality Evaluation
(IQE) versus FIM as shown in Fig. 5, which is given by

5

¥ (FIM/a)? (10)

IQE(FIM) =
where ¢ = 0.0647, b = 4.438. The parameters a and b is de-
termined experimentally to fit the MOS-FIM measure of 120
points. Using this fitting curve, image quality can be judged
from the FIM value easily.

Finally, we used the curve to verify the agreement between
FIM and MOS. A fairly good result is achieved as shown in
Fig. 6. Note that a better fitting was achieved at the highest and
lowest ends of the quality range than in its middle part. In order
to describe the degree of approximation of the FIM to MOS
quantitatively, the correlation coefficient 2 [18] between the
FIM and MOS is calculated. Let z = (z1, z2, ..., Z,) be the
FIM measure and ¥y = (v1, Y2, - - - » Yn) be the MOS measure,
and T = (1/n) Y, w;, ¥ = (1/n) iy ¥:. the correlation
coefficient between z and y is given by

R=> (z:i —T)(y: —7)
=1

n n 1/2
/{Z(fﬂi—f)z (’yi—ﬂ)z} . an
i=1 i=1
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Fig. 4. Test images for FIM and MOS. (a) Cameraman; (b) church; (c) flower; (d) Lena; (e) woman; () peppers; (g) house; and (h) man.
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Fig. 5. Image quality evaluation versus FIM.
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Fig. 6. MOS versus the image quality evaluation from FIM after curve fitting
using (10).

TABLE 1
PERFORMANCE COMPARISON OF FIM VS THE L? METRIC ON THE FRACTAL
CODING OF AN 256 X 256 IMAGE

Metric Range Block Size | PSNR FIM Ratio of Processing
time to the I* metric

FIM 4x4 33.61 0.046 4.1

8x8 28.18 0.071 3.8

16x16 23.77 0.101 3.6

32x32 19.70 0.142 29
I 4x4 32.66 0.050 |1

8x8 27.43 0.074 1

16x16 23.31 0.101 1

32x32 19.38 0.144 1

TABLE 1I

FIM Vs THE L? METRIC IN THE QUADTREE APPROACH FOR THE FRACTAL
CODING OF THE SAME 256 X 256 IMAGES AS IN TABLE I

Metric | Threshold FIM Compression | Ratio of Processing
Ratio time to the L* metric

I? £=5 0.039063 | 5.356 1

=7 0.050781 | 8.938 1

€=10 0.0625 15.101 1
FIM £ =10/256=0.0390625 | 0.039063 | 6.332 0.55

€ =13/256=0.050781 | 0.050781 | 9.436 0.58

£ =16/256=0.0625 0.0625 16.503 0.61

If 2 and y is highly correlated, R is close to 1. If R is zero, « and
y is orthogonal. The correlation coefficient between FIM and
MOS is 0.96, which is a slight improvement over that achieved
before the curve fitting (0.94) and a good improvement com-
pared to PSNR, whose correlation coefficient is 0.82.

We believe that FIM is a good image metric for applications
such as pattern recognition, image retrieval, and fractal coding
because the loss of a few trivial details would not affect the en-
tirely judgment as long as the pertinency of the main contents is
preserved. However, the loss of these details would cause sig-
nificant changes to the values of PSNR, and L*°, L? and Haus-
dorff metrics.
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Fig. 7. Threshold versus FIM in the fractal coding of four images. The choice of the threshold = has a good intuitionistic prediction on the similarity between the
original image and the decoded one, and the relationship between the threshold and the FIM are almost linear (identical).

V. APPLICATION TO FRACTAL CODING

Barnsley et al. [19] proposed to use fractal techniques to
code images. The intuitive idea is very appealing: since many
images contain complex fractal-like objects, an efficient way
of encoding the image is to describe these objects as fractals
rather than approximating them in “smooth” ways. However,
the methods they described are difficult in implementation, and
rely on the use of a computer operator to find correspondences
between various parts of an image.

Jacquin [20], [21] presented an automatic coding technique
for monochrome images. In his approach, the image is parti-
tioned into squares called range blocks {R}. In each range
block R;, the image is described by the relationship between it
and another square on the image, the domain blocks Dy, which
has an area of four times of that of Ry. There are eight linear
mappings of Dy onto Ry (because of reflection and rotation).
For any of these mappings, a pixel of R, with gray level f cor-
responds to four pixels of Dy, with gray levels fi, fa, f3, fa.

Letg = (1/4)(f1 + f2 + fs + fa). For each Ry, the task is to
find Dy, a, (with |ag| < 1) and by, such that the error between
f and (axrg + by) in Ry, is the smallest, say €. We then say that
we have achieved a good collage on Ry. The local contractive,
affine transformation T} replaces the gray level f by (arg + bx)
for each pixel in Rj. Performing this for all range blocks Ry
leads to a global transformation 7". We can consider 7" as an con-
tractive operator on the image space. By the Banach Fixed Point
Theorem, there is a unique image f* such that T'(f*) = f*.

In Jacquin’s fractal coding technique, the L? metric is used
to evaluate the similarity of range blocks { Ry }and transformed
domain blocks {Dy}. If the L2 distance between Ry, and trans-
formed Dy, is smaller than a given threshold e, then 7}, which
transforms Dy, into Ry, is recorded and a good collage on Ry, is
achieved. However, the L? metric has some drawbacks which
are discussed as follows.

1) The drawbacks with PSNR, and L*°, LP and Hausdorff

metrics discussed in Section IV are also applied to the L>
metric.
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Fig. 8.
0.039062 5, FIM = 0.0391.

2) The choice of the threshold € has a poor prediction on
the similarity of the original image and the encoded one.
The exact relationship between the threshold e and the
similarity measure is not known.

To compare the performance of using the L? metric to that of
using the FIM measure in searching for the best matched do-
main block for a range block, we implement fractal coding on
an image (GIRL) by using fixed range blocks with sizes being
4 x 4,8 x 8,16 x 16, and 32 x 32, respectively. The experi-
mental results are shown in Table 1.

From Table I, we can see that the results of using FIM is
a slightly better than those of using the L? metric in terms of
PSNR. However, the former took longer time to process than
the latter when the block size is 4 x 4. Based on Theorems 2.1,
2.2, and 2.3, we can use the FIM measure in the fractal coding
with the quadtree scheme.

The quadtree is the simplest and most commonly used hier-
archical partitioning scheme. In a quadtree approach, one might
begin with a regular partitioning of 2% x 2" blocks. For each
range block, the domain pool is searched for the best matched
domain block. If the accuracy of the matching falls within a
certain tolerance, it is accepted. If not, the range block is sub-
divided, and a search is initiated for each sub-block. Various
measures were proposed for the control of the image quality in
fractal coding with the quadtree partition scheme [22], [23]. Dis-
tasi et al. presented an entropy based split decision function that
can improve image quality and speed up the encoding process
[22]. In the approach presented by Saupe and Jacob [23], a test
based on block variances was adopted for a splitting criterion
to speed up the fractal image compression without harming the
rate-distortion performance.

To simplify the discussion, we adopt a full-layer structure, in
which the quadtree begins with the whole image and might end
with one pixel if a good matched domain block could not be
found for a larger range block.

)

(a) Girl image compressed with a range block size 4 X 4, FIM = 0.0586 and (b) Girl image compressed with a quadtree scheme with threshold ¢ =

We denote a range block by
Ri = (k@) Th(2)s - Th(m))

and a domain block by
Dy, = (dy1y, drg2y, -

For a given threshold, say ¢, for each Ry, if FIM (Ry, Dy) < ¢
for some Dys, then we say that we find a good collage. Other-
wise, Ry, is subdivided, and a search is initiated for each sub-
block. Note that for Theorems 2.1, 2.2, and 2.3, we only con-
sider whether p(N:(|X — Y])) < e is satisfied or not, which
can reduce a lot of processing time.

From Table II, we can see that fractal coding using the FIM
measure can achieve better compression ratio and use less pro-
cessing time than that using the L? metric. Note that the de-
coded images have similar visual quality, which is indicated by
the same FIM measures. Moreover, the choice of the threshold
€ has a good intuitionistic prediction on the similarity between
the original image and the decoded one, and the values of the
threshold and the FIM measure are almost the same. Fig. 7
shows the relationship between the threshold ¢ and the FIM
measure. As we can see from these results, they are almost
linear (identical) functions. Fig. 8 shows two compressed im-
ages using the fractal coding without and with the quadtree
partition. Judging from the FIM measure, Fig. 8(b) (a smaller
FIM value) is better than Fig. 8(a), which is consistent with the
human visual perception.

cey dk(m)) .

VI. CONCLUSION

This paper presents a new metric model, FIM, based on the
Sugeno’s fuzzy integral for objective digital image quality
assessment from the viewpoint of human judgment. We use
fuzzy integral to bridge the gap between this metric model and
pure subjective evaluation. Experimental results show that the



proposed FIM measure is highly correlated to the results of
the human visual perception and can be successfully used in
the fractal coding with a quadtree partition scheme to achieve
a better compression performance and to reduce compression
time. It is also indicated that a quality measure model like
L?and PSNR based on errors’ summation cannot reflect the
essence of human visual perception. Further improvements
can be expected. For example, |X — Y| can be replaced by a
better model by incorporating some important properties of the
human visual system. By considering background brightness,
image contrast, texture variation, and so on, we can adopt the
weighted | X — Y| as the difference measure of the two images.
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