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ABSTRACT

This paperreportson investigationsconcerningtheperfor-
manceof fractal transforms. Emerging from thestructural
constraintsof fractalcodingschemes,lower boundsfor the
reconstructionerror aregiven without regardingquantiza-
tion noise. This implies finding an at least locally opti-
mal transformationmatrix. A full searchapproachis by
definition optimal but also intractablefor practicalimple-
mentations. In order to simplify the calculationof some
appropriateencodingparameter,the collage theorem and
otherfast but alsosuboptimalapproachesareapplied.For
a memorylessGaussiansourceandsomerealworld images
the optimal encodingparametersin view of the structural
constraintsaredeterminedtogetherwith theminimal reach-
abledistortion. This allowsto quantify theperformanceof
the suboptimalencodingprocedures.

1. INTRODUCTION

Recently so called fractal schemesgained some degree
of interestin the (image)codingcommunity. Basic ideas
for encodingand modeling of signals by use of fractal
techniquesgo back to Barnsleyet al., e.g.[1] and a first
implementationfor automaticencodingof imageshasbeen
proposedby Jacquin,e.g.[2]. In contrastto commonlinear
transformations,e.g. the DCT, whosecodinggain mainly
emergesfrom the bindingsbetweenneighboringsamples,
the non-linear fractal coding schemesalso exploit some
sort of long-rangecorrelationswithin the signal. In this
context thosecorrelationsare termedglobal and/or local
self-similaritieswhich arisesfrom the fact that manyparts
of a naturalsignalare in somesensesimilar to the entire
signal or at least a part of it.

Coding schemesare termed fractal if a given in-
put vector is approximatedby an unique fixed point of
a contractivetransformation. Since not the signal itself
but theapproximatingfixed point - sometimesalsotermed
attractor - is encoded,the term attractor codingwould be

moreappropriatebut did not gainacceptancein the recent
literature.

Let ���������
	��
�
	�������	������������ � � be theentiresignal,
thenmostcommonfractal codingschemesemploya non-
linear affine transformation��� � � � �!�"�#�%$&�&'�(*) (1)

consistingof a linearpart $ anda non-linearoffset ( . For
thegiveninput signal � thegoalof theencodingprocessis
determiningthematrix $ andtheoffsetvector ( suchthat

1. the distance+ �,�#	-��./� betweenthe original signal� and the fixed point ��.0� � �!��.1� of the trans-
formation

�
is minimal,

2. the transformation
�

obeysa contractivity con-
straint, and

3. the representationof $ and ( is simple.

In this casethe parameters$ 	-( of the transformation
�

serve as fractal code. A (quantized)descriptionof the
fractal code is transmittedto the decoder. Since data
compressionis the aim of fractal coding,someconstraints
are imposedon the structureof the transformationmatrix
andtheoffset vector in orderto keepthe representationas
simple as possible.

Due to the contractivity constraintthe fixed point or
attractor � . � � �!� . � existsand is uniquely determined
by the transformationitself. According to the contraction
mappingtheorem the decoderreconstructsthe fixed point
from thefractalcodeby solvingtheequation

� �,� . �#�2� .
in an iterative way. Starting from any arbitrary initial
signal �"3 �%� � � the contractionmappingtheoremstates
that the sequenceof iterates

�"45� �76 4 ���"38�#�%$ 4 �"39' 4;: �< = > 3 $
= ( (2)

converges to the uniquefixed point� . �@?BADC4FEHG �"45���!IKJL$M� : � ( (3)
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which is completelyindependentfrom theinitial signal N"O .
The aforementioneddirect determinationof the op-

timal encodingparametersP and Q , sometimestermed
the inverseproblem, is in generalcomputationalinfeasi-
ble especiallyif very high dimensionalinput sources(e.g.
images)are concerned.This is due to the non-linearde-
pendencybetweenthefixed point N�R andtheencodingpa-
rameters.A wayoutof thisdilemmais thecollagetheorem
originally introducedby Barnsleyin this context[3, 1]. It
greatlysimplifiesthe determinationof somesuitedparam-
etersPTSUQ duringtheencodingprocesssinceit demandsto
minimize the distanceV�W�N#SYXN�Z betweenthe original signalN anda so calledcollage XN\[^]�W,N"Z ratherthanbetween
the original signal N and the fixed point. By this way
the time consumingcalculationof the fixed point during
the encodingprocesscan be avoided. Unfortunatelycol-
lagecodingis suboptimalwhich meansthat in generalthe
closestattractoris not found. But as is shownbelow, the
collagetheoremat leastprovidesagoodinitial guesswhich
canbe modified in a subsequentoptimizationprocess.So
minimizing the“collageerror” assuggestedby thecollage
theoremstill makessense.

Someimprovementscan be achievedif the collage
theoremis modified. An interestingapproachis presented
in [4]. Anotherway is simulatingthereconstructionalsoat
theencoderandsuccessivelymodifying thetransformation
in a way that a closer attractor is achievedas proposed
in [5].

But due to the structural limitations of the fractal
transformationevenwithout anyquantizationof thefractal
code no exact reconstructionof the input signal will be
possible.Hencethe reconstructionerror V
W_N#S-N R Z consists
of one part due to the structurallimitations of the affine
mappingand anotherpart which is due to the quantized
descriptionof the fractal code.

Despitethe growing interestand availableliterature
concerningfractal coding thereare still manyopenques-
tions demandingfor answers,e.g.:

• Given the inherent structural constraintsof fractal
coding schemes,how good can they perform for a
specific sourcemodel? How small is the minimal
reachabledistortion for this model?

• How good performscollage coding comparedwith
an optimal scheme? Which improvementcan be
achievedby a modifiedcollagetheoremor otherpro-
posals?

• How cana (nearly)optimal fractal codingschemebe
developedwith tractablecomputationaleffort in the
encodingphase?

This paper is concernedwith the aforementioned
questionsandis organizedasfollows: Section2 describes
a simple fractal coding schemewhich servesas basisfor

thepresentedinvestigations.Section3 thendealswith the
performanceof this schemeand especiallyconsidersthe
effects of the non-optimalencodingprocess.Somesimu-
lation resultsanda brief discussionin section4 conclude
the paper.

2. A BASIC FRACTAL CODING SCHEME
Our investigationsemerge from a simplified version of
Jacquin’sscheme[6]. Insteadof searchingfor similarities
within the entiresignal,eachblock of the signalis treated
independentlyfrom all others.Let N`[^W�a�b�S�adc
S�e�e�e�S�a�f�Z�g
be a vector of dimension h representingany arbitrary
block of the signal to be encoded.This sourcevector is
partitionedinto ij[kh�lYhdm consecutivenon-overlapping
partsdenotedrangeblockseachconsistingof hdm samples.
Further let the structureof the transformationmatrix be
given in a way that the first sampleof eachrangeblock is
formedby the weightedaverageof the first i samplesof
the signal, the secondsampleof eachrangeblock by the
weightedaverageof thesecondi samplesandsoon. The
structureof the transformationmatrix canthenbeoutlined
as follows:

P�[oni

pqqqqqqqqqqqqqqqqqqq
r

f1s block columnst u�v wx b y e�e�e yy x b e�e�e y
...

...
. . .

...y y e�e�e x b
...

...
...

...x/z y e�e�e yy x z e�e�e y
...

...
. . .

...y y e�e�e x z

{�|||||||||||||||||||
}
~ x/� [ pr z

timest u�v w��� S ��� S8�����8S ��� {}`�

(4)
The offset vector

Q`[�W!Q*�1S-Q���S�������SUQ���Z g ~ Q � [ pqr f s timest u�v w� � S � � S�������S � � {�|} g (5)

consistsof i constantparts Q � eachbelongingto one of
the non-overlappingrangeblocksof the original signal.

In order to apply the contractionmapping theorem
at the decoder,the weights or scaling parameters�Y� are
constrainedby the contractivity condition to ensurethe
convergenceof the iterative reconstruction.This can be
guaranteedif all eigenvaluesof the transformationmatrixP lie within the unit circle. In this casethe contractivity
constrainsthescalingcoefficientsto fulfill � z��� b#� � � ��� i .
For h and hdm being integral powers of two the above
constraintmay be releasedto � � z��� b � � ��� i . For a more
detaileddescriptionof theconvergencepropertiesof fractal
transformsthe readeris referredto [7, 8].
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3. OPTIMIZED FRACTAL ENCODING
The aim of optimal encoding is to determinethe scal-
ing and offset parameter��������� such that the distancebe-
tween the original signal � and the fixed point ��� is
minimized. This involves in a first step the calcula-
tion of an optimal m-dimensionalsubspace� definedby�������!�K�L�M�� "¡�¢K�d¢¤£0¥§¦*¨&© of all possiblefixed points���ª£ � . In a secondsteptheoffset vector ¢ is determined
by theorthogonalprojectionof theoriginal signal �\£0¥ ¦K«
ontothesubspaceof fixed points � . Collagecodingworks
suboptimalin both steps.It neitherfinds the optimal sub-
spacenor the orthogonalprojectiononto this space.

Thereforean optimization procedurecan be carried
out in both steps:

1. Given the non-optimalsubspace�­¬ providedby
collagecoding, determinea new offset vector ¢
suchthat �!���`���/�5®�� ¬ .

2. Modify the subspace�­¬ such that it becomes
optimal or at least locally optimal anddetermine
new offset vector (describedin 1).
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Figure1. Minimal reconstructionerror for given
sourcevector andvariouschoicesof two scaling

parameters̄
°;±�¯Y² andleastsquareoptimal offset vector ³
Optimizing the offset vector ³ for a given subspace´&µ

is rathersimple. A detaileddescriptionof this process
maybefoundin [9]. But determininganoptimalsubspace
with reasonableeffort is incomparablymore difficult. In

orderto providea lower boundfor theminimal achievable
reconstructionerror a “full search”in the parameterspace
would be necessary.Fortunatelythe form of the “error
surface”is continuouswhich simplifiestheconstructionof
a non-full-searchencodingscheme. For a typical source
vector the resulting reconstructionerror ¶
·_¸#±-¸�¹/º is dis-
playedin fig. 1 for variouschoicesof two scalingparam-
eters ¯ ° ±�¯ ² andleastsquareoptimal offset vector ³ .

By calculating the minimal reconstructionerror for
a large number of random input vectorsaccordingto a
given sourcemodela lower boundfor the expectedvalue» ·�¶
·!¸#±U¸�¹�ºUº of the meansquarederror for a simple unit
variancememorylessGaussiansourcecan be determined.
Tab. 1 showsthe resultsfor “optimal” encoding(optimal
subspaceselectionandoptimal offset) versuscollagecod-
ing with andwithout offsetoptimization.Onecanseethat

» ·�¶/·!¸#±U¸ ¹ º-º
collagecoding

» ·�¶
·!¸#±U¸ ¹ º�º
opt. collage

coding

» ·�¶
·!¸#±U¸ ¹ º�º
"optimal"
encoding

0.414 0.386 0.295

Table 1. Expectedvalue of reconstruction
error for unit variancememorylessGaussian
sources.The sourcevector of length ¼`½�¾

is partitionedinto ¿k½�À non-overlappingparts.

collagecoding resultsin a significantly larger error com-
paredwith optimized collagecoding or evenwith “opti-
mal” encoding.The resultsobtainedby “optimal” encod-
ing constitutea lower boundfor the given sourcemodel
and the presumedstructuralconstraintsof fractal coding
without quantizationand cannotbe outperformedfor this
schemeby any other fractal encodingprocedure.

Sincereal world signals,e.g. images,are in accor-
dancewith sucha simplesourcemodelonly up to a certain
degree,it is interestingto investigatethe performanceof
collagecoding in comparisonwith optimal encodingalso
for thesesort of signals. For this purposethe former de-
scribedbasicfractalcodingschemehasbeenappliedto real
world images. In a first steponly simple collagecoding
hasbeencarriedout. Sinceneitherthe subspaceselection
nor the offset vector is optimal, in a secondstep a new
optimized offset vector is calculatedbut the subspaceis
retained. Finally the third stepconsistsin optimizing the
subspacetogetherwith the offset. Sincea full searchin
the parameterspaceof the scalingcoefficients is infeasi-
ble for thesesources,a modifiedgradientsearchhasbeen
employed. It consistsin successivelyoptimizing the sin-
gle scalingcoefficientsuntil a locally optimalsethasbeen
found. Our experimentsshowedthat in all casesthe lo-
cal optimum also equaledthe global one. Tab. 2 shows
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the resultsin termsof signalto noiseratio for varioustest
images. For this experimentthe imageshave beenseg-
mentedinto single squareblocks of size ÁÃÂÅÄ�Æ . Each
of theseblocks is independentlyencodedby use of the
former describedsimple fractal coding schemewith pa-
rameter ÇÈÂÊÉ .

collage
coding

opt. collage
coding

"optimal"
encoding

lena 29.5 30.4 31.0

clown 28.4 29.2 29.9

camera 28.1 28.9 29.5

Table2. Reconstructionerror (signalto noiseratio in dB)
for varioustest imagesandencodingschemeswithout
quantization.Left/centre:Collagecodingwithout/with

offset optimization. Right: “Optimal” encodingscheme.

It canbeseenthatby employinganoptimizationstep
improvementsof about1.5 dB canbe achieved.Unfortu-
nately the encodingprocedureof fractal schemesis com-
putationalvery expensive,even if the collagetheoremis
applied. So one has to weigh up carefully the additional
gain in reconstructionquality andthe morecomplexopti-
mization of the encodingparameters.

4. CONCLUSION
Due to the structurallimitations in the choiceof the trans-
formationmatricesandtheoffset vectorsin generalno ex-
act reconstructionof the input signalcanbe obtainedwith
fractal coding schemeseven if no quantizationis carried
out. In this papera simple fractal coding schemeis pre-
sentedwhich servesasbasisfor calculatinglower bounds
for theminimal achievablereconstructionerrorwithout re-
gardingthe additionalquantizationnoise.

Determining the optimal encoding parametersis a
non-linearproblem for which no simple and exact solu-
tion hasbeenfound up to now. An easymethodknown
as collagecodinggreatly simplifies this task but achieves
suboptimalityonly. This paperevaluatesthe resultsob-
tainedby collagecoding togetherwith thoseobtainedby
an optimal encodingschemeemploying a full searchin
the parameterspace.The full searchis of courseoptimal
but also computationalintractableand not suitedfor any
practicalimplementationbut in thiscaseit providestheex-
pectedvaluefor the lowestachievablereconstructionerror
ignoring any quantization.

In order to treat real world imagesthe good-natured
behaviorof the reconstructionerror hasbeenexploitedin

order to constructa fast gradientsearchwhich approxi-
matelyreachesfull-searchperformancebut with a fraction
of its computationaleffort. The algorithm is basedupon
thecollagetheoremfor which our experimentsshowedthat
it providesa goodinitial guessfor theencodingparameters
thoughit is suboptimalin nature.A subsequentmodifica-
tion of theencodingparametersfinally leadsto theoptimal
subspaceand offset vector selection.
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