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ABSTRACT
This paperreportson investigationsconcerningthe con-
vemgenceof the reconstructionprocessin fractal coding
schemedrom a statisticalpoint of view. For a rathergen-
eral family of “fractal operator$ a necessaryand suffi-
cient condition for the convegencebasedon the spectral
radiusof the fractal operatoris provided. Emegging from
this conditionthe probability densityfunction (pdf) of the
magnitudeof the eigenvaluess formulatedwhich enables
to determinea probabilistic measurefor the convegence
of the reconstructiorprocess. Sincethe pdf considerably
dependson the structureof the operatorsyvarious coding
schemesanbe analyzedwith respecto their convegence
propertiesin a statisticalsense.The presentedesultsin-
dicatethat certaintypesof operatorsarelesssuitedfor ap-
plicationsin thefield of fractal codingcomparedo others.

1. INTRODUCTION

Coding schemesare termedfractal if the input signal is
approximatedby a unique fixed point of a certain class
of transformationg1, 2]. Commonto all schemef this
type is that not the transformedsignal is storedor trans-
mitted, but the transformationinsteadwhosefixed point
is demandedo be closeto the original signal. The sec-
ond characteristiof fractal schemess that the decoderis
ableto reconstructhe fixed point solely from the knowl-
edgeof the transformatiorparametersA codinggain can
thereforebe achievedif the rate of the transformationpa-
rametersis significantly smaller comparedto the rate of
the signal itself.

This paperdealswith the analysisof fractal coding
schemesespeciallywith the questionof convegenceat
the decoderfrom a statisticalpoint of view. Initial results
have alreadybeenpublishedin [3]. The iterative process
of reconstructingthe fixed point from the fractal code
demandsll eigenvalue®f thefractaloperatorto lie within
the unit circle [4, 5, 6]. Theseeigenvaluesare regarded
as realizationsof a randomprocesswhosecharacteristics
dependon the structureof the fractal operator. This way
the convegenceof the reconstructiorprocessfor various

fractal coding schemescan be assessedn a statistical
sense.

The paperis organizedas follows: Section2 intro-
ducesthe mathematicabackgroundof the fractal coding
and decodingprocess. A family of linear operatorsto-
getherwith the calculationof their correspondingeigen-
valuesis introduced. The statisticalanalysisof the con-
vergencepropertiesfor this family is treatedin section3.
The resultsin section4 togetherwith a prospecion future
directionsof investigationsconcludethis paper.

2. MATHEMATICAL BACKGROUND

One advantageof fractal coding schemesin contrastto

commonones,e.g. DCT basedschemesis that addition-
ally to the bindings betweenadjacentsamplesalso some
sort of long range correlations within the signal are ex-
ploited. In the contextof fractal codingthesecorrelations
aretermed(partial) self-similaritieswhich arisesfrom the
factthatmanypartsof (natural)signalsmaybefoundagain
in a scaledand/or geometrictransformedversion within

the samesignal.

2.1 Encoding process
Encodingof a given signalx consistsin determining
the parameter®f a mappingequation

W(x)=Ax+b, (1)
such that

*  W(x) hasauniquefixed pointx; = Ax; + b,

» thedistanced(x, x;) betweenthe original signal x
andthe fixed point x; is assmall as possibleand

» thedescriptionof thefractal code(A, b) is assimple
as possible.

For the sakeof simplicity the collagetheoemmotivatesto
minimize the distanced(x, x) betweenthe original signal
x andafirst-orderapproximatiork of thefixed pointrather
thanthe fixed-pointitself [7, 4, 8]. The mappingrule (1)
consistsof a linear part representecby the operator A
and a non-linearoffset b which togetherserveas fractal
code. Underthe condition of a convegent reconstruction
thefractalcode(A, b) is a uniquedescriptionfor the fixed
point x;.
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2.2 Decoding process

The aim of the decodingprocesss to reconstructhe
fixed point x; from the fractal code(A,b). Direct meth-
odssimply apply a matrix inversionsothat the fixed point
is obtainedby x; = (I — A)"'b. The only restriction
for the algorithmis thatdet (I — A) # 0 holds. For large
systems,asis the casein most coding applications,iter-
ative methodsare more appropriatefor this task. Due to
Banach'sfixedpointtheoemthe sequencd x;, } of iterates
Xr+1 = Axy + b convegesfor any arbitraryinitial signal
xp to the uniquefixed point of the mappingequation(1).
In contrastto the less restrictive criterion for the direct
method, the necessaryand sufficient condition for con-
vemgencein the iterative caseis that the spectralradius
r-(A) which is the largesteigenvalueof the linear part A
is smallerthan one [6, 4].

2.3 Family of linear operators

The investigationof the convegenceinvolvesthe de-
termination of the eigenvaluesof the linear operatorA.
This is almost impracticablefor very general matrices.
Thereforewe restrictourselvego a rathersimplebut nev-
erthelessuniversalfamily of linear operators7(A) which
is introducedbelow.

The entire signalx = (z1, z2, .. .,xn)T e IR™ with
n pixels is segmentednto Ng = n/ng non-overlapping
blocks with ng pixels, called range blocks Each m
neighboredblocks form a rangeblock cluster For every
rangeblock x;; with £ denotingthe clusterindex and:
the block numberwithin this clusteranotherblock within
the signal, called domainblock is searchedsuchthat the
distancebetweenthe range- and a transformedversion
of the domain block is minimized. The transformations
mainly consistsof a spatial reductionas well as a gray-
level scaling and offset.

Though the domain blocks may have arbitrary size
andlocationwithin the signalan efficient representatioof
the fractal code demandssomerestrictions. A very inter-
estingcaseis obtainedf the domainblocksdo not overlap
andareof the samesizeastherangeblock cluster. If addi-
tionally eachrangeblock within a clusteris approximated
by the samedomain block then the numberof domain
blocksis Np = Ni/m andtheir sizeis np = mng. The
structureof a typical operatorA is thenasfollows:

0 -~ A, -~ 0 0

0 -~ 0 - 0 A
A=la, . 0 . 0 0 (2)

0 0 Ay, O

Figure1l Typical mappinggraphfor a linear operatorA
consistingof two independentnappingcyclesZ: = {3,2,1} of
lengthL; = 3 and 2, = {9} with lengthZ, =1 aswell as
four mappingchainsiC; = {4}, K, = {6,5}, K3 = {8,7,5}
and K4 = {10} with length1, 2,3 and1, respectively

Each submatrix
d -~ 0
ag; [ 7 :
A= o0 d 3)
agm | T
o .- d

describesthe mappingfrom one domain block onto the
k-th rangeblock cluster. The index j(k) of the selected
domainblock togethemwith theindex % of the rangeblock
clusterdeterminethe position of the submatrixA ; within

the operatorA. The decimationvector d is chosento

bed = (1,1,...,1)/m € IR™, though other choicesare
possible.The family F(A) thenis the setof all operators
A with the structureasindicatedin (2) and (3).

2.4 Mapping graph of the linear operator A

A usefultool to analyzethe structureof the operator
A isamappinggraphasshownin figure1l. Thenumbering
of thenodescorrespondso the indexof thedomainblocks
or range block clusterswithin the signal. The edges
symbolizethe mappingfrom one domainblock onto one
rangeblock cluster. Two distinct typesof blocks can be
distinguished.The first categorycontainsall thoseblocks
which arememberof a so calledmappingcycleindicated
by Z. All otherblocksin this type of operatorbelongto
open mappingchains denotedby K. By introducingthe
notation

» times
(k) =33 (k) ) with j°0(k) =k, k >0
(4)
andj(k) denotingthat the domainblock with index j(k)
is mappedonto the range block cluster with index &, a
mappingcycle can be defined as follows:

Def. 1 ThesetZ = {k,j(k),i°%(k),...,i*E=D(k)} is
calledmappingcycleof length L, if L is the leasthumber
greaterthan 0 suchthat j°L (k) = k.
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Figure2 Cyclesof operatorA with parametern = 4

Convegenceonly dependson thosemappingswhich
arewithin amappingcycle. Thereforethe operatorA may
be reducedto its cyclic part by removingthoserows and
columnswhich only describethe blocks of the mapping
chainsk [5, 6, 4]. The resulting cyclic operator whose
mapping cycles are shown in fig. 2 is denotedby A.
Eachof thesecyclescanbe treatedindependenthfrom all
others. This is dueto the fact that thosepart of the signal
correspondingo one cycle and partscorrespondingo all
othercyclesaredisjointed. For amoredetaileddescription
of the mappingthe readeris referredto [9].

2.5 Eigenvalues of the linear part
Fromtopic 2.2it is known,thatanalyzingthe conver-
genceleadsto the questionwhetherthe eigenvalue®f the
cyclic operatorA lie within the unit circle or not. For the
consideredamily F(A) of operatorsa necessanand suf-
ficient criterion for convegencehasbeenpublishedin [6].
Let the index z denoteone of Z mappingcycles, L, the
length of this cycle and a?f) the scalingcoeficient corre-
spondingto the mappingonto the :-th rangeblock within
the I-th clusterof this cycle. Thenconvegenceis ensured
if the spectralradius
1/L.
l (5)

R 1[4
"o (A) - ze{?lzé?.(.,z} m [H

=1

m

> o

i=1

of the matrix A is smallerthan one.

3. STATISTICAL ANALYSIS
Contractivity is always ensured,if the magnitudeof all
scalingcoeficientsay; is strictly smallerthanone[1] (this
coincideswith the l;-norm criterion). As reportedby sev-
eral authors,e.g.[8, 10], a less stringentrestriction for
the scalingcoeficientsimprovesreconstructiomuality as
well as convegencespeed. On the other hand contrac-
tivity of the transformationi? is no longerensured.The
aim of this work is thereforeto determinethe probability
for divergencedependingon the choice of somedesign
parameters.

Our investigationshave shownthat the scalingcoef-
ficients may be regardedas statistically independentand

Prob{AI>1}

i m=1

0 a

max 4

T t T t T
15 2 25 3 35

Figure3 Probability for divergent reconstructiorof
coding schemeswith cyclelength L = 1

iN [—amayx; omax] UNiformly distributedrandomvariables.
The spectralradiusr, (A) asindicatorfor convegenceis
solely determinedby the scalingcoeficients, the length of
the mappingcycles I, andthe ratio betweenthe domain-
andrangeblock sizem = np/ng (seeeq.5). Therewith
the probability densityfunction (pdf) of the eigenvaluegor
variouschoicesof the designparameterd. and m canbe
derived. Fromthis pdf the probability for divergentrecon-
structioncanbe determinedandsotheinfluenceof various
designparameterson the contractivity can be quantified.
In this papertwo importantspecialcasef the designpa-
rametersare consideredwvhich arerelatedto two different
fractal coding schemes.

31 Case L. =1

In the first casethe mappingfunction j (k) is defined
by j(k) = k Yk € {1,...,Np} so that each domain
block is mappedonto the underlyingrangeblock cluster.
Therefore the length of all 7 = Np mapping cycles
L,,z € {1,...,7Z} equalsone. A well known coding
schemewith thesepropertieshasbeenpublishedin [11].
Equation(5) can then be simplified so that the largest
eigenvaluefor one cycle is determinecby

m

3 o)

i=1

1

|)‘(A)|cycle:z: m

(6)

As presumedabove the scalingcoeficientsareuniformly
distributedin [—amax; ®max] @ndalsostatisticallyindepen-
dent. Thenthe pdf py (¢) of theeigenvaluess equalto the
m-fold convolutionof the pdf p, (&) of the scalingparam-
eters. The probability for divergenceequalsthe probability
that the largesteigenvaludies outsidethe unit circle and
can easily be determinedby

o0

Prob{]A| > 1} = 2 /P/\(f)df- @)

1
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10° Prob{A>1}

1 15 2 25 3 35 Cmax 4
Figure 4 Probability for divergentreconstruction
of coding schemewith parametern = 1

Figure 3 showsthis probability for somedifferentparame-
tersm asfunction of thelargestallowedscalingcoeficient
amax- AS far asthe convegencepropertyis concernedne
canseethatthe choicem = 1 is disadvantageous com-
parisonto larger valuesfor m.

32 Caem =1

In the secondcasethe influenceof the spatial con-
traction is excludedso that a rangeblock clusterconsists
of only one range block with the samesize as the do-
main blocks. This resultsin the designparametern being
equalto one,so the largesteigenvaluefor this type is de-
termined by

L. 1/L.
A(A |cyc|e z= ( 0‘5?) - (8)

In order to determine the probability of divergence
Prob{|A| > 1} the pdf p|»(£) hasto be calculatedwhich
is the pdf of the product of L, uniformly distributed
statisticallyindependentandomvariables. This resultsin

{
LS L o @

Omax |-

Prob{|A| > 1} =1—

As can be seenfrom figure 4 long mapping cycles are
advantageoufor a convegentreconstructiorprocess.

4. RESULTS AND CONCLUSION
Summarizingand combining the resultsof topic 3.1 and
3.2 it canbe statedthat a fractal coding schemewhich is
optimizedwith respecto the contractivity of the transfor-
mation should employ

* a large ratio betweenthe domain- and range block
size (m > 1) andshould
e try to generatdong mappingcycles(L > 1).
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A codingschemeof theformerdescribedypehasbeenim-

plementedand testedwith real world imagesand various
choicesof decimatingfactors m. Analyzing the result-
ing length of the mappingcycles showedthat only very

shortcyclesare generatedf the selectionof the codebook
entriesis not constrainedn any way. By forcing the en-

coderto generatdonger cyclesa significantimprovement
concerningthe convegencepropertiescan be obtained.
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