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1. INTRODUCTION
Because fractal compression is highly asymmetric, most research to date has been devoted
to improving compression performance [6,8,9]. Yet, it is the process of decompression
that is most intriguing. Whether one uses the ‘classical’ approach originated by Barnsley
[1] or the more practical method of Jacquin [5] that is considered here, an image is
represented compactly in terms of an Iterated Function System (IFS). To recover this
image the IFS is iterated, with each iteration bringing the process closer to the final result.

To ensure convergence, Jacquin asserts that an IFS must be contractive and establishes a
contractivity criterion. Jacobs, Fisher, and Boss found instead that an IFS may converge
without being fully contractive, and introduce the idea of eventual contractivity [2].
Unfortunately, they provide but a rough guideline as to whether a fractal image will
converge. Hurtgen offers a contractivity criterion in [3], but only for the highly restricted
case of [7]. This paper examines convergence of fractal encoded images in greater detail.

2. BASICS

2.1 Theory
An IFS, W, is a set of affine transformations that compose a contractive mapping:

       

       (2)

where � and � are any two images of the same size. The metric d measures the difference
between two images (commonly the root mean square error). Because s lies in the range
[0,1) W causes any two images to become more alike. It follows that when applied to any
input image , the IFS has the following remarkable property:µany

       (3)

       (4)

That is, start with any image and repeatedly apply W ___ after a certain stage the process
stabilizes to a unique attractor image  independent of . More difficult is the reverse:µ∞ µany

given an arbitrary digital image  try to find an IFS which, when evaluated by iteration,µgiven

produces another image similar to the original. In other words, find a set of transforms
{ wi} such that  is small. This challenge is known as the “inverse problem.” d(µgiven,µ∞)

W=
i=1

n

wi, wi : R3 → R3, where wi are affine transforms (1)

d(W(µ),W(υ)) < sd(µ,υ), 0 ≤ s< 1

µ∞ = lim
n→∞ (Wn(µany)) is a unique attractor, and

µ∞ = W(µ∞) is a fixed point image.
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2.2  Practice
In its simplest form, the image to be compressed is partitioned at two scales, one twice the
other (e.g. into 8x8 and 4x4 blocks). Using Jacquin’s notation, the larger are domain
blocks, and the smaller ones range blocks. The range blocks are non-overlapping and
contain every pixel. The domain blocks may overlap and need not contain every pixel. 

  Figure 1.  Some domain blocks on the left are mapped onto range blocks on the right.

The goal of the compression process is to find an affine mapping wi of the form

       (5)

for each range block, such that when applied to a domain block the difference between
them is small. In (5) the point (x,y) is a domain pixel with a grayscale value z, and (x',y') is
a range pixel with new value z'. The coefficients ei and fi translate the domain block to the
position of the range block as it is shrunk in size by a factor of 2. The coefficient si scales
the luminance value, while the coefficient oi introduced a luminance offset. 

2.3 Convergence
An analysis of IFS convergence must grapple with the “disparity of scale” problem.
Convergence in the theoretical sense is concerned with the image as a whole. Convergence
in the practical sense deals with operations on each pixel. When a pixel is considered
alone, its value converges to a fixed value on the real number line. Taken together they
approach the attractor of (3). This attractor is an image, not a geometric point in the
ordinary sense, despite being called a “fixed point.” Furthermore, the construction of an
Iterated Function System (during compression) occurs midway between these two
perspectives, at the level of pixel blocks. These perspectives are summarized in Table 1.

  Level Entity Space Equation

   high     continuous image              R2              (2)

   mid     range blocks              Rmn              (5)

   low     individual pixels              R1              (8)

Table 1.  Three perspectives on fractal image convergence. 
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The consequence is that s of (2) does not directly constrain {si}, the set of scale factors
that maps domain blocks onto range blocks, as per equation (5). Establishing a link
between the two is the purpose of a contractivity criterion. According to Jacquin, W is
contractive if

       (6)

In other words, all individual transforms must be contractive. This is a sufficiency
condition and it is easy to proceed from (6) to (2). Is it also necessary? Experimentally,
Jacobs et al. found that image quality may be improved by raising smax= 2.0 [4]. In the
author’s experience, this limit can be raised while still retaining convergence. Or, an IFS
may diverge with smax only slightly larger than 1.0. The sections that follow investigate the
behavior of fractal convergence and attempt to synthesize the three levels of Table 1.

3. OBSERVATIONS
During the compression process a domain block is mapped onto each range block under
an affine transformation. The contractivity criterion of equation (6) can be verified
experimentally by forcing all scale factors to some fixed value. All IFSs with smax between
-1 and +1 converge; those outside this range diverge. For one test image called Bird, a
plot of compression error vs. scale value is graphed in Figure 2.

Certainly, if |si| is allowed to assume any value between 0 and 1.0 the resulting IFS will be
contractive. If smax is raised beyond 1.0 the IFS may still produce a good likeness of the
original, as is indicated by the graph of Figure 3. Sample images for smax= { 0.5, 1.0, 2.0}
are display in Figure 4, plus a fourth case where smin= 0.5 and smax= 2.0. Here we observe
two interesting artifacts. First, when all scale factors are restricted to less than 0.5, steep
edges in the image are poorly represented. This is because edges possess a high variance,
and si < 0.5 effectively eliminates high variance domain blocks. Second, when scale factors
are allowed to be as large as 2.0 the Bird image is still evident, but is speckled with pits
and spikes, i.e. isolated pixels that are either dark or bright when the surrounding area is
grey. This is called speckle impulse noise. Not all IFSs with smax > 1.0 exhibit this kind of
defect, but it is always a threat.

 Figure 2. Fractal compression of the Bird Figure 3. Fractal compression of the Bird
 image for fixed scale values, i.e. si = sfixed image with a fixed ceiling on scale values,
 for every range block.   i.e.  for every range block.si ≤ smax

si ∈ (−1,1) ∀ i or 0 ≤ smax < 1, where smax = max
i=1..n

{ si }
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  Figure 4. Fractal compression of Bird for different restrictions on the scaling parameter. 

  (a) smin = 0.0,  smax = 0.5, 6 cycles, partial convergence (1 iteration) = 100.0% 
  (b) smin = 0.0,  smax = 1.0, 10 cycles, partial convergence (1 iteration) = 100.0%

(c) smin = 0.0,  smax = 2.0, 7 cycles, partial convergence (1 iteration) = 67.2% 
(d) smin = 0.5,  smax = 2.0, 21 cycles, partial convergence (1 iteration) = 55.3%
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4. ANALYSIS

4.1 Compound Contractivity
When a fractal image is decompressed, the process usually begins by setting the image
buffer to some uniform value. This seed value may be black, white, or anything in
between. Then, when the IFS is evaluated, each pixel in a particular range block is derived
by transforming the corresponding domain block. In Figure 5, the top left corner pixel is
derived from the pixel labeled z1 (currently set to the seed value), by applying the
transform w0,1. The value at z1, in turn, is derived by applying w0,2 to the pixel labeled z2.
Therefore, after the second iteration, the value at z0 is a product of both w0,1 and w0,2. As
the iterative process continues, the influence on z0 extends “backwards,” jumping around
the image plane in an irregular pattern. This may be termed the “path of influence.”

Figure 5. The path of influence 
on the top left corner pixel, z0.
The symbol w0,n represents the
transform that affects z0 after
n iterations. The open circles
identify a limit cycle of  size
three.

Because the affine transformation shrinks a domain block by a factor of 1/2 in each
direction, a 2x2 pixel cell maps onto one range block pixel, usually by taking the average.
By sampling only one pixel in the cell this computational cost is avoided, though the
fidelity of the resulting image may not be as high. For the sake of simplicity the effect of
averaging 2x2 pixel cells is not considered here, except in passing.

For this analysis we introduce the notation zp,n to denote the value of the pixel p at some
fixed position after n iterations. To avoid an overabundance of subscripts in equation (7)
below, sn and on will stand for sp,n and op,n respectively, the scale and offset of transform
wp,n. The symbol wp,n represents the affine transform n steps up the path of influence from
pixel zp. Thus, the process depicted in Figure 5 can be expressed as:

z0,0 = zseed

z0,1 = o1 + s1z1,0 = o1 + s1zseed

z0,2 = o1 + s1(o2 + s2z2,0) = o1 + s1o2 + s1s2zseed

z0,3 = o1 + s1o2 + s1s2(o3 + s3z3,0) = o1 + s1o2 + s1s2o3 + s1s2s3zseed

...
z0,n = o1 + s1o2 + s1s2o3 + ... + s1s2...sn-1on + s1s2...snzseed        (7)

Note that the terms in (7) are ordered from most significant to least significant ___ in most
circumstances the closer a transform is to the current pixel, the greater influence it exerts.
The qualifier “in most circumstances” is necessary because the sequence

zp,n = Σ
i=1

n

op,i

 Π

j=1

i−1
sp,j


 + zseed Π

j=1

n

sp,j converges only if Π
j=1

n

sp,j → 0 as n → ∞. (8)
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If all scaling factors are set to some fixed value (as is the case in Figure 2), then
convergence demands that smax be less than 1.0. When this condition is relaxed the
convergence of a particular pixel is still possible, so long as equation (8) holds. In other
words, so long as the product of contractive scale factors outweighs the expansive ones, a
limit value exists.

Naturally, the IFS is not iterated into infinity, but only until the emergent image stabilizes;
between four and eight iterations often suffices in practice. To capture the behavior after a
finite number of iterations, we introduce the term compound contractivity, a concept that
applies to the pixel level, primarily, but may be extended to the entire image.

Definition: After n iterations, pixel p has a compound contractivity of

In other words, it is the multiplicative average of the sequence of scale factors along the
path of influence. The importance of this concept is illustrated with a simple example.

4.2  Simple Example
Suppose that a line of four pixels in a fractal image are related in the manner shown below.
The arrows indicate mappings from domain pixels to range pixels, and the numbers above
the arrows indicate scale factors. The leftmost pixel maps onto itself ___ a situation that is a
bit unusual, but not forbidden. This mapping is contractive and will, therefore, converge to
a fixed value. (The precise number also depends on the offset.) The values of the other
three ultimately derives from the leftmost pixel, and, despite having scale factors of 2.0,
they too will converge. That is, equation (8) applies. To be specific, the compound
contractivity of each pixel evolves as listed. The leftmost pixel is always contractive but
the other three are not. Eight iterations are required before the rightmost pixel ___ and
hence entire system ___ is contractive.

n = 1 0.6 2.0 2.0 2.0
n = 2 0.6 1.095 2.0 2.0
n = 3 0.6 0.896 1.339 2.0
n = 4 0.6 0.811 1.095 1.480

4.3  Eventual Contractivity
As previously mentioned, Jacobs et al. observed a similar phenomena in real images.
Namely, that an IFS may converge despite being comprised, at least in part, by expansive
transforms. To account for this they introduced the following notion.

Definition: An IFS, W, is eventually contractive if there exists some
positive integer n such that W n is contractive. The integer n specifies the
number of iterations required of W before the system is contractive.

sp
n =


 Πj=1

n

sp, j



1/n

(9)
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Note that this definition applies to the IFS in whole ___ the top level in Table 1 ___ not to
the middle level of individual affine transforms. The connection between the two levels is
established by extending equation (9) to the image as a whole.

Definition: After n iterations, an IFS, W, has compound contractivity

     (10)

Therefore, W n is eventually contractive if . It can be easily established that this issmax
n < 1.0

both a necessary and sufficient condition.

4.4  Cycle Contractivity
For a particular pixel to converge to some fixed value rather than diverge without limit, its
compound contractivity must eventually fall within the range [0, 1). This may happen, or it
may not, depending on the dynamics of the IFS. The example in section 4.2 suggests an
answer: the contractivity of a pixel is ultimately determined by its limit cycle. The limit
cycle is that portion of the path of influence that forms a closed loop, i.e. those pixels that
are visited more than once. 

In Figure 5, the triad of three open circles form the limit cycle of the pixel z0 (and the
others as well). If the limit cycle is contractive, then all pixels that fall within its path of
influence will be eventually contractive.

A limit cycle may contain one pixel, or it may traverse the entire image. More typically, an
image will contain ten to twenty limit cycles of varying sizes. By application of the “pigeon
hole” principle, every image has at least one limit cycle and every pixel belongs to one and
only one limit cycle. Therefore, the limit cycle to which a pixel belongs dominates its
eventual contractivity (i.e. as ). The contractivity of a limit cycle, lc, is simplyn → ∞
equation (10), appropriately restricted.

With these concepts in place, identifying a satisfactory contractivity criterion ___ one that
integrates all three levels of Table 1 ___ is straightforward.

Contractivity Criterion: an IFS is contractive if and only if all the
component limit cycles are contractive.

On the other hand, if all of the limit cycles are expansive then the IFS will not converge to
an attractor image. If there happens to be a mixture ___ some contractive and some
expansive cycles ___  then the situation is as in Figures 4c and 4d. A recognizable rendition
of the bird exists, but is afflicted with impulse noise. Mathematically speaking the IFS does
not converge, but to the human eye an image does emerge, albeit with a random
distribution of point-wise defects. This behavior may be termed partial convergence.

smax
n = max { sp

n} = max{ Π
j=1

n
sp,j , for all pixels p in the image}

slc
n =


 Πj=1

n

sp, j



1/n

, n = size of limit cycle, p ∈ { limit cycle pixels} (11)
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4.5  Partial Contractivity
Although the limit cycles of an IFS determine its overall contractivity, in practice they are
seldom the determining factor. This is because many pixels reside on long branches and
may, therefore, require tens of iterations before they “feel” the influence of a limit cycle. If
the decompression process is halted after four iterations, say, then the crucial factor is the
compound contractivity (sp

n) when n = 4. Pixels remaining expansive at this stage are
susceptible to large fluctuations that may run outside the range [0..255]. If a significant
portion of such pixels exist, then the fractal image is prone to speckle impulse noise. This
is the situation in Figure 4d. The severity of speckle noise can be measured with the
formula in (12).

Definition: After n iterations, an IFS has a partial contractivity of

where M and N are the image dimensions, and p enumerates over all pixels. 

The partial contractivity as  is determined by counting all the pixels that lie in then → ∞
path of influence of contractive limit cycles. In Table 2, measurement for the images of
Figures 4c and 4d are presented for various stages of decompression. The partial
contractivity is expressed both as a percentage and as an absolute count of pixels.

  Iterations Fig 4c Fig 4d

  1 44,064 67.2% 36,208 55.3%

  2 51,880 79.2% 37,248 56.8%

  4 58,977 90.0% 39,236 59.9%

  8 64,011 97.7% 47,709 72.8%

  16 65,401 99.8% 51,005 77.8%

  limit 65,442 99.9% 60,246 91.9%

Table 2. The evolution of partial contractivity for the two IFSs that 
suffer from impulse noise (refer also to Figures 4 and 6).
The images are 256x256 pixels in size.

These percentages summarize the evolution of total compound contractivity. As an image,
the manner of evolution is visualized in Figure 6. Black represents areas that are expansive
and are hence likely to cause impulse noise. Compared to the right column of Figure 6, the
more rapid convergence (to white) of the left column correlates well with the numbers in
Table 2 and the appearance the bird in Figure 4.

1
MN Σ

p=1

MN

count( sp
n ), count(x) =


î


1, if x < 1.0
0, otherwise



 (12)
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5. CONCLUSION
Fractal image compression, despite its great potential, suffers from some flaws that may
prevent its adaptation from becoming more widespread. One such problem is the difficulty
of guaranteeing convergence, let alone a specific error tolerance. To help surmount this
problem, we have introduced the terms compound, cycle, and partial contractivity ___

concepts indispensable for understanding convergence of fractal images. Most important,
they connect the behavior of individual pixels to the image as a whole, and relate such
behavior to the component affine transforms.

For simplicity, certain issues have been left untreated. For example, the IFS has been
studied in the discrete domain as an array of pixels, rather than as a continuous function in
R2. Most mathematical treatments adopt this latter perspective. And second, the operation
of averaging 2x2 pixel cells (when mapping from domain to range blocks), has been
omitted. This operation acts to “mix together” four times as may scale factors during each
iteration. Interestingly, the rate and quality of convergence is improved. This suggests that
convergence may be improved by increasing the relative size of domain to range blocks.
Most systems use a 2:1 ration because it works and is computationally efficient.
Nonetheless, other possibilities warrant further study.
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(a) 1 iteration
left:   contractivity = 67.2%
right: contractivity = 55.3% 

(b) 2 iterations
left:   contractivity = 79.2%
right: contractivity = 56.8% 

(c) 4 iterations
left:   contractivity = 90.0%
right: contractivity = 59.9% 

(d) 8 iterations
left:   contractivity = 97.7%
right: contractivity = 72.8% 

 Figure 6. Visualization of partial contractivity. Pixels that are expansive 
are represented as black. Contractive pixels are represented as
white. The left column corresponds to Figure 4c and the right
column corresponds to Figure 4d. 
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