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Abstract

We propose a novel algorithm for fractal video sequence coding, based on the Cir-
cular Prediction Mapping (CPM), in which each range block is approximated by
a domain block in the circularly previous frame. In our approach, the size of the
domain block is set to be same as that of the range block for exploiting the high
temporal correlation between the adjacent frames, while most other fractal coders
use the domain block larger than the range block. Therefore the domain-range map-
ping in the CPM becomes similar to the block matching algorithm in the motion
compensation techniques, and the advantages from this similarity are discussed.
Also the modified collage theorem, which yields better prediction method for the
CPM than the conventional collage theorem, is provided by linear systematic anal-
ysis. The computer simulation results on real video-conferencing image sequences
demonstrate that the average compression ratios ranging from 60 to 70 can be
obtained with good subjective quality.

1. INTRODUCTION

Fractal compression, which is based on the IFS (iterated function system) proposed by
Barnsley!, is a new approach to image coding recently. The basic notion of the fractal
image compression is to find a contraction mapping whose unique attractor approximates
the source image. In the decoder, the mapping is applied iteratively to an arbitrary image
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to reconstruct the attractor. If the mapping can be represented with less bits than the
source image, a coding gain is obtained.
After Jacquin? proposed the first automatic algorithm for fractal coding of still images,

3456 has been made to the fractal still image coding techniques. However, lit-

much effor
tle work has been reported on the fractal video sequence coding techniques. Lazar’ and
Li®, respectively, extended the still image coding techniques straightforwardly to the video
sequence coding, by employing the 3-D domain blocks and range blocks. The Lazar’s al-
gorithm is the extended version of the Jacquin’s algorithm? and the Li’s algorithm is the
extended version of the Monro’s algorithm®, respectively. But these algorithms are very
complicated to implement, and severe 3-D blocking artifacts are observed in the recon-
structed images in many cases. Alternative approach, which encodes each frame using the
previous frame as a domain pool, was proposed by Fisher®. The main advantage of this
algorithm is that fast decoding is possible, since it does not require iteration at the decoder.
But, in this algorithm, the temporal correlation between the frames may not be effectively
exploited, since the size of the domain block is larger than that of the range block.

In this paper, a novel approach, called the Circular Prediction Mapping (CPM), is pro-
posed to combine the fractal sequence coder with the well-known motion estimation/motion
compensation (ME/MC) techniques, so that the proposed algorithm is capable of exploiting
the high temporal correlation between the frames. In the CPM, n frames are encoded as a
group, and each range block is motion-compensated by a domain block in the n-circularly
previous frame, which is of the same size as the range block. By selecting appropriate pa-
rameters in the domain-range mappings, the CPM becomes a contraction mapping. In the
decoder, the CPM is applied iteratively to arbitrary n frames to reconstruct the attractor
frames.

The collage theorem® provides the attractor error bound at the decoder, in terms of
the collage error at the encoder. But we shall show that the attractor error bound can
be significantly reduced by modifying the collage theorem, due to the fact that the search
region for the domain block is confined to the n-circularly previous frame in the CPM. This
modified collage theorem gives a new prediction method at the encoder. The computer
simulation results on real video-conferencing image sequences demonstrate that the average
compression ratios ranging from 60 to 70 can be obtained with the good subjective quality,
by employing this new prediction method for the CPM.

2. BACKGROUND

The fractal image compression techniques are based on the contraction mapping theorem

and the collage theorem !

. In this section, we briefly describe these two theorems for the
sake of completeness.

Let (X,]| - ||) be the complete metric space of still images or video sequences. Then
a transformation f : X — X is called a contraction mapping, if there exists a constant

0 < s < 1 such that

If(z)— f(»)]| <s-|lz—y for all z,y € X. (1)

The constant s is called the contractivity factor for f. The contraction mapping theorem
ensures that each contraction mapping f has a unique attractor (fixed point) z¢, such that

f(zg) = =5 (2)
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Figure 1: The structure of the circular prediction mapping (CPM)

Moreover, the f can be applied iteratively to an arbitrary point y € X to obtain the
attractor z¢, by
lim f*(y) = =zy. (3)

n— 00

In the context of image coding, if the encoder find a contraction mapping whose unique
attractor is the source image, then the mapping can be applied iteratively to an arbitrary
image to reconstruct the source image in the decoder. Therefore a coding gain is obtained,
if the mapping can be represented with less bits than the source image. But it is practically
impossible to find a contraction mapping whose attractor is exactly the source image, since
it requires too many calculations and the size of the encoded data for the mapping gets
very large as we attempt to encode the source image losslessly.

As alossy coding technique, the fractal encoder attempts to find the contraction mapping
f whose collage f(z) is close to the source image z. Then the collage theorem provides the
relation between the collage error at the encoder ||z — f(z)|| and the attractor error at the
decoder ||z — z¢||, given by

1
o= a4l < 7— -l = @)l (4)

where s is the contractivity factor for f. This means that the decoded attractor z¢ is close
to the source image z, if the collage f(z) is close to the source image z. The optimization
of the collage, instead of the attractor, alleviates high complexity of the encoder.

3. CIRCULAR PREDICTION MAPPING (CPM)

In this section, the proposed CPM, which is a suitable contraction mapping for encoding
and decoding of moving image sequences, is described and many properties relating to the
CPM are discussed.

In the CPM, n frames are encoded as a group, and each frame is predicted blockwise
from the n-circularly previous frame, as shown in Figure 1. The k-th frame Fj is partitioned
into the range blocks, and each range block in Fj is predicted or approximated by a domain
block in Fj;_yj,, where [k], denotes (k modulo n).

The size of the domain block is set to be same as that of the range block in our approach,
while the domain block is larger than the range block in most other fractal coders®”:. Since
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there exist many temporal redundancies in moving image sequences, there is more chance
of good domain-range mapping when the size of the domain block is same as that of the
range block, in which case the algorithm to find the optimal domain block becomes similar
to the block matching algorithm in the motion compensation techniques.

3.1 Mathematical Model of the CPM

To the end of this section, we assume without loss of generality that 4 frames are encoded
as a group, i.e., the length of a coding group n is 4. Then the CPM is composed of 4 frame-
to-frame mappings, and each frame-to-frame mapping is sum of domain-range mappings.

¢ domain-range mapping : Each range block R; in the k-th frame F} is approximated
by a domain block Dg; in the 4-circularly previous frame Fj;_q),, which is of the same size
as the range block. The approximation of the R; is given by

Ri 2 Ri=s; O(Dy)+ o0 - C, (5)

where a(7) denotes the location of the optimal domain block, and s;, o; are real coefficients,
respectively. C is a constant block whose all pixel values are 1, and O is the orthogonal-
ization operator which is proposed by @ien'? for fractal still image coder. This operator
removes DC component from Dy(;), so that O(Da(i)) and C are orthogonal to each other.
After the orthogonalization, the optimal coefficient values of s;, 0; can be directly obtained
by projection of R; onto span{O(D,;))} and span{C}, respectively. Notice that the s;
coefficient determines the contrast scaling in the mapping, and the o; coefficient represents
the DC value of the range block R;.

This domain-range mapping can be interpreted as a kind of motion compensation tech-
niques. We adopt a motion model that describes the motion of image objects by the
translationally moving blocks. Then the a(%) describes the translational motion of block,
i.e., the a(t) is the motion vector. Besides the translational motions, the changes in contrast
and overall brightness of blocks are compensated by the s; and o; coefficients, respectively.

The main advantage of the proposed domain-range mapping can be realized from the
above interpretation. In real moving image sequences, small motion vector is more probable
than large motion vector. Therefore the search region for the motion vector a(z) can be
localized to the area near the location of the range block, while most other fractal coders
should search over much larger region to find a good domain-range mapping, alleviating the
computational burden of the encoder. In addition, the a(z) can be coded with less bits.

¢ frame-to-frame mapping : The frame-to-frame prediction mapping from the Fjx_yj,
to the Fy is sum of the domain-range mappings in Eq.(5), given by

Fr & Fg = Ly Fip_q), + Tk, (0<k<4) (6)

where F{ denotes the k-th collage (predicted) frame, Ly is the appropriately rearranged
square matrix which is composed of the s; coefficients and the orthogonalization operators
in Eq.(5), and T% is the rearranged column matrix which is composed of the o; coefficients
in Eq.(5), respectively.

e circular prediction mapping : The CPM is composed of the 4 frame-to-frame mappings
in Eq.(6), given in array form by

F° = LF4+T
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where F = [Fy, Fy, F,, F3]7 denotes the source sequence, and F*© = [F§, Ff, F5, F§]T denotes
the collage sequence, respectively. This CPM is an affine mapping which is determined by
the linear operator L and the translation vector T'.

In the domain-range mapping, the DC value for each range block is represented by the
o; coefficient, and the other AC informations are contained in the motion vector a(%) and
the contrast scaling factor s;. Therefore by inspection of Eqs.(5)-(7), it can be observed
that the DC and AC informations for all the range blocks are contained in the translation
vector T' and the linear operator L, respectively.

In the decoder, the CPM is applied iteratively to an arbitrary sequence to obtain the at-
tractor sequence. Thus the CPM should be contractive for the iterative process to converge.
Since the CPM is an affine mapping, the contractivity factor for the CPM is given by the
norm of the linear operator || L||, which is the square root of the largest eigenvalue of LT L in
[2-metric !°. Therefore the encoder should select appropriately the coding parameters a(3),
s; in Eq.(5), which determine the linear operator L, so that all the eigenvalues of LTL are
less than 1. But it is practically impossible to compute the eigenvalues of LT L everytime we
select or quantize the coding parameters, since the matrix L is very large and complicated
in general. To overcome this problem, we constrain the contrast scaling coefficients s; to be
quantized between -1 and 1 at the encoder, instead of controlling the eigenvalues of LT L
directly. This constraint ensures the contractivity of the domain-range mapping given in
Eq.(5), since the contractivity factor of the domain-range mapping is given by the norm
of the linear operator |[s;0| and the orthogonalization operator O always has unit matrix
norm. In other words, the local contractivity of the CPM is guaranteed by the constraint
on the contrast scaling coefficients s;. Then the iterative applications of the CPM will be
eventually contractive® in most cases, even if the contractivity factor of the CPM is larger
than 1.

3.2 Modified Collage Theorem for the CPM

The collage theorem gives the attractor error bound at the decoder, in terms of the collage
error at the encoder, as mentioned in section 2. Most fractal encoders attempt to find the
contraction mapping, which minimizes the collage error, based on this theorem. Figure 2.(a)
illustrates the direct application of the collage theorem to the proposed CPM, in which the
encoder minimizes the prediction error (collage error) of Fj from the 4-circularly previous
frame Fj;_q),. In other words, each frame is predicted from the 4-circularly previous source
frame at the encoder.

But the attractor error bound can be reduced by modifying the collage theorem without
increasing the complexity of the encoder, since the search region for the domain block is
confined to the 4-circularly previous frame in the proposed CPM. The modified collage
theorem yields a new prediction method, and the new prediction method is illustrated in
Figure 2.(b). Firstly, Fy is predicted from F5. Secondly, F; is predicted from the previously
predicted frame F§, rather than the previous source frame Fy. Similarly, F> and Fj are
predicted from the previously predicted frames (L1 F§+T1) and [La( L1 F§ +T1)+ T3], rather
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Figure 2: The comparison of the Prediction Methods

than the previously source frames F; and Fj, respectively. Then the attractor error bound
of the modified collage theorem can be shown to be less than that of the conventional collage
theorem. The rigorous proof of the modified collage theorem is provided in Appendix.

Let us discuss the intuitive interpretation of the modified collage theorem. If we assume
that F3 is reconstructed without any distortion at the decoder, then it is clear from Figure
2 that the modified collage theorem will reconstruct the other frames F, (0 < k£ < 3) more
closely to the original frames than the conventional collage theorem, since the modified col-
lage theorem prohibits the error propagation by employing the previously predicted frame,
rather than the previous source frame, as a domain pool. This argument is very analogous
to the closed-loop DPCM (Differential Pulse-Code Modulation) !, in which the prediction
depends on the previously quantized values, rather than on the previously unquantized val-
ues, to prevent the propagation of the quantization error. Even if there is some distortion in
the reconstructed Fj, this prevention of the error propagation yields smaller attractor error
bound than the conventional collage theorem, which does not consider the error propagation
along the frames.

3.3 Decoding Algorithm

The attractor sequence can be reconstructed by iteratively applying the CPM to an initial
arbitrary sequence. In general, the convergence speed is dependent on the ratio of the size
of the domain block and the size of the range block. The larger is the domain block as
compared to the range block, the faster the decoded sequences converge. But in our CPM,
the size of the domain block is set to be same as that of the range block to exploit the
temporal correlation, and the convergence speed is very slow.

But this disadvantage is compensated by the advantage of the CPM that one iteration
of the CPM has the effect of 4 (= the length of a coding group) iterations in other fractal
coders. This merit is due to the fact that the search region for the domain block is confined to
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the 4-circularly previous frame. Let F,é denote the k-th decoded frame at the i-th iteration.
At the first iteration, F is decoded by applying (Lo, 7o) to an arbitrary frame, and F}
(1 < k < 4) is subsequentially decoded by applying (Lg,T%) to the previously decoded
frame F} ,, respectively. Note that Fj is more closer to the attractor sequence than Fj,
since Fy is actually the result of 4 iterations. At the second iteration, Fz is decoded using
F} of the first iteration, and so on. This process is repeated until the difference between
the outputs from successive iterations becomes small.

4. DESIGN OF CPM FRACTAL CODER

There exist many variations in design or implementation of CPM fractal sequence coder.
For example, image partitioning scheme should be established before the implementation.
This section describes several issues relating to the implementation of the CPM fractal
coder in more detail.

4.1 Image Partitioning

Since moving image sequences are unbounded in temporal direction, they should be tempo-
rally partitioned before encoding. In our implementation, each 4 frames of input sequences
are encoded as a coding group (n = 4). If the length of a coding group = is large, the
backward prediction error of Fy from F,,_; will become larger and there will be too much
time-delay between the encoder and the decoder. On the contrary, if the n is small, the
overall bit-rate will become higher (this will be explained in 4.3) and the decoding speed
will become slower. Therefore, the n is selected to be 4 as a tradeoff.

After the temporal partitioning, each frame is spatially partitioned into the range blocks
of maximum size 32 X 32 and minimum size 4 X 4, using the quadtree structure 3. First,
32 x 32 range block is approximated by a domain block in the 4-circularly previous frame,
and if the approximation error is larger than the pre-specified threshold, then it is decom-
posed further into four smaller 16 X 16 range blocks. This process is repeated until the
approximation error is smaller than the threshold or 4 X 4 range block is generated.

4.2 Elimination of Self-Mapping Effect

An undesirable effect, called self-mapping effect, may be experienced in the CPM structure,
since the size of the domain block is same as that of the range block. Figure 3 illustrates
the case when the self-mapping effect happens. Each of the four range blocks in Figure
3 is approximated by itself. In other words, the four range blocks are self-mapped when
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the decoder applies the CPM four times. The AC informations of these range blocks are
approximated by the contrast-scaled AC informations of themselves, and converge to zero
at the decoder since the contrast scaling factors s;’s in Eq.(5) are quantized between -1 and
1. Therefore these range blocks are reconstructed as constant blocks, which have only the
DC informations, yielding severe blocking artifacts in the decoded frames.

This self-mapping effect is eliminated compulsively in our implementation by disjointing
the address of the optimal domain block in the forward domain-range mappings from that
in the backward domain-range mappings. More specifically, the address a(¢) for the range
block in Fj (1 < k < 4) is constrained to be even numbers in both the x,y coordinates, but
the address a(z) for the range block in Fp is constrained to be odd numbers in both the x,y
coordinates.

4.3 Parameter Quantization and Bit Allocation

For efficient transmission or storage, it is necessary to quantize the coefficients*. Let us
describe the issue relating to the quantization in more detail.

The compressed data for each range block are composed of the address a(z) and the s;, o;
coefficients. Firstly, the s; coefficients representing the contrast-scaling in the domain-range
mappings are fixed as 0.9, since they are distributed compactly at the center of 1 and should
be quantized between -1 and 1 to ensure the contractivity of the CPM. Therefore no bit is
allocated to the s; coefficients. Secondly, the o; coefficient is the DC value of the range block
R;, and is highly correlated with the DC value of the optimal domain block D,;). Thus the
0; in F, (1 < k < 4) is predicted from the o;’s in Fi_1, and the prediction error is coded with
the Huffman coder. But the o; in Fp is uniformly quantized with 8 bits between 0 ~ 255 for
the causality of the system, so the bit-rate for Fg is usually higher than the bit-rates for the
other frames in the same coding group. Lastly, the search region for the optimal domain
block D,(; is the rectangular area centered at the location of the range block, and the
address a(7) is expressed with respect to the location of the range block. The coordinates
of the a(z) in the forward and backward domain-range mappings are constrained to be in
{-16,-14,...,12,14} and {—15,-13,...,13,15}, respectively. Therefore 8 bits are needed
for representing each a(z) with fixed-length codewords. But the probability distribution of
the a(%) is not uniform, since the a(7) is the counterpart of the motion vector in ME/MC.
More specifically, the small motion vector is more probable than the large motion vector.
This non-uniformity is exploited by the Huffman coder, using the probability distribution
function obtained from many test sequences.

5. SIMULATION RESULTS

The proposed algorithm is tested on real moving image sequences. As illustrated in Figure
2, two different prediction methods for the CPM fractal encoder could be considered. The
first method is the direct application of the conventional collage theorem, and the second
prediction method is based on the modified collage theorem. Figure 4 shows the perfor-
mances of these two prediction methods on the standard CIF (352 x 288) “Miss America”
sequence. It can be seen that the second method provides better PSNR (about 1 ~ 2 dB)
performance than the first method. Notice that the average bit-rate for the first predic-
tion method (= 0.1242 bpp) is slightly higher than that of the second method (=0.1235
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Figure 4: The bit-rate and PSNR curves for “Miss America” sequence

bpp). These simulation results coincide with the analytical approach in Section 3, which
shows that the attractor error bound of the modified collage theorem is less than that of
the conventional collage theorem. Thus only the second prediction method is employed in
the following simulations.

In Figure 5, we present an example of the decoded results of the first iteration for “Miss
America” sequence. This example is for a coding group which are composed of the 1st ~
4th frames. Let F,z denote the k-th decoded frame at the i-th iteration, as in 3.3. At first,
F} is decoded by applying the (Lo, To) to an initial uniformly gray image, as shown in the
upper left corner of Figure 5. It can be observed that each range block is reconstructed
as a constant block whose all pixel values are the DC value of the range block, since the
orthogonalization operator is incorporated into the domain-range mapping and the domain
block from the uniformly gray image has no AC information. Also notice that the smooth
region such as the background is partitioned into large range blocks, and the detailed
region such as the face is partitioned into small range blocks, respectively, according to
the quadtree structure. Fj is decoded by applying the (L;,T;) to F}, and F} is actually
the result of two iterations. Likewise, F} and Fj are actually the result of three and four
iterations, respectively. Therefore it is observed that Fj is much more detailed than F}.
At the second iteration, F? is decoded by employing Fj as a domain pool, and so on. It
has been observed that at most five iterations of the CPM, which is actually 20 iterations,
is sufficient for the decoded frames to converge in most cases.

Figure 6 shows the bit-rate and PSNR performances for other various CIF (352 x 288)
image sequences. From Figure 4 and 6, it can be seen that the bit-rate for Fp is higher
than the bit-rates for the other frames (Fi, Fy, F3) in the same coding group. This is due
to the fact that the o; coeflicients of Fy are encoded with FLC (variable length codewords),
while the o; coefficients of the other frames are predicted from the previous frame and
the prediction errors are encoded with VLC (variable length codewords). Moreover, Fp is
backwardly predicted from F3 which are 3 frames apart, while the other frames are forwardly
predicted from the previous frame. Therefore Fj is less efficiently predicted than the other
frames, and is partitioned into smaller range blocks. But the quality of reconstructed frames
is observed to be almost comparable in a coding group, since each frame of a coding group
is employed as a domain pool for the circularly next frame and the error of a frame spreads
into the other frames.

For the “Miss America” and “Claire” sequences, the average bit-rates are 0.124 and 0.116
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Figure 5: The first iteration for “Miss America” 1-4

bpp, yielding 64.5 and 68.9 of the compression ratios, respectively. In other words, 5 ~ 6
frames can be transmitted in a second at the bandwidth of 64 kbits/s. The bit-rates for the
“Foreman” and “Car Phone” sequence are higher than those of the “Miss America” and
“Claire” sequences. This is inevitable since these sequences are fine-detailed and contain
large inter-frame motions. Fig.7 presents samples of the decoded frames. It is observed that
the proposed algorithm reconstruct the “Miss America” and “Claire” sequences with a good
subjective quality which is sufficient for the video-conferencing applications, since it does
not yield severe blocking artifacts, which are main defects of the 3-D block approaches”®. It
is also observed that the tree outside the window in the “Car Phone” sequence and the sharp
edge of the background structure in “Foreman” sequence are reconstructed very faithfully,
though they move very fast. This is due to the fact that the domain-range mapping of the
CPM is very similar to the ME/MC techniques. In the 3-D block approaches, the domain-
range mapping often fails, and the quality of the reconstructed frames is poor in such
finely-detailed and fast moving regions. These simulation results indicate that the proposed
algorithm provides much better performance than the conventional 3-D block approaches.
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Figure 6: The bit-rate and PSNR curves for the various CIF sequence

6. CONCLUSION

In this paper, we proposed a novel algorithm for fractal video sequence coding, based on the
Circular Prediction Mapping (CPM). In our approach, each range block was approximated
by a domain block in the 4-circularly previous frame, and the size of the domain block was
set to be same as that of the range block, in order to exploit the high temporal correlation in
real moving image sequences. By linear systematic analysis, we derived the modified collage
theorem, which yields better prediction method than the conventional collage theorem.

It was demonstrated by the computer simulation on the “Miss America” and “Claire”
sequences that the average compression ratios ranging from 60 to 70 can be achieved without
observing severe blocking artifacts in the reconstructed sequences, while the other fractal
sequence coders generate severe 3-D blocking artifacts at such low bit-rates.

Further research will include the following issues to improve the performance of the CPM

fractal sequence coder further.

o Adaptive grouping of frames — In this paper, the length of a coding group = is fixed
as 4. But the n should be varied, according to the characteristics of the frames. For

example, the coding group should not contain a scene change in it.

e Inclusion of condensation sets' — Intra-coded block is called a condensation set in frac-
tal terminology. By including the condensation sets where the domain-range mapping
fails, the performance of the fractal coder will be improved. The condensation sets

may be coded with other coding techniques, such as DCT.

e Optimization of the coding parameters — The coding parameters, proposed in this
paper, are not optimal at all. More experiments are needed to find the relation
between the performance of the CPM fractal coder and the selected parameter sets.

We believe that this research will increase the coding performance significantly, and the
CPM fractal coder will be a strong candidate for the very low bit-rate coding techniques.
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APPENDIX - Proof of Modified Collage Theorem

According to the Contraction Mapping Theorem, there exist unique attractor sequence
Fo =72, o, £, f3]F, which is determined by the CPM (L, T), such that

F° = LF°+T. (8)
The attractor error E at the decoder and the collage error E° at the encoder are defined as

E = [eo,el,eg,eg]T = F — FO, (9)
E° = [e§, €S, €5, ¢e5)T = F — F°. (10)

Then (ien and Lepsoy® showed that the relation between E and E° can be given in equality
by

E=)Y LFE°=E°+ LE°+ L’E°---. (11)
k=0

Most fractal coders attempt to minimize only the zero-order term E€ without considering
the higher order terms, based on the collage theorem. But, in case of the CPM, more terms
can also be included in the minimization without increasing the complexity of the encoder.

From the algebraic multiplications of the L matrix, we know that the L* has a block
diagonal structure. Thus by substituting the power matrices (L, L?, L3, - ) into Eq.(11),
we can derive the following expressions of each frame’s attractor error.

€q = Z(LoLngLl)k[eg —|— Loeg —|— LoLgeg —|— LoLngei]
k=0
= 68 + Z(LoLngLl)kLo[eg + Lgeg + L3L2€i + L3L2L1€8], (12)
k=0
el = Z(L1L0L3L2)k[e(1: —|— Lleg —|— LlLoeg —|— LlLoLgeg]
k=0

= €]+ Lieg+ Z(L1L0L3L2)kL1LO[e§ + Lae§ + LaLge§ + L3LyLqef], (13)
k=0
e2 = Y (LaLiLoLs)*[e5+ LS + LoLye§ + LyLy Loe§]
k=0
= e5+ Laef + LaLieg

—|— Z(LleLoLg)kLngLo[eg —|— Lge; —|— Lngef —|— L3L2L1€8], (14)
k=0

€3 = Z(LngLlLo)k[eg —|— Lgeg —|— Lngei —|— L3L2L1€8]. (15)
k=0
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If we assume that all frame-to-frame mappings Li (0 < k < 4) have the same contractivity
factor s, then Eqs.(12)-(15) respectively yield the inequalities by means of the triangle
inequality theorem, which are given by

llesl| + Z s**1||e§ + Lae§ + LaLaeS + LaLoLef|

lleol] <
k=0
< N7 s®{|legl + sllesl| + s?lesll + s3les I, (16)
k=0
ledl| < lle5 + Lie§| + > s**%||e§ + Laes + LaLaeS + LaLaLyef|
k=0
< N s®{|lesl + sllegl| + s?lesll + s3lles|I3 (17)
k=0
leall < lle5 + Lae§ + LaLae§|| + Y s**+3|le5 + Laes + LaLae§ + LaLaLe|
k=0
< N s*{|lesll + slles]| + s? el + s3[lesI (18)
k=0
leall < >~ s**lles + Lae§ + LaLoeS + LaLyLae||
k=0
< 0 s®{llesll + sllesl| + s?llesll + s3lle§I} (19)

k=0

Notice that each frame’s attractor error is limited by two bounds. The larger bound is in
terms of each frame’s collage error ex (0 < k < 4), which is the result of direct application
of the conventional collage theorem to the CPM. The smaller bound is in terms of the
following 4 entities.

c

[ ] CO

° e + Liej

° e5 + Lae] + LyLqeg

° eS + Lae5 + L3LyeS + L3Ly L€ (20)

Therefore we can reduce the attractor error bound by minimizing the norm of the 4 entities
in Eq.(20), instead of minimizing the norm of the collage error ex (0 < k < 4) independently.
By changing variables, the 4 entities in Eq.(20) can be rearranged as

e = fo— 15
= fo— (Lofs + To), (21)
ei + Lieg = fi— fi+ Li(fo - f5)
= fi—(Lifo+T1)+ Li(fo — f5)
= fi—(Iafs +Th). (22)

Similarly,

C; + Lzei + L2L1€8
= fo—[La(L1f§ +Th) + T2, (23)
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eg + Lgeg + Lngei + L3L2L1€8
= fa—{La[La(L1f5 + T1) + To] + T3} (24)

From these rearrangements, it can be realized that the minimization of the 4 entities in
Eq.(20) leads to the new prediction method illustrated in Figure 2.(b).



