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ABSTRACT

Fractal representatiorof imagesis basedon mappings
betweersimilar regionswithin animage(alsoknown as
IFS). Such a representatiorcan be applied to image
coding and to increase image resolution. One ofrthm
drawbacksof conventionalfractal representatioris the
fact that the mappingsare betweenblocks As a result,
the reconstructedimage may suffer from disturbing
blockiness.

In this work we presenta methodfor mappingsimilar
regionswithin animagein the waveletdomain.we first
showhowto usethe Haar wavelettransformcoefficients
to find mappingswhich are identical to conventional
blockwise mappings. The union of these mappings,
between sets of wavelet coefficients, carrberpretedas
a predictionof higher bandsof a signal from its lower
band.Changingthe motherwaveletto otherthan Haar,
creates mappings which are between regions which
smoothlydecaytowardstheir borders,thusreducingthe
blockiness, as well as improving the PSNR of the
reconstructed image.

I. INTRODUCTION
1.1 Mathematical Background.

Fractalrepresentatiomnf a signalis basedon the theory
of contractivetransformationsA transformationT from
ametricspace E,d) to itself is contractiveiff it hasthe
property :

d(x,y) <ald(T(x),T(y)) Ox,yOE 1)

Wherea is called the contractivity factor and must be

strictly smaller theri, andd is the metric.

For a contractivetransformationT thereexistsa unique
point x '0JE, calledthe fixed point of the transformation
such thak '=T(x"). This unique fixed point is thémit of
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applyingT repeatedly on an arbitrary poktIE.
Fractalrepresentationf a signalx is basedon finding a
contractive transformation T such that the distance
d(x , xf) between the transformation's fixed poamidthe
signalx is minimal. In practicex " is not known beforeT
is found Instead,t is commonto find T that minimizes
the distance d (x,T(x)). This suboptimal choice is
justified by thecollage Theorenfl]:

1.2 Conventional Fractal Representation

In orderto obtaina compactrepresentationf the signal,
andto beableto find the besttransformationthe family
of the considered transformations should be restricted.
Let us describefirst the commonlyusedtransformations
[2][3] for a discrete, finite support, onedimensional
signal. The transformationsare basedon a piecewise
partition of a vector signal, into norroverlappingsub
vectorsR; of length B each,called RangeBlocks.A set
of subvectorsof length 2B is also extractedfrom the
signal. Eachof thesesubvectorsis scaleddown usinga
scaling function ¢(X) that averagespairs of adjacent
samples,to length B. Each of the scaleddown sub
vectorsis called a Domain Block and is labeledas D;.
The whole set of domain blocks is called the Domain
Pool. A technicalalternativeto subvectorscalingis to
scale, first, the whole signal X to get X;,=¢{X} and
thenextractdomainblocksD; of sizeB from the scaled
down signal. This alternative will serve us later on.

The transformationassignsto each rangeblock R a
mappingT; whoseparametergonsistof a domainblock
indexj, a scaling factor a, andan offsetb, resultingin
an affine mapping of the domain block,

R =alD; +b, 2
The parameters are selected so that I% is an
approximationof the rangeblock R, which minimizes

the squareerror ||R - R .
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The transformationT is the union of the mappingsT;,
and T(X) is the union of the reconstructedangeblocks
R. The fixed point of the transformations approached
by applying T overandoveragainon an arbitraryinitial
signal, as implied by the name ‘lterated Function
System’ (IFS), for the transformationT. For a detailed
discussion on the contractivity dfsee fi]
Fractalrepresentatioof imagesas 2D signalsis similar
to the 1D representatiofust described2][3]. The main
differenceis that the range blocks are squaresof BxB
pixels. The domain pool is obtained &y1 scalingdown
of 2Bx2B extractedblocks or by extractingBxB blocks
from a 2%1 scaleddown image. In the 2D case The
domainpool is usually enrichedby applying isometries
(suchasrotationsandflips) on its domainblocks[2][ 3].
Theseisometriescan be consideredas distinct members
of the domain pool.

1.3 Fixed Point Pyramid

Let us use the terminology ka = q)(ka_l) where

k=12,...,log,(B) to representthe lower resolutions

(scaleddown versions) of 4D or 2D signalX,=X. It has
beenshown[5] [6] that eachof the lower resolutionsof

xlf , the fixed point of T, is a fixed point of a related

transformationdenoted aé'mk. Thistransformatiorhas

in fact the same parametersiag;, but is applied with a
smaller range block length of B/2*. The relations
between lower resolutions of the fixed point is

demonstrated in Fig-

Sincethe conventionallFS involves extractingdomain

blocks from Xj» and copying them to an appropriate
range blocks iy, andsincethis is alsothe situationfor

higherlevelsof the pyramid,onecanget le asazoom

in interpolation procedure, that s@ftom X]jB anduses
all mappings inTqu_l to applythe affine transformation

on domainblocksof size B/2<* from ijzk , andtile the

next higher resolutior)(lflzk_l.

1.4 DC Orthogonalization

A Modification of the conventionalmappingin (2) is a

mapping with orthogonalizationto the block averages
(DC) [7]. The reconstructed block and the

transformation can be described as:

R =& (D _Sj(i))J’ﬁ. T={a.R.,i()} O

Where § and ﬁj arethe average®f the corresponding
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Fig. 1 - Mapping relations for different scales of the
fixed point of an IFS (B4)

blocks.One of the main advantagesf defining T asin

(3) over the onén (2) is thatits fixed point canbe found
in exactlyLog,(B)+1 iterations[7], i.e. T ™1 for all

m=0 andl= Logy(B)+1. In this casethereexista tighter
bound on the collage errd][

The DC block orthogonalizationdoes not affect the
pyramidal relations betweenthe different scalesof the
fixed point. Therefore,it is possibleto combine DC

orthogonalization with the fixed point pyramid
representationand perform a non-iterative hierarchical
decoding of the signal from its IFS as follow$ |

1. Constructthe pyramidlevel XJB in which the point
XJB(i) is the range block averagrﬂ,l.
2. "Zoomin", logo(B) times,startingfrom XJB, to get

X, = x" asdescribedn section1.3 This time use

(3) to copy domain blockom a given pyramidlevel
to tile the next lower level (higher resolution).

In the next sectionwe refer to this procedureas the
“referencealgorithm” and “transfer” this algorithm to
the wavelet domain.

. IFSMAPPINGSIN THE HAAR WAVELET
DOMAIN

2.1 Subband Decomposition and Wavelet Transforms

Let us describethe Discrete WaveletTransform(DWT)
of a 1D discrete signal X as an octaveband subband
decomposition (Fig. 2, bottom), using a pair of
QuadratureMirror Filters (QMF) [9]. The octaveband
filtering is implementedby splitting over and over the
lowestsubbandwith the two-bandpair of filters. Sucha
decompositionwith three splits is shownin Fig. 2. At
eachsplit the higherbranchrepresentfighpasdiltering
and?2:1 decimation,andthe lower branchrepresentshe
correspondinglowpass filtering and decimation. The
outputsof the lower branchesre,in fact, lower scalesof

the signal, Therefore they are labeled Xy ks @S in

sectionl.3 Thethe higherbranchesutputsare labeled

X2k

Mallat [9] has shown the connection between Orthogonal
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Fig.2 - The DWT of a signal. Topthe splitting tree;
Bottom- frequency division into subbands.

WaveletTransforms,and QMF subbanddecomposition.

He hasshownthat given a perfectreconstructionrQMF
pair, suchthatthe reconstructiorfilters arethe sameas
the analysis filters, the output of thetavesubbandsire,
in fact, the coefficientsof anorthonormalDWT. Hence
the subband decompositioncan be representecby a
unitary matrixU.

2.2 |FSandtheHaar-DWT

The HaarDWT is an orthonormaltransform that its
equivalentQMF pair is the lowpassfilter H,=[1,1] and
the highpassHy=[1,-1] (up to a gain factor). Note that
2:1 decimation othe outputof the convolutionof X with
H. results in Xy=¢{X}, the scaleddown signal
describedin section1.2 The aim of this sectionis to
show the following :

1. Given an IFS, the HaarDWT coefficients of the
higher subbandf its fixed point can be calculated
from the fixed point’s lowest band(ng).

2. The IFS mapping parameters,obtained by the
reference algorithm in section 1.4 can be found
directly from the HaarDWT coefficientsof the input
signalX.

Considera signaIXf thatis a fixed point of an IFS. X'
is tiled with range blocks such that for any block, R,
thereis a correspondingdomainblock D in X]jz such

that R=a(D - D)+ R. Let us decomposeseparatelyR
and D by the HaarDWT with L=log,(B) splits. The
transform could be described by a unitary BxB maditkix

rtr?..r®' =ur;:

(d*d?...d%" =up;

R=UTr'r?...rB

trql 42 Bt )
D=ud d*...d"]

1 B 1 B _
where[r"...r°] and[d"...d"] arethe coefficientsof R
and D, respectively.r' and d* are the only lowpass
coefficients and provide (up tocenstangainfactor)the
averagesof the blocks (R and D). Since for X=X ',
R =R, applying the unitary matrix U on both sides

Fig. 3 - Relations between the HaBWT coefficients
Left - Lowpass pyramid; RightHighpass pyramid

of (3) gives :
U(R-R)=am(p-D)o rP=am’,2<p<B (5

Supposenow that we decomposéahe whole fixed point
X" with a L+1=logy(2B) split, HaarDWT, asin Fig. 2,

and build two pyramids.The first is a lowpasspyramid

f

that consistsof le/zk (k=1,...,L+1), whereonly X, is

partof the DWT. The seconds a highpasgpyramidthat
consistof X:”jzk, andis fully containedin the DWT.

Thetwo pyramidsareillustratedin Fig. 3 (in this figure

B=4).

If we chooseto constructthe domain pool from blocks
that tile X3/, without overlap, it is easyto seethat the
HaarDWT coeﬁicients[rz...rB] and [dz...dB] of R and
D are part of the HaarDWT of the whole fixed-point

signalX " Thisis dueto thefactthata logzB split Haar

DWT of a vector,consistsof a setof independentHaar

DWT on nonoverlappingsubvectorsof size B. In Fig.

3, the DWT coefficientsof a four samplerangeblock in

X (shadedpnddomainblock (white) in X/, aremarked
in the highpass and lowpass pyramids.

Sinceall r ? andd® (1<p<B) are partsof the L+1 split

DWT of X ', andsincefor eachp, d” is from a subband

of lower frequency than rP, (5) shows that the
coefficientsof the higher bandscan be calculatedfrom

thoseof the lower bands,i.e. onecanstartwith X :,1,28 \

calculateall rizwhich are in erva and so on. This
calculation can be interpreted as a recursive
extrapolation or predictionof the higherbandsfrom the
lowest one. At each stage another subband is
extrapolatecandsoa higherresolutionof the fixed point
canbe obtained quite similar to the hierarchicaldecoder
that is described in sectidn3.

Can we find the IFS code in the wavelet domain as
well ? The answerdepend®n the metric. If oneusesthe
standard |, inner product metric (a very common
choice),then,dueto the norm preservingcharacteristics
of the DWT transform, the approximation error
minimizationcan be performed in the DWT domain:
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Thus, the minimization of the distance can be performed

by comparingthe blocks’ waveletcoefficientsthat have
beenextractedfrom the DWT of the whole signal. In

eachblock there are 2--1 coefficientsas in the right

pyramid of Fig.3. Eachrangeanddomainblock consists
of coefficientsfrom differentsubbandsrepresentinghe
same location of the signal. A summary of the
encodingdecoding process is as follows

Finding an IFS (Encoding):
1. Compute the DWT with t1 splits of the signal

2. Extract range and domain blocks of AC coefficients.

3. For eachrangeblock R;, find the bestdomainblock
D; and scaling factos; that minimizes@).

4. The IFS code consistsof the upper lowpass and
highpasdevelsof the pyramid (Xy/s and Xu1/28), the
scale factorsa; , and the indicef(i) for each block.

Finding the IFS Fixed point (Decoding)

1. Copythelowpassandhighpasdevelsof the pyramid
from the code.

2. Extrapolate downwards in the highpass pyramid
using the scale factors and the indices.

3. Compute the Inverse DWT.

2.3 2D IFSinthe Haar-Wavelet Domain

In order to apply the above algorithm to images theee is

needto extendit to two dimensionsThis is mosteasily
done with separable 2D QMF's. The subband
decompositionof a separableoctaveband QMF is a
guadtree partition of the 2D frequency domain as
illustrated in the left side of Fig. 4. In such a
decompositioreverysplit consistsof four bandsJabeled
“LL”, "HL", “LH" and“HH". Exactlyasit wasdonefor
1D signals,all the highpasscoefficientsthat represent
the 2D separableHaar transform (2D HaarDWT) of
BxB domainand rangeblocks,can be foundin the 2D
HaarDWT decompositionwith L+1 splits of the whole
signal.In the left side of Fig. 4, thereare 15 shaded?D
HaarDWT coefficients.Thesecoefficientsarethe DWT
of the 4x4 (shaded)angeblock of an image shownin
the right. The 15 white coefficientsrepresenta single
domainthat representa scaleddown versionof the 8x8
square that is also shown on the right of Bigherefore

1. Onecanextract rangeblocksand domainblocks of
B%1 HP coefficientsfrom the image Haar 2D-DWT
coefficients in order to find the best IFS.

2. Givenan IFS, one can extrapolatethe higher bands
in all three directons (HL LH and HH)

ol @\l @\
o| o
5 me @ LH Raliwoe
Domain
[
23] 23]
HL HH

Fig. 4 - The coefficients of theD-DWT of a
Domain (white) and Range (shaded) block€B=
Left - The DWT domain Rightthe corresponding regions

simultaneouslyi.e. using the same mappings)

Extendingthe codingalgorithmdescribedn section2.2
to 2D needsan explanationon how to implementthe
isometriesin the 2D-DWT transformdomain.It canbe
shown that all the conventionalisometriesof a block
means nothing else but :

1. applyingthe sameisometriesin eachof the subbands
separately.

2. switchingbetweerHL andLH subbandgfor someof
the isometries)

3. inverting the sign of the coefficients(for someof the
isometries and in some of the bands).

[1I ABLOCKLESSIFS

The investigationof the IFS in the HaarDWT domain
gives a better understanding of the frequency
characteristicsof the code. Although many practical
benefits can be achieved frahe subbandnterpretation,
the main benefit comes, probably, from changingthe
QMF pair. Supposdhat we decompos@&n imageinto its

subbandsasin Fig. 4, with a separabl&)MF pair other
than Haar. Then, collect a range block of B%1

coefficientsfrom different subbandghat belongto some
areaof theimage,suchasthe shadeccoefficientsin Fig.

4 (left). Supposehatwe pick the white coefficientsfrom

a one level shifted down of the decompositionto be a
domain.The new“Domain” coefficientsstill representa
decompositionof a scaleddown version of the image.
However the scaling function ¢ in not a four pixel

averagerlnsteadit is the LP QMF 2D separabldilter

followed by a decimator. Such a filter has a much
smoothercharacteristicsaas a scaling operatorthen the
averager Finding the bestdomainblock of coefficients
and the bestscalingfactor a, that describeeachRange
block of coefficients,is equivalentto finding similar

regionsin an image and in its scaleddown version.
Howeverthoseregionsoverlapsincethe supportof basis
vectors overlap. Morover they have smooth decaying
borders.Thus a code that is not in blocks have been



obtained.To summarize,f one usesthe algorithm for

finding an IFS and its fixed point, as in section2.3,

using a QMFs pair other than Haar, he effectively
obtains a blockless reconstructed image.

The chosenQMF shouldhavethe following properties.
Firstandmostimportant,sincethe IFS finds correlation
betweerdifferent frequency bands (bfifferentlocations)
it shouldhavezero (linear) phaseIn additionit should
be relatively short due to the finisizeof theimage.lt is

sufficient however that the QMF will provide near

perfect reconstruction.

IV RESULTSAND DISCUSSION

In orderto evaluatethe quality of the IFS that can be
obtainedin the DWT domain (DWT-IFS), Its ability to
compressimages have been examined. The wavelet
coefficientsof the lower bandswere quantizedwith 7
bits/coeff for the LP band an@lbit/coeff for the threeHP
bands.The scaling factors were also quantizedwith 6
bits each.All the quantizersused,were uniform. The
guantization was followed by adaptive arithmetic
encoding of each of the quantized variables.

Several separableQMF's were examined on a few
images,and all of the filters performedbetterthan the
HaarQMPF. The bestresults,in termsof PSNR,as well
as subjectively, were obtainedwith Adelson'set. al. 9
tapsQMF's[10Q]. As an examplewe comparethe results
of codingthe picture"lena" of size 512x512 with three
different block sizes(actually levels of prediction):L=2
(equivalentto B =2-=4), L=3 andL=4. The bit rate,and
the PSNR values (in dB) obtained are given in Table

PSNR PSNR | Bit/pel | Bit/pel

n=2(Haar) | n=9 n=2 n=9
L=2 36.95 38.67 1.56 1.57
L=3 30.48 31.63 | 0.35 0.35
L=4 25.85 26.81 | 0.08 0.08

Tablel: Results ( bit rate and PSNR in dB) of coding the
512512image “lena”

The reduction of the artifacts duette useof the9 taps
QMF is shownin Fig. 5, where a part of the image
“lena” that was coded with L4is magnified. It is easy to
seethat the blockinessof the reconstructedHaarIFS
image (Fig. 5a) hasvanishedin the 9 tapsQMF image
(Fig. 5b).

However,the resultsin Table1 do not competewith the
stateof the art waveletcoderslL1]. The reasonfor that
might be thain orderto achievebetterresultsonehasto
adapt the size of the blocks to their activity. The
conventionallFS coderdoesit by Quadtreepartitioning
of theimage] A similar approachfor the DWT-IFS is
currently under investigation.

Fig.5 - parts of the reconstructed image “lena”
(a) Haar DWT, L4 (b) Adelsor® Taps, L4

The pyramidalinterpretationof an IFS codemay alsobe
used to increase image resolution. The proposed
algorithm offers an opportunity to locally estimatethe
(missing) high frequencyband, i.e extrapolatein the
wavelet domain in order to interpolatein the spatial
domain. The use of IFSDWT to increase image
resolution is another issue that needs further
investigation.
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