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ABSTRACT

Fractal representation of images is based on mappings
between similar regions within an image (also known as
IFS). Such a representation can be applied to image
coding and to increase image resolution. One of the main
drawbacks of conventional fractal representation is the
fact that the mappings are between blocks. As a result,
the reconstructed image may suffer from disturbing
blockiness.
In this work we present a method for mapping similar
regions within an image in the wavelet domain. we first
show how to use the Haar wavelet transform coefficients
to find mappings which are identical to conventional
blockwise mappings. The union of these mappings,
between sets of wavelet coefficients, can be interpreted as
a prediction of higher bands of a signal from its lower
band. Changing the mother-wavelet to other than Haar,
creates mappings which are between regions which
smoothly decay towards their borders, thus reducing the
blockiness, as well as improving the PSNR of the
reconstructed image.

 I.   INTRODUCTION

1.1   Mathematical Background.

Fractal representation of a signal is based on the theory
of contractive transformations. A transformation T from
a metric space ( E,d ) to itself is contractive iff it has the
property :

       d x y a d T x T y x y E( , ) ( ( ), ( )) ,≤ ⋅ ∀ ∈          (1)

Where a is called  the contractivity factor and must be
strictly smaller then 1, and d is the metric.
For a contractive transformation T there exists a unique
point x f∈E, called the fixed point of the transformation
such that x f=T(x f). This unique fixed point is the limit of

applying T repeatedly on an arbitrary point x0 ∈E.
Fractal representation of a signal x is based on finding a
contractive transformation T such that the distance
d(x , x f) between the transformation's fixed point and the
signal x is minimal. In practice x f is not known before T
is found. Instead, it is common to find T that minimizes
the distance d (x,T(x)). This sub-optimal choice is
justified by the collage Theorem [1]:

1.2     Conventional Fractal Representation

In order to obtain a compact representation of the signal,
and to be able to find the best transformation, the family
of the considered transformations should be restricted.
Let us describe first the commonly used transformations
[2][3] for a discrete, finite support, one-dimensional
signal. The transformations are based on a piecewise
partition of a vector signal, into non-overlapping sub-
vectors Ri of length B each, called Range Blocks. A set
of sub-vectors of length 2B is also extracted from the
signal. Each of these sub-vectors is scaled down using a
scaling function ϕ(X) that averages pairs of adjacent
samples, to length B. Each of the scaled-down sub-
vectors is called a Domain Block and is labeled as Dj.
The whole set of domain blocks is called the Domain
Pool. A technical alternative to sub-vector scaling is  to
scale, first, the whole signal X to get  X1/2=ϕ{ X}  and
then extract domain blocks Dj of size B from the scaled-
down signal. This alternative will serve us later on.
The transformation assigns to each  range block Ri a
mapping Ti whose parameters consist of a domain block
index j, a scaling  factor a, and an offset b, resulting in
an affine mapping of the domain block,
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the squared-error  R Ri i−
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The transformation T is the union of the mappings Ti,
and T(X) is the union of the reconstructed range blocks

�

Ri . The fixed point of the transformation is approached
by applying T over and over again on an arbitrary initial
signal, as implied by the name ‘Iterated Function
System’ (IFS), for the transformation T. For a detailed
discussion on the contractivity of T see [4]
Fractal representation of images as 2D signals is similar
to the 1D representation just described [2][3]. The main
difference is that the range blocks are squares of BxB
pixels. The domain pool is obtained by 22:1 scaling down
of 2Bx2B extracted blocks or by extracting BxB blocks
from a 22:1 scaled-down image. In the 2D case The
domain pool is usually enriched by applying isometries
(such as rotations and flips) on its domain blocks [2][3].
These isometries can be considered as distinct members
of the domain pool.

1.3    Fixed Point Pyramid

Let us use the terminology X Xk k
1/2 1/2

1= −ϕ ( )  where

k = 1 2,2,..., log ( )B  to represent the lower resolutions

(scaled-down versions) of a 1D or 2D signal X1≡X. It has
been shown [5] [6] that each of the lower resolutions of

X
f

1 , the fixed point of T, is a fixed point of a related

transformation, denoted as T k
1/2

. This transformation has

in fact the same parameters as T≡T1, but is applied with a
smaller range block length of B/2k. The relations
between lower resolutions of the fixed point is
demonstrated in Fig. 1.
Since the conventional IFS involves extracting domain
blocks from X1/2 and copying them to an appropriate
range blocks in X1, and since this is also the situation for

higher levels of the pyramid, one can get X f
1 as a zoom-

in interpolation procedure, that starts from X f
1/B and uses

all mappings in T k1 2 1/ −  to apply the affine transformation

on domain blocks of size B/2k-1 from X k
f

1 2/
, and tile the

next higher resolution X k
f

1/2
1− .

1.4     DC Orthogonalization

A Modification of the conventional mapping in (2) is a
mapping with orthogonalization to the block averages
(DC) [7]. The reconstructed block and the
transformation can be described as:

    
�

( ) { , , ( )}( ) ( )R a R T
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Where Ri  and D j  are the averages of the corresponding

blocks. One of the main advantages of defining T as in
(3) over the one in (2) is that its fixed point can be found
in exactly Log2(B)+1 iterations [7], i.e. T l+m=T l

  for all
m≥0 and l= Log2(B)+1. In this case there exist a tighter
bound on the collage error [8].
The DC block orthogonalization does not affect the
pyramidal relations between the different scales of the
fixed point. Therefore, it is possible to combine DC
orthogonalization with the fixed point pyramid
representation, and perform a non-iterative hierarchical
decoding of the signal from its IFS as follows [7] :

 1. Construct the pyramid level X f
1/B  in which the point

X if
1/ ( )B  is the range block average Ri .

 2.  "Zoom-in", log2(B) times, starting from X f
1/B , to get

X X
f f

1 =  as described in section 1.3. This time use
(3) to copy domain blocks from a given pyramid level
to tile the next lower level (higher resolution).

In the next section we refer to this procedure as the
“reference algorithm” and “transfer” this algorithm to
the wavelet domain.

II.      IFS MAPPINGS IN THE HAAR WAVELET
DOMAIN

2.1    Subband Decomposition and Wavelet Transforms

Let us describe the Discrete Wavelet Transform (DWT)
of a 1D discrete signal X as an octave-band subband
decomposition (Fig. 2, bottom), using a pair of
Quadrature Mirror Filters (QMF) [9]. The octave-band
filtering is implemented by splitting over and over the
lowest subband with the two-band pair of filters. Such a
decomposition with three splits is shown in Fig. 2. At
each split the higher branch represents highpass filtering
and 2:1 decimation, and the lower branch represents the
corresponding lowpass filtering and decimation. The
outputs of the lower branches are, in fact, lower scales of
the signal, Therefore they are labeled X k1 2/

, as in

section 1.3, The the higher branches outputs are labeled
X kH1 2/

.

Mallat [9] has shown the connection between Orthogonal
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Fig. 1 - Mapping relations for different scales of the
fixed point of an IFS (B=4)



Wavelet Transforms, and QMF subband decomposition.
He has shown that given a perfect reconstruction QMF
pair,  such that the reconstruction filters are the same as
the analysis filters, the output of the octave-subbands are,
in fact, the coefficients of  an orthonormal DWT. Hence
the sub-band decomposition can be represented by a
unitary matrix U.

2.2    IFS and the Haar-DWT

The Haar-DWT is an orthonormal transform that its
equivalent QMF pair is the lowpass filter HL=[1,1] and
the highpass HH=[1,-1] (up to a gain factor). Note that
2:1 decimation of the output of the convolution of X with
HL results in X1/2=ϕ{ X} , the scaled-down signal
described in section 1.2. The aim of this section is to
show the following :

 1. Given an IFS, the Haar-DWT coefficients of the
higher subbands of its fixed point can be calculated

from the fixed point’s lowest band (X f
1/B).

 2. The IFS mapping parameters, obtained by the
reference algorithm in section 1.4 can be found
directly from the Haar-DWT coefficients of the input
signal X.

Consider a signal X f  that is a fixed point of an IFS. X f

is tiled with range blocks such that for any block, R,

there is a corresponding domain block D in X f
1 2/  such

that R a D D R= − +( ) . Let us decompose separately R
and D by the Haar-DWT with L=log2(B) splits. The
transform could be described by a unitary BxB matrix U:
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where [r1...rB]  and [d1...dB]  are the coefficients of R
and D, respectively. r1

 and d1 are the only lowpass
coefficients and provide (up to a constant gain factor) the
averages of the blocks ( R  and D ). Since for X=X f,
R R=

�

, applying the unitary matrix U on both sides

of (3) gives :

 U R R a U D D r a d pp p− = ⋅ − ⇒( ) ( ) = ⋅ ≤ ≤, 2 B  (5)

Suppose, now that we decompose the whole fixed point
X f  with a L+1=log2(2B) split, Haar-DWT, as in Fig. 2,
and build two pyramids. The first is a lowpass pyramid

that consists of X
k

f

1/2
 (k=1,...,L+1), where only X

f
1/2B

 is

part of the DWT. The second is a highpass pyramid that

consist of XH
f

k1 2/ , and is fully contained in the DWT.

The two pyramids are illustrated in Fig. 3 (in this figure
B=4).
If we choose to construct the domain pool from blocks
that tile X1/2 without overlap, it is easy to see that the
Haar-DWT coefficients [r2...rB] and [d2...dB] of R and
D are part of the Haar-DWT of the whole fixed-point
signal X f. This is due to the fact that a log2B split Haar-
DWT of a vector, consists of a set of independent Haar-
DWT on non-overlapping sub-vectors of size B. In Fig.
3, the DWT coefficients of a four sample range block in
X (shaded) and domain block (white) in X1/2, are marked
in the highpass and lowpass pyramids.
Since all r p and d p (1≤p≤B) are parts of the L+1 split

DWT of X f, and since for each p,  d p is from a subband

of lower frequency than r p, (5) shows that the
coefficients of the higher bands can be calculated from

those of the lower bands, i.e. one can start with X f
H1/2B,

calculate all ri
2which are in X f

H1/B , and so on. This
calculation can be interpreted as a recursive
extrapolation, or prediction of the higher bands from the
lowest one. At each stage another subband is
extrapolated and so a higher resolution of the fixed point
can be obtained, quite similar to the hierarchical decoder
that is described in section 1.3.
Can we find the IFS code in the wavelet domain as
well ? The answer depends on the metric. If one uses the
standard l2 inner product metric (a very common
choice), then, due to the norm preserving characteristics
of the DWT transform, the approximation error
minimization can be performed in the DWT domain:
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Fig. 2 - The DWT  of a signal.  Top - the splitting tree;
Bottom -  frequency division into subbands.
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Fig. 3 - Relations between the Haar-DWT coefficients
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Thus, the minimization of  the distance can be performed
by comparing the blocks’ wavelet coefficients that have
been extracted from the DWT of the whole signal. In
each block there are 2L-1 coefficients as in the right
pyramid of Fig. 3. Each range and domain block consists
of coefficients from different subbands, representing the
same location of the signal. A summary of the
encoding/decoding process is as follows

Finding an IFS (Encoding):

 1. Compute the DWT with L+1 splits of the signal
 2. Extract range and domain blocks of AC coefficients.
 3. For each range block Ri, find the best domain block

Dj  and scaling factor ai  that minimizes (6).
 4. The IFS code consists of the upper lowpass and

highpass levels of the pyramid  (X1/2B and XH1/2B), the
scale factors  ai , and  the indices j(i) for each block.

Finding the IFS Fixed point (Decoding)

 1. Copy the lowpass and highpass levels of the pyramid
from the code.

 2. Extrapolate downwards in the highpass pyramid
using the scale factors and the indices.

 3. Compute the Inverse DWT.

2.3    2D IFS in the Haar-Wavelet Domain

In order to apply the above algorithm to images there is a
need to extend it to two dimensions. This is most easily
done with separable 2D QMF's. The subband
decomposition of a separable octave-band QMF is a
quadtree partition of the 2D frequency domain as
illustrated in the left side of Fig. 4. In such a
decomposition every split consists of four bands, labeled
“LL”, ”HL”, “LH” and “HH”. Exactly as it was done for
1D signals, all the highpass coefficients that represent
the 2D separable Haar transform (2D Haar-DWT) of
BxB domain and range blocks, can be found in the 2D
Haar-DWT decomposition ,with L+1 splits of the whole
signal. In the left side of Fig. 4, there are 15 shaded 2D
Haar-DWT coefficients. These coefficients are the DWT
of the 4x4 (shaded) range block of an image shown in
the right. The 15 white coefficients represent a single
domain that represent a scaled-down version of the 8x8
square that is also shown on the right of Fig. 4 Therefore

 1. One can extract  range blocks and domain blocks of
B2-1 HP coefficients from the image Haar 2D-DWT
coefficients in order to find the best IFS.

 2. Given an IFS, one can extrapolate the higher bands
in all three directions (HL LH and HH)

simultaneously (i.e. using the same mappings).

Extending the coding algorithm described in section 2.2
to 2D needs an explanation on how to implement the
isometries in the 2D-DWT transform domain. It can be
shown that all the conventional isometries of a block
means nothing else but :

 1. applying the same isometries in each of the subbands
separately.

 2. switching between HL and LH subbands (for some of
the isometries)

 3. inverting the sign of the coefficients (for some of the
isometries and in some of the bands).

III A BLOCKLESS IFS

The investigation of the IFS in the Haar-DWT domain
gives a better understanding of the frequency
characteristics of the code. Although many practical
benefits can be achieved from the subband interpretation,
the main benefit comes, probably, from changing the
QMF pair. Suppose that we decompose an image into its
subbands, as in Fig. 4, with a separable QMF pair other
than Haar. Then, collect a range block of B2-1
coefficients from different subbands that belong to some
area of the image, such as the shaded coefficients in Fig.
4 (left). Suppose that we pick the white coefficients from
a one level shifted down of the decomposition to be a
domain. The new “Domain” coefficients still represent a
decomposition of a scaled-down version of the image.
However the scaling function ϕ in not a four pixel
averager. Instead it is the LP QMF 2D separable filter
followed by a decimator. Such a filter has a much
smoother characteristics as a scaling operator then the
averager. Finding the best domain block of coefficients
and the best scaling factor a, that describe each Range
block of coefficients, is equivalent to finding similar
regions in an image and in its scaled-down version.
However those regions overlap since the support of basis
vectors overlap. Morover they have smooth decaying
borders. Thus a code that is not in blocks have been
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Fig. 4 - The coefficients of the  2D-DWT of a
Domain (white) and Range (shaded) blocks B=4

Left - The DWT domain   Right - the corresponding regions



obtained. To summarize, if one uses the algorithm for
finding an IFS and its fixed point, as in section 2.3,
using a QMFs pair other than Haar, he effectively
obtains a blockless reconstructed image.
The chosen QMF should have the following  properties.
First and most important, since the IFS finds correlation
between different frequency bands (in different locations)
it should have zero (linear) phase. In addition it should
be relatively short due to the finite size of the image. It is
sufficient however that the QMF will provide near-
perfect reconstruction.

IV      RESULTS AND DISCUSSION

In order to evaluate the quality of the IFS that can be
obtained in the DWT domain (DWT-IFS), Its ability to
compress images have been examined. The wavelet
coefficients of the lower bands were quantized with 7
bits/coeff for the LP band and 6 bit/coeff for the three HP
bands. The scaling factors were also quantized with 6
bits each. All the quantizers used, were uniform. The
quantization was followed by adaptive arithmetic
encoding of each of the quantized variables.
Several separable QMF’s were examined on a few
images, and all of the filters performed better than the
Haar-QMF. The best results, in terms of PSNR, as well
as subjectively, were obtained with Adelson's et. al. 9
taps QMF's [10]. As an example, we compare the results
of coding the picture "lena" of size 512x512 with three
different block sizes (actually levels of prediction): L=2
(equivalent to B =2L=4), L=3 and L=4. The bit rate, and
the PSNR values (in dB) obtained are given in Table 1.

PSNR PSNR Bit/pel Bit/pel
n=2(Haar) n=9 n=2 n=9

L=2 36.95 38.67 1.56 1.57
L=3 30.48 31.63 0.35 0.35
L=4 25.85 26.81 0.08 0.08

Table 1: Results  ( bit rate and PSNR in dB) of coding  the
512x512 image  “lena”

The reduction of the artifacts due to the use of  the 9 taps
QMF is shown in Fig. 5, where a part of the image
“lena” that was coded with L=4 is magnified. It is easy to
see that the blockiness of the reconstructed Haar-IFS
image (Fig. 5a) has vanished in the 9 taps QMF image
(Fig. 5b).
However, the results in Table 1 do not compete with the
state of the art wavelet coders[11]. The reason for that
might be that in order to achieve better results one has to
adapt the size of the blocks to their activity. The
conventional IFS coder does it by Quadtree partitioning
of the image[3] A similar approach for the DWT-IFS is
currently under investigation.

The pyramidal interpretation of an IFS code may also be
used to increase image resolution. The proposed
algorithm offers an opportunity to locally estimate the
(missing) high frequency band, i.e extrapolate in the
wavelet domain in order to interpolate in the spatial
domain. The use of IFS-DWT to increase image
resolution is another issue that needs further
investigation.
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Fig. 5 - parts of  the reconstructed  image “lena”
(a) Haar DWT,  L=4       (b) Adelson 9 Taps,  L=4


