
PROGRESSIVE FRACTAL CODING

Iván Kopilović, Dietmar Saupe, Raouf Hamzaoui

Universität Leipzig, Institut für Informatik, Augustusplatz 10–11, 04109 Leipzig, Germany

ABSTRACT

Progressive coding is an important feature of compression schemes.
Wavelet coders are well suited for this purpose because the wavelet
coefficients can be naturally ordered according to decreasing im-
portance. Progressive fractal coding is feasible, but it was pro-
posed only for hybrid fractal-wavelet schemes. We introduce a
progressive fractal image coder in the spatial domain. A Lagrange
optimization based on rate-distortion performance estimates de-
termines an optimal ordering of the code bits. The optimality is in
the sense that the reconstruction error is monotonically decreas-
ing and minimum at intermediate rates. The decoder recovers this
ordering without side information. As a side effect, our work mo-
tivates improved bit allocation strategies for fractal coding.

1. INTRODUCTION

A progressive image code is such that a sequence of prefixes of
the code can be interpreted by the decoder, yielding reconstruc-
tions whose quality increases monotonically with the length of the
prefix. This is a useful property because it allows to stop decoding
at an early stage if one is already satisfied with the quality of the
reconstructed image or if the image is not appropriate. Most mod-
ern compression schemes such as the embedded wavelet coder of
Shapiro [8] or JPEG2000 generate progressive image codes.

Standard fractal image coding [4] is a spatial domain tech-
nique. The code consists of parameters for a contractive affine
transformation, which when iterated, converges to an approxima-
tion of the original image. The affine transformation is given by
a partition of the image into blocks, which are approximated by
downsampled, scaled, and grey-level shifted blocks of the same
image. In this setting, the progressive transmission of the fractal
code is a difficult task because the relative importance of the trans-
formation parameters is not obvious. Fractal image coding can
also be done in the wavelet domain [3] allowing the generation of
progressive codes [2].

We first define a rate-distortion optimality criterion for the
transmission of an image code. Our objective is to reorder the
bit-stream such that the reconstruction error is monotonically de-
creasing and minimum at intermediate rates. We use Lagrange
optimization to design a spatial domain progressive fractal coder
that satisfies the optimality criterion. Our encoder sends the bits
of the fractal code according to rate-distortion importance, and the
decoder recovers this ordering by retracing the optimization pro-
cedure of the encoder without requiring any side information bits.
Our approach is similar to the one used in [6] for wavelet coders.

2. PROGRESSIVE CODING: THEORY

The bit-stream of any image code contains values for parameters
used by the compression method. These parameters can be repre-
sented by one or more bits. Our goal is to order the parameters so
that if the corresponding bit-stream is stopped at some point, the
image reconstruction based on the partial knowledge of the code
is optimal for the number of bits received.

Let us denote the set of the parameters with Ω. The image
code is given by a mapping Q : Ω → {0, 1}+, where {0, 1}+ it
the set of all finite sequences of bits. For each parameter ω ∈ Ω
we denote the number of bits in Q(ω) by �(ω). For A ⊂ Ω we set
�(A) =

∑
ω∈A �(ω).

We formulate the problem of progressive coding as follows.
Suppose that the bit-stream is stopped after receiving the bits cor-
responding to the set of parameters A ⊂ Ω with m = �(A). If the
decoder can identify A, along with the order of transmitted bits in
A then it will know Q(ω) for all ω ∈ A. Then the decoder must
apply a bit assignment strategy ΦA : Ω \ A → {0, 1}+ for the
remaining unknown parameters ω ∈ Ω \ A. By defining a full
code QA as QA(ω) = Q(ω) for ω ∈ A and QA(ω) = ΦA(ω)
otherwise, the decoder may proceed to produce a reconstruction
yielding some error E(A). We denote by P the set of all A ⊂ Ω
for which the decoder has an assignment strategy ΦA. We shall
see in Section 4 that there exist subsets of Ω not belonging to P .

Suppose that the bit-stream is allowed to be stopped at n suc-
cessive points, where the nth point is the end of the total bit-
stream. At each stage k = 1, . . . , n, the received bits will cor-
respond to a parameter set Ak ∈ P , where An = Ω. Thus we
have a sequence A1 ⊂ A2 ⊂ · · · ⊂ An of parameter sets, which
correspond to the stages of the progressive transmission.

Let m1 < m2 < · · · < mn = �(Ω) be a sequence of num-
bers defining the rate constraints. The code Q together with the
parameter ordering A1 ⊂ A2 ⊂ · · · ⊂ An = Ω, where Ak ∈ P
for k = 1, . . . , n, is called an optimal progressive code with re-
spect to the error measure E under the given rate constraints if

E(Ak) = min{E(A) | A ∈ P, A ⊃ Ak−1, �(A) ≤ mk}, (1)

for all stages k = 1, . . . , n with A0 = ∅.
An optimal progressive coder/decoder system can be obtained

as follows. The encoder uses an optimization procedure to succes-
sively generate the parameter sets Ak satisfying (1) based on the
bits generated in stage k−1. The decoder uses the same optimiza-
tion procedure and mirrors the parameter subset generation of the
encoder. In this way, the decoder is able to track the bit-stream and
to interpret the incoming bits.

Generating the parameter subsets of the progressive code is a
constrained optimization problem. We use the Lagrange multiplier
method to handle the rate constraints. The Lagrange functional is
defined as L(A, λ) = E(A) + λ�(A), for A ∈ P and λ ≥ 0.

Given the real parameters λ1 ≥ · · · ≥ λn, we generate an optimal
progressive code with the following algorithm. We set A0 = ∅
and define

Ak ∈ arg min{L(A, λk) | A ∈ P, A ⊃ Ak−1}. (2)

The parameter sets A1 ⊂ . . . ⊂ An generated by the above al-
gorithm will satisfy (1) for the rate constraints m′

k := �(Ak),
k = 1, . . . , n. The parameters λk, k = 1, . . . , n, are determined
by a search method such that m′

k is close to mk.

3. FRACTAL CODING

In fractal image compression, the encoder finds a contractive im-
age operator T whose fixed point fT is an approximation to the
original image f . The decoder constructs fT as the limit of the
sequence of iterates {f (k)}k≥0, where f (k+1) = T (f (k)) and
f (0) is an arbitrary initial image. The operator T is given by
a partition of the image support I into non-overlapping blocks
called ranges and by fractal parameters associated to each range
Ri, 1 ≤ i ≤ nR, which consist of

• a block (domain) Di ⊂ I,

• a scaling factor si ∈] − 1, 1[,

• and an offset oi ∈ R,

which are selected such that the best affine approximation Ti(Ri)
for Ri in �2-sense [9] is

Ti(Ri) = siSi(Di − µ(Di)1Di) + oi1Ri , (3)

where Si is an operator downsampling its argument via pixel av-
eraging to match the range size, µ(Di) is the mean value of the
pixel intensities over Di, and 1X is the block with unit intensity at
every pixel of X . By construction, the vectors

bs
i = Si(Di − µ(Di)1Di) and bo

i = 1Ri

used to approximate Ri are orthogonal. It follows from the least
squares method that

si =
|Ri|〈bs

i , Ri〉 − |Ri|2µ(Di)µ(Ri)

|Ri|‖bs
i‖2

2 − µ(Di)2
and oi = µ(Ri),

where 〈·, ·〉 denotes the inner product, ‖ · ‖2 the Euclidian norm,
and |Ri| the number of pixels in Ri. We note that ‖bo

i ‖2
2 = |Ri|.

Thus the value of ‖bo
i ‖2

2 depends only on the partition. The ap-
proximation error ‖T (f)−f‖2

2 =
∑nR

i=1 ‖Ti(Ri)−Ri‖2
2 is called

the collage error. It is often used as an estimation for the re-
construction error ‖f − fT ‖2

2. Note that T (f) and the residual
T (f) − f are orthogonal by construction.

The fractal code for an image consists of bits for the image
partition and bits for the quantized fractal parameters. In this pa-
per we use a quadtree to describe the partition [4]. The offset and
scaling parameters are encoded as quantized values with no and
ns bits respectively. The domain Di is specified as a position in a
spiral around the range block Ri (see [1, 7]). The position is en-
coded with variable length encoding. The number of bits allocated
for the domain Di will be denoted by nDi .

4. PROGRESSIVE FRACTAL CODING

In this section we discuss the concepts of progressive coding from
Section 2 for fractal image compression. We explain the parameter
set Ω, the set P of feasible parameter subsets A ⊂ Ω, the bit
assignment strategy ΦA for completing a partial code, and finally
two choices of the error measure E used in (1) and (2).

As described in Section 3, a fractal code consists of the bi-
nary representation of the header information including the image
partitioning in nR range blocks, and the binary representation of
the list of tuples (Di, si, oi), i = 1, . . . , nR, each one consum-
ing nDi + ns + no bits. We define the parameters ω ∈ Ω for
progressive coding as follows.

1. The header is a parameter.

2. Each bit in the binary representations of the scaling and off-
set numbers si and oi is a parameter, except the most sig-
nificant bit of each scaling factor si.

3. For i = 1, . . . , nR, the most significant bit of the scaling
factor si, together with all nDi bits for the address of the
corresponding domain block Di is a parameter.

The motivation for these choices follows from the principle that
the parameters should be regarded as atomic in the sense that any
proper part of the binary representation of a parameter is useless
for the purpose of decoding. Therefore, the header information
should not be allowed to be split into several parameters; it is vital
for the interpretation of the rest of the code. Also the domain block
address is meaningful only as an entity; a partial address typically
points to an unrelated domain block. Furthermore, the address still
is useless if no information about the corresponding scaling factor
is available. Thus, the minimal useful entity is the domain block
address together with the most significant bit of the binary repre-
sentation of the corresponding scaling factor. The lengths l(ω) of
these parameters are simply given by the number of corresponding
bits, i.e., 1, 1 + nDi , and the number of bits of the header.

We now define the set P of feasible parameter subsets A ⊂ Ω
so that we can derive a suitable heuristic bit assignment strategies
ΦA for complements Ω\A. We give this definition in the form of
two rules:

1. For A ∈ P , the header parameter is contained in A.

2. If A contains a parameter corresponding to a bit of the bi-
nary representation of a scaling factor si or of an offset oi,
then A contains all parameters corresponding to the bits of
the scaling factor or the offset that are more significant.

The first rule ensures that the header is sent first in any progressive
code. The second rule implies that bits for scaling factors and
offsets are sent in order of significance.

For a feasible parameter set A ∈ P the natural bit assignment
strategy ΦA : Ω\A → {0, 1}+ is as follows. If no bits for a
scaling factor si are in A, then set the bits of si such that si = 0.
Thus, the domain address becomes irrelevant and it can be chosen
arbitrarily. In all other cases, set to 0 all bits of si and of oi that are
not in A, except for the most significant ones of these, which are
set to 1. In this way the scaling factors and offsets are dequantized
to numbers in the center of the corresponding intervals that are
prescribed by the information already contained in A.

For the error measure E(A) in the optimization we consider
the collage error. Assume that we have received the partial pro-
gressive code Q(A). We then complete the code by ΦA(Ω\A).
After dequantization we obtain the transform parameters sA,i and

oA,i for i = 1, . . . , nR. The affine transformations defined in (3)
using these parameters will be denoted by TA,i. Recall from Sec-
tion 3 that bs

i ,b
o
i , i = 1, . . . , nR and T (f) − f are orthogonal

vectors. Using this fact, the collage error for the transform TA,
derived from parameters in A, can be expressed as

E(A) =

nR∑

i=1

‖TA,i(Ri) − Ri‖2
2 =

nR∑

i=1

‖Ti(Ri) − Ri‖2
2

+

nR∑

i=1

|sA,i − si|2‖bs
i‖2

2 + |oA,i − oi|2‖bo
i ‖2

2 (4)

The first term on the right hand side is the collage error of the
complete fractal code. It does not depend on A and may be pre-
computed (or omitted) for the optimization. With these settings
a progressive fractal code with respect to collage error E can be
constructed using the Lagrange multiplier method in Section 2.

However, using this scheme the decoder is not able to identify
the parameters belonging to the received partial code Q(A). We
solve this problem as follows. At stage k the progressive encoder
uses the error measure E(A) and the length function l(ω) in order
to derive the next parameters Ak+1\Ak of the code using (1). We
modify E(A) and l(ω) such that the decoder is capable of retrac-
ing the optimization of the encoder. We omit the constant term in
(4) and replace E(A) by the estimate

E′(A) =

nR∑

i=1

E(|sA,i − si|2)χA,i + E(|oA,i − oi|2)‖bo
i ‖2

2, (5)

where E denotes an estimation of the given scalars, and χA,i is
an estimate for ‖bs

i‖2
2. Since the partition is received at the be-

ginning, the value ‖bo
i ‖2

2 is known to the decoder. With the scal-
ing factors and offsets modeled as independent and uniformly dis-
tributed random variables we can straightforwardly compute ap-
propriate expectations yielding the estimates E(|sA,i − si|2) and
E(|oA,i − oi|2).

We now discuss the estimation χA,i of ‖bs
i‖2

2. Recall that
‖bs

i‖2
2 is the square norm of the dynamic part of the downsampled

domain block in the original image for the i-th range block Ri.
Let fTk denote the image reconstruction of the decoder at stage
k. We construct the corresponding domain block using the cur-
rent reconstruction fTk in place of the original f and denote it by
bs

i,k. If the domain block address (and the most significant scaling
bit) are already included in Ak we set χA,i = ‖bs

i,k‖2
2. Other-

wise, bs
i,k is zero, and we must estimate ‖bs

i‖2
2 by other means.

The number s2
i ‖bs

i‖2
2 is equal to the variance in the range block

Ri of the reconstruction fT multiplied by the number of pixels in
the range. Therefore we use an estimate χA,i for ‖bs

i‖2
2 that is

proportional to the variance of the current reconstruction fTk in a
neighborhood Ni of the range block Ri, e.g., given by the pixels
bordering Ri. Let oi,k be the offset of the range Ri at stage k and
let hk be the residual image hk(x) = fTk (x) − oi,k, for x ∈ Ni,
and hk(x) = 0 otherwise. We set χA,i = ci‖hk‖2

2, where the
constant ci is chosen proportional to the number of pixels in the
range block Ri and inversely proportional to the number of pixels
in the neighborhood Ni.

Finally, we have to estimate the length l(ω) when the param-
eter ω contains a domain block address, since the addresses are
variable length encoded. The codeword length of the domain ad-
dress was estimated with 1

nR

∑nR
i=1 nDi which number is known

to the decoder, because it is included in the header.

14

16

18

20

22

24

26

28

30

32

34

0 10 20 30 40 50 60 70 80 90 100

PS
N

R
 (

dB
)

number of received bits in percent (%)

upper bound (collage error)
upper bound (reconstruction error)

optimal progressive
non-optimized progressive

Fig. 1. Progressive coding for the 512×512 image Lenna using
a quadtree fractal code at 0.5 bits per pixel. The top two curves
show upper bounds for progressive fractal coding. The third curve
displays the reconstruction errors for a practical progressive coder.
The bottom curve shows reconstruction errors with normal order.

The computation of optimal progressive codes with respect to
collage error (4) or the estimate (5) is not practical by straightfor-
ward exhaustive search in (2). The error models E(A) and E′(A)
each consist of 2nR terms (ignoring the first constant sum in (4))
which allows us to rewrite the Lagrangian L(A, λ) as a sum of
2nR corresponding terms. Each one of these terms concerns er-
rors regarding only one range block as they depend on parameters
containing bits for the scaling factor or bits for the offset. There-
fore each of the 2nR Lagrangian terms may be minimized inde-
pendently from all others.

For the computation of E(A) and E′(A) we note that all in-
volved terms may be precomputed as soon as the partition is avail-
able, except for the estimates χA,i, which require iterative decod-
ing of fTk at each stage k. For this repeated decoding fast update
methods can be used [5].

5. RESULTS AND CONCLUSION

We computed optimal progressive fractal codes w.r.t. collage er-
rors E and E′ for the Lenna image (512×512) originally com-
pressed to 0.5 bits/pixels yielding a compressed file size of 16 KB.
The target rate constraints were defined as mk = 16k/100 KB,
k = 1, . . . , 100. The results are shown in Figure 1 which displays
the achieved image reconstruction quality as the percentage of the
received code increases. The two top curves display the ideal case
of optimal progressive coding w.r.t. collage error E. The solid
curve shows the collage errors and the broken curve slightly be-
low it is for the corresponding reconstruction error. This is only an
ideal result, since the decoder cannot attribute the received code to
the parameters without additional side information that is not in-
cluded in the bit rate. Therefore, we may regard the top curves as
upper limits of the achievable performance in progressive coding.
A practical result is optimal progressive coding w.r.t. collage error
estimates E′ and shown by the third curve. It is about 2 to 3 dB
PSNR below the upper bound of the ideal progressive coder. The
last curve at the bottom in Figure 1 shows the poor performance
when using the normally ordered bit-stream, where the bits for the

n = 8.6%, PSNR=20.22 dB n = 24%, PSNR=25.97 dB

n = 54%, PSNR=30.15 dB n = 100%, PSNR=33.52 dB

Fig. 2. Four sample decodings from the optimal progressive frac-
tal code. n is the size of the partial codes. The PSNR is for the
reconstruction error.

parameter tuples (Di, si, oi), i = 1, . . . , nR are placed one after
the other in a fixed order determined by the partition. The recon-
structed images at four stages of the practical progressive code are
shown in Figure 2.

Our work motivates an improved bit allocation of fractal codes
simply by letting an optimal progressive coder truncate the output
code at a certain percentage of the total rate. Figure 3 shows the
results for a range of compression ratios for the test image and
parameter settings as above. The coder outputting only 80% of the
original rate performed best, yielding gains in PSNR up to 0.6 dB.

Let us summarize. We designed an optimal progressive fractal
image coder in the spatial domain. A Lagrange optimization based
on performance estimates determines an optimal order of the code
bits. The decoder recovers this order and produces high quality
reconstructions early on. Although we used quadtree partitions,
the method applies to other partitions as well.

Acknowledgment. We thank Michael Hiller for programming
work. Our research is supported by grant Sa449/8-1 of the Deutsche
Forschungsgemeinschaft (DFG).

6. REFERENCES

[1] Barthel, K. U., Voyé, T., Noll, P., Improved fractal image
coding, in: Proc. PCS’93, Lausanne, March 1993.

[2] Caso, G., Kuo, C.-C. J., New results for fractal/wavelet im-
age compression, in: Proc. SPIE VCIP’96, Vol. 2727, pp.
536–547, 1996.

[3] Davis, G. M., A wavelet-based analysis of fractal image com-
pression, IEEE Trans. Image Processing 7 (1998) 141–154.

[4] Fisher, Y., Fractal Image Compression — Theory and Appli-
cation, Springer-Verlag, New York, 1994.

27

28

29

30

31

32

33

34

10 20 30 40 50 60 70 80

PS
N

R
 (

dB
)

compression ratio

80%
90%

100%

Fig. 3. Improved rate-distortion performance by optimal progres-
sive coders that truncate fractal codes at a given percentage of the
total rate.

[5] Hamzaoui, R., Saupe, D., Hiller, M., Fast code enhancement
with local search for fractal image compression, in Proc.
IEEE ICIP-2000, Vancouver, Sept. 2000.

[6] Li, J., Lei, S., An embedded still image coder with rate-
distortion optimization , IEEE Trans. on Image Processing
8 (1999) 913–924.

[7] Lu, N., Fractal Imaging, Academic Press, 1997.

[8] Shapiro, J. M., Embedded Image Codign Using Zerotrees of
Wavelet Coefficients, IEEE Trans. on Signal Proc. 41 (1993)
3445–3461.

[9] Øien, G. E., Lepsøy, S., A class of fractal image coders with
fast decoder convergence, in [4].

