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ABSTRACT

This paperreportson investigationsconcerninghe perfor-
manceof fractal transforms Emeging from the structural
constraintf fractal codingschemeslower boundsfor the
reconstructiorerror are given without regardingquantiza-
tion noise. This implies finding an at leastlocally opti-

mal transformationmatrix. A full searchapproachis by

definition optimal but also intractablefor practicalimple-

mentations. In orderto simplify the calculationof some
appropriateencodingparameterthe collage theoem and
otherfast but also suboptimalapproachesre applied. For
amemorylesssaussiarsourceandsomerealworld images
the optimal encodingparametersn view of the structural
constraintaredeterminedogethemwith theminimal reach-
abledistortion. This allowsto quantify the performanceof

the suboptimalencodingprocedures.

1. INTRODUCTION

Recently so called fractal schemesgained some degree
of interestin the (image)coding community. Basicideas
for encodingand modeling of signalsby use of fractal

techniquesgo backto Barnsleyet al., e.g.[1] anda first

implementatiorfor automaticencodingof imageshasbeen
proposedy Jacquing.g.[2]. In contrasto commonlinear
transformationse.g. the DCT, whosecoding gain mainly

emepgesfrom the bindingsbetweenneighboringsamples,
the non-linear fractal coding schemesalso exploit some
sort of long-rangecorrelationswithin the signal. In this

contextthose correlationsare termedglobal and/or local

self-similaritieswhich arisesfrom the fact that many parts
of a naturalsignalarein somesensesimilar to the entire
signal or at leasta part of it.

Coding schemesare termed fractal if a given in-
put vector is approximatedby an unique fixed point of
a contractivetransformation. Since not the signal itself
but the approximatindfixed point - sometimeslsotermed
attractor - is encodedthe term attractor codingwould be

more appropriatebut did not gain acceptancén therecent
literature.

Letx = (21,22, ~,a:n)T € IR" betheentiresignal,
then mostcommonfractal coding schemesmploy a non-
linear affine transformation

W:x —W(x)=Ax+b. (1)

consistingof alinearpart A anda non-linearoffsetb. For
the giveninput signalx the goalof the encodingprocesss
determiningthe matrix A andthe offsetvectorb suchthat

1. thedistanced(x, x;) betweenthe original signal
x andthe fixed point x; = W (x;) of the trans-
formation W is minimal,

2. the transformationi¥/ obeysa contractivity con-
straint, and

3. therepresentatiomf A andb is simple.

In this casethe parametersA ;| b of the transformationiv/
serve as fractal code. A (quantized)descriptionof the
fractal code is transmittedto the decoder. Since data
compressions the aim of fractal coding, someconstraints
are imposedon the structureof the transformationmatrix
andthe offsetvectorin orderto keepthe representatioas
simple as possible.

Due to the contractivity constraintthe fixed point or
attractorxy; = W (x;) existsandis uniquely determined
by the transformationitself. Accordingto the contraction
mappingtheoem the decoderreconstructghe fixed point
from the fractalcodeby solvingtheequationiV (x¢) = x;
in an iterative way. Starting from any arbitrary initial
signalxp € IR" the contractionmappingtheoremstates
that the sequenceof iterates

k-1
Xp = W/°k(x0) = Afx + Z A'b (2)
i=0
convegesto the uniquefixed point
x; = lim x = (I—A)"'b (3)

k—o0
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whichis completelyindependentrom theinitial signalxg.

The aforementionedirect determinationof the op-
timal encodingparametersA and b, sometimestermed
the inverseproblem is in generalcomputationalinfeasi-
ble especiallyif very high dimensionainput sourcese.g.
images)are concerned.This is dueto the non-linearde-
pendencybetweerthe fixed pointx; andthe encodingpa-
rameters.A way out of this dilemmais the collagetheoem
originally introducedby Barnsleyin this context[3, 1]. It
greatlysimplifiesthe determinatiorof somesuitedparam-
etersA , b duringthe encodingprocesssinceit demandgo
minimize the distanced(x, x) betweenthe original signal
x andasocalledcollagex = W (x) ratherthanbetween
the original signal x and the fixed point. By this way
the time consumingcalculationof the fixed point during
the encodingprocesscan be avoided. Unfortunatelycol-
lage codingis suboptimalwhich meangthatin generalthe
closestattractoris not found. But asis shownbelow, the
collagetheoremat leastprovidesa goodinitial guesswvhich
canbe modifiedin a subsequendptimizationprocess.So
minimizing the “collage errof’ assuggestedby the collage
theoremstill makessense.

Someimprovementscan be achievedif the collage
theoremis modified. An interestingapproachis presented
in [4]. Anotherway is simulatingthereconstructioralsoat
the encoderandsuccessivelynodifying the transformation
in a way that a closer attractoris achievedas proposed
in [5].

But due to the structural limitations of the fractal
transformatiorevenwithout any quantizatiorof the fractal
code no exact reconstructionof the input signal will be
possible.Hencethe reconstructiorerror d(x, x;) consists
of one part due to the structurallimitations of the affine
mappingand anotherpart which is due to the quantized
descriptionof the fractal code.

Despitethe growing interestand availableliterature
concerningfractal coding there are still many openques-
tions demandingfor answerse.g.:

* Given the inherent structural constraintsof fractal
coding schemeshow good can they perform for a
specific sourcemodel? How small is the minimal
reachabledistortion for this model?

* How good performs collage coding comparedwith
an optimal scheme? Which improvementcan be
achievedby a modified collagetheoremor otherpro-
posals?

*  How cana (nearly)optimal fractal coding schemebe
developedwith tractablecomputationaleffort in the
encodingphase?

This paper is concernedwith the aforementioned
guestionsandis organizedasfollows: Section2 describes
a simple fractal coding schemewhich servesas basisfor

the presentednvestigations.Section3 then dealswith the
performanceof this schemeand especiallyconsidersthe
effects of the non-optimalencodingprocess.Somesimu-
lation resultsand a brief discussionin section4 conclude
the paper.

2. A BASIC FRACTAL CODING SCHEME
Our investigationsemege from a simplified version of
Jacquin’sschemd6]. Insteadof searchingfor similarities
within the entire signal, eachblock of the signalis treated
independentlyfrom all others.Let x = (z, s, - - ~,xn)T
be a vector of dimensionn representingany arbitrary
block of the signalto be encoded. This sourcevectoris
partitionedinto m = n/ngr consecutivenon-overlapping
partsdenotedrangeblockseachconsistingof ng samples.
Further let the structureof the transformationmatrix be
givenin a way thatthe first sampleof eachrangeblock is
formed by the weightedaverageof the first m samplesof
the signal, the secondsampleof eachrangeblock by the
weightedaverageof the secondn samplesandsoon. The
structureof the transformatiommatrix canthenbe outlined
as follows:
nrblock columns

a o --- 0
0 a - 0
0 0 a m times
1 . ——
A=— : s =1 @i, gy, G
m
a, 0 0
0 a, 0
0 0 am
(4)
The offset vector
ng times r
T e N
b= (b1,b2,...,bm) ; bi= | bi,b; ... b (5)

consistsof m constantpartsb; eachbelongingto one of
the non-overlappingangeblocks of the original signal.

In order to apply the contractionmapping theorem
at the decoder,the weights or scaling parameters:; are
constrainedby the contractivity condition to ensurethe
convegenceof the iterative reconstruction. This can be
guaranteedf all eigenvaluesf the transformationmatrix
A lie within the unit circle. In this casethe contractivity
constrainghe scalingcoeficientsto fulfill 3" | |a;| < m.
For n and ng being integral powers of two the above
constraintmay be releasedo |Y_." , a;| < m. For amore
detaileddescriptionof the convegencepropertief fractal
transformsthe readeris referredto [7, 8].
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3. OPTIMIZED FRACTAL ENCODING

The aim of optimal encodingis to determinethe scal-
ing and offset parameter;, b; suchthat the distancebe-
tween the original signal x and the fixed point x; is
minimized. This involves in a first step the calcula-
tion of an optimal m-dimensionakubspaceF definedby
F = {(I — A)‘lb, be I[{m} of all possiblefixed points
x; € F. In asecondstepthe offsetvectorb is determined
by the orthogonalprojectionof the original signalx € IR"
ontothe subspacef fixed pointsF. Collagecodingworks
suboptimalin both steps.It neitherfinds the optimal sub-
spacenor the orthogonalprojectiononto this space.

Thereforean optimization procedurecan be carried
out in both steps:

1. Giventhe non-optimalsubspacer™ providedby
collage coding, determinea new offset vector b
suchthat (x —x;) L F*.

2. Modify the subspaceF* such that it becomes
optimal or at leastlocally optimal and determine
new offset vector (describedn 1).

distortion
o o
[ o N o
[6;] N [6;] w

©
[

o
o
a

N o

al

Figure1. Minimal reconstructiorerror for given
sourcevector and variouschoicesof two scaling
parameters, a; andleastsquareoptimal offset vectorb

Optimizing the offset vectorb for a given subspace
F* is rathersimple. A detaileddescriptionof this process
may be foundin [9]. But determininganoptimal subspace
with reasonableeffort is incomparablymore difficult. In

orderto providealower boundfor the minimal achievable
reconstructiorerrora “full search”in the parametespace
would be necessary. Fortunatelythe form of the “error
surface”is continuouswhich simplifiesthe constructionof
a non-full-searchencodingscheme. For a typical source
vector the resulting reconstructionerror d(x, x;) is dis-
playedin fig. 1 for variouschoicesof two scalingparam-
etersa,, a, andleastsquareoptimal offset vectorb.

By calculatingthe minimal reconstructionerror for
a large number of randominput vectorsaccordingto a
given sourcemodel a lower boundfor the expectedvalue
E(d(x,x;)) of the meansquarederror for a simple unit
variancememorylessGaussiarsourcecan be determined.
Tab. 1 showsthe resultsfor “optimal” encoding(optimal
subspaceselectionand optimal offset) versuscollagecod-
ing with andwithout offset optimization. One canseethat

Bld(x,x;)) | EUex)) | Bldx %)

colla e’co{jin opt. collage "optimal”
° ° coding encoding
0.414 0.386 0.295

Table 1. Expectedvalue of reconstruction
error for unit variancememorylessGaussian
sources.The sourcevector of lengthn = 6

is partitionedinto m = 2 non-overlappingarts.

collage coding resultsin a significantly larger error com-
paredwith optimized collage coding or evenwith “opti-
mal” encoding. The resultsobtainedby “optimal” encod-
ing constitutea lower boundfor the given sourcemodel
and the presumedstructural constraintsof fractal coding
without quantizationand cannotbe outperformedfor this
schemeby any otherfractal encodingprocedure.
Sincereal world signals,e.g. images,are in accor-
dancewith sucha simplesourcemodelonly up to acertain
degree,it is interestingto investigatethe performanceof
collage codingin comparisornwith optimal encodingalso
for thesesort of signals. For this purposethe former de-
scribedbasicfractal codingscheméhasbeenappliedto real
world images. In a first step only simple collage coding
hasbeencarriedout. Sinceneitherthe subspaceselection
nor the offset vector is optimal, in a secondstep a new
optimized offset vector is calculatedbut the subspacds
retained. Finally the third stepconsistsin optimizing the
subspaceogetherwith the offset. Sincea full searchin
the parameterspaceof the scaling coeficients is infeasi-
ble for thesesourcesa modified gradientsearchhasbeen
employed. It consistsin successivelyoptimizing the sin-
gle scalingcoeficientsuntil a locally optimal sethasbeen
found. Our experimentsshowedthat in all casesthe lo-
cal optimum also equaledthe global one. Tab.2 shows
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the resultsin termsof signalto noiseratio for varioustest
images. For this experimentthe imageshave beenseg-
mentedinto single squareblocks of sizen = 16. Each
of theseblocks is independentlyencodedby use of the
former describedsimple fractal coding schemewith pa-
rameterm = 4.

collage opt. collage| "optimal"

coding coding encoding
lena 29.5 30.4 31.0
clown 28.4 29.2 29.9
camera 28.1 28.9 29.5

Table2. Reconstructiorerror (signalto noiseratio in dB)
for varioustestimagesand encodingschemeswithout
guantization.Left/centre: Collage coding without/with

offset optimization. Right: “Optimal” encodingscheme.

It canbe seenthat by employingan optimizationstep
improvementsf about1.5 dB canbe achieved.Unfortu-
nately the encodingprocedureof fractal schemeds com-
putationalvery expensivegvenif the collagetheoremis
applied. So one hasto weigh up carefully the additional
gain in reconstructiormguality and the more complexopti-
mization of the encodingparameters.

4. CONCLUSION

Due to the structurallimitationsin the choiceof the trans-
formationmatricesandthe offset vectorsin generalno ex-

actreconstructiorof the input signalcanbe obtainedwith

fractal coding schemesevenif no quantizationis carried
out. In this papera simple fractal coding schemeis pre-
sentedwhich servesasbasisfor calculatinglower bounds
for the minimal achievableeconstructiorerrorwithout re-

gardingthe additional quantizationnoise.

Determining the optimal encoding parametersis a
non-linear problem for which no simple and exact solu-
tion hasbeenfound up to now. An easymethodknown
as collagecoding greatly simplifies this task but achieves
suboptimalityonly. This paperevaluatesthe resultsob-
tained by collage coding togetherwith thoseobtainedby
an optimal encodingschemeemploying a full searchin
the parameteispace.The full searchis of courseoptimal
but also computationalintractableand not suitedfor any
practicalimplementatiorbutin this caseit providesthe ex-
pectedvaluefor the lowestachievablaeconstructiorerror
ignoring any quantization.

In orderto treat real world imagesthe good-natured
behaviorof the reconstructiorerror hasbeenexploitedin
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order to constructa fast gradientsearchwhich approxi-
matelyreachedull-searchperformancebut with a fraction
of its computationaleffort. The algorithmis basedupon
the collagetheoremfor which our experimentshowedhat
it providesa goodinitial guesdor theencodingparameters
thoughit is suboptimalin nature.A subsequentodifica-
tion of the encodingparameteréinally leadsto the optimal
subspacend offset vector selection.
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