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ABSTRACT

This paperpresentsa methodfor fast encodingof still imagesbasedon iteratedfunction systems
(IFSs). Themajor disadvantageof this codingapproach,usuallyreferredto asfractal coding, is thehigh
computationaleffort of the encodingprocesscomparedto e.g. the JPEGalgorithm[1]. This is mainly
due to the costly “full search”of the transformparameterswithin a fractal codebook.

We thereforeproposean hierarchicalencodingschemewhich is basedupon a two level codebook
searchand a structuralclassificationof its entries. By this way only a small subsetof the codebook
has to be considered,which increasesencodingspeedsignificantly. Refining the initial codebookand
applyinga secondsearchevenincreasesthe reconstructionquality comparedto the full searchbut with
a fraction of its computationaleffort.

1. INTRODUCTION

Due to the increasingnumber of digital image processingapplicationsthe need for efficient coding
of pictorial databecomesevident. Imagecoding usinga fractal approachhasattractedsomedegreeof
interestin thelastyears.Mostcommonblockorientedcodingtechniquesusuallyrevolvearoundtransform
coding, e.g. [2] and vectorquantization, e.g. [3]. The fractal coding concept,originally proposedby
Barnsley[4] andat first implementedby Jacquin[5, 6, 7], is basedon a blockwiseapproximationof the
original imageby contractionmappingsof itself using affine transformations.

For a given image the encodingprocessconsistsof finding among a class of a priori defined
contractivetransformationsonewhich leavesthis imageapproximatelyinvariant. Accordingto Banach’s
fixed point theoremthesequenceof reconstructedimagesconvergesfor anyarbitraryinitial imageto the
fixed point of the transformationwhich is the original image. Compressionis achievedif the transform
parameterscan be describedmore compactlythan the original image.

The paper is organizedas follows: The secondsection describesthe mathematicalfoundations
concerningencodingand decodingof still imagesusing the fractal approach. Following this, the
generationof the fractal codebookis describedand someof its statisticalpropertiesare derived. In
section4 a two stepsearchalgorithmandastructuralclassificationof thecodebookentriesareintroduced.
Recentresultspresentedin section5 demonstratethe efficiency of the proposedcodingscheme.
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2. MATHEMATICAL FOUNDATIONS

Let
���������

be a completemetric spacewith metric
�

, and 	 
 � � �
be a transformationwhich

mapsthe space
�

onto itself. 	 is called contractiveor a contractionmappingif thereexistsa real
constant � 
 ��� ����� such that

��� 	 ������� 	 ��������� � ����������� ������� 
 � (1)

holds. Accordingto [4] � is calledthecontractivityfactor of 	 . Banach’sfixed point theoremensures,
that in this casethere existsa unique attractor

�! 	 � � �
(2)

which is invariantwith respectto 	 . Furthermore,the attractor
�

is the limit of variousapproximating
sequencesof setswhich canbe constructedfrom 	 . This meansthat

�
is fixedpoint of the sequence

of iterates " �$#�% � �&# 
 �'�)( 
*"+� �,�-�/.0�+1�1,1 % � with

� #3254  	 � � # �  	!687 #-294;:/< �>=/? (3)

for any arbitrary initial element
� =

.

Let us now think of @ asan imagewhich we want to encode.Our goal is thento find a contractive
transformation 	 such that the given image @ is invariant with respectto the transformation	 1.
Equations(2) and(3) give us an ideahow @ canbe reconstructedfrom the fractal code 	 :

Let
� =

be any arbitrary initial image. Due to the contractivityof the mapping 	 , the sequenceof
images " �$#�% , which canbe constructedaccordingto equation(3), tendstowardsa final image,which
is the attractorof the mappingand can be written as

�BAC DFEHG#3I A � #  DJEHG#0I A 	 6 #K< � =/?�L (4)

Due to the presuppositionof invarianceformulatedin equation(2), the attractorof the transformation� A
and the given image @ we want to encode,must be identical:

��� � A � @ �  DJEJG#0I A ��� � #M� @ �  � (5)

This meansthat the given image @ cansolely be reconstructedfrom the knowledgeof the appropriate
transformation 	 L Therefore 	 often is referred to as fractal code since it can be interpretedas
representationof the given image in the fractal domain.

1 Sinceformermethodsdirectedto computeranimationgeneratenaturallylooking imagesfrom a setof givencontractivetransformations,
this procedureis known asthe inverseproblem.
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3. CODEBOOKGENERATION

Grey toneimagesof size NPORQSNPO canbemodeledaspointsin the linearvectorspaceTVUXWMY9ZK[0Y9Z ,
which is the set of all real N\O]QBNPO —matrices. For natural images,which are consideredhere,no
practicalalgorithmsareknown in orderto find a transformationwhich mapstheentireimageonto itself.
Thereforethe imageis segmentedinto N*^ rectangularnon overlappingblocks of size O Q_O pixels
and the transformatioǹ U acbdfehgji d is definedblock wise.

According to the theory of recurrent iterated functionsystems(RIFS) [8, 9], which are the mathe-
matical basisfor fractal imagecoding, it is important to note that the i d do not operateon the entire
imagebut are restrictedonly to partsof it denotedby k d . This meansthat i d0l k d,m UCn d mapsthe
areaof block k d on theareaof block n d which is illustratedin figure 1. Following Jacquin’sproposal,
e.g. [7], the blocks n d , which are to be encoded,are termedrangeblocksand the blocks denotedbyk d arethe so calleddomainblocks. The displacementbetweenthe block n d and k d , which is part of
the transformationi d , is denotedby op-q d�r For our applicationwe imply that the n d ’s are disjoint andaSbdse9g n d coversthe entire areaof the image.
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Figure 1: Image tiling

Sincewe areinterestedin encodingof images,it is evidentthatthefractalcodeshouldbeascompact
as possible. This meansthat it can be storedmore efficiently (requiring lessamountof data)than the
original image. The local mappingswyx are thereforerestrictedto affine transformations.

In orderto keepthecomputationaleffort low, thevaluesfor theparameterof thelocal transformationsw x cannotbe chosenarbitrarily but haveto be calculatedfrom a a priori given set of allowed values.
Thereforethedomainblocksarealwaystwice thesizein eachdirectionastherangeblocks. Additionally
not all affine transformationsareallowedbut only theeightpossibleisometricswhich mapa squareonto
anotherone. The componentsof the offset vector z�{,|~}f{/�-�;� arerestrictedto be a multiple of the block
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sizeof �>� andit mustbe ensuredthat both, the range-andthe domainblocks lie within the considered
image area. All theselimitations causethe number � of possibletransformations��� to be finite.
This enablesus to constructa fractal codebookof which eachentry definesonepossiblecombinationof
transformparametersdescribinga mappingfrom one block within the consideredimageonto another.
Sincethe transformationsare appliedto imageblocks, the codebookentries �������y�~�����,� are image
blockstoo andmay beconsideredas fractal basisfunctions. Encodingnow consistsof finding for every
rangeblock � � this basisfunction �5� which fits bestin the senseof the useddistortionmeasure� .

����� ��� � � ��� �)�H� � �����-� ���~�� � + �� � ¡-¢ (6)

Dueto therestrictionswe madeto thepossiblemappings,it is not very likely to find a transformation£
which is a) contractiveand b) mapsthe given imageor partsof it exactly onto itself. The goal is

thereforeto constructa mapping ¤£ in a way that its fixed point ¥¦ is close— in the senseof a proper
chosendistancemeasure� — to the given image

¦
which hasto be encoded.If this is possible,the

collagetheorem [10] ensures,that if we canfind an approximation ¤£ to
£

, the attractor

¥¦ � ¤£ §y¨¦>©«ª¬¦
(7)

will be an approximationto
¦

.

Onecommondistancemeasureis the Euclideandistancewhich canbe written as

�®­¯��� � ���¯� �°�±!²³³´ µK¶�·¸¹Jº¼» µK¶�·¸½¾º�» ���)��¿�ÀRÁ_Â �fÃ ÀRÁÅÄ��KÆP�y��¿�ÇÈÁ\Â �/Ã Ç�ÁÅÄ���� ± (8)

with � and � denotingtwo imageblocksof size
°ÊÉÈ°

pixels with their upperleft cornerat position��¿�À �jÃ À5� and ��¿�Ç �/Ã ÇË� respectively. Since we want to representgrey scalevalues, two additional
parameterÌ�Í �fÎ and ÏÐÍ �/Î areintroduced,which allow adjustingcontrastandbrightnessof the considered
imagepartition. They haveto be takeninto accountwhencalculatingthe distortionmeasure,which is
doneby minimizing for eachrangeblock �>� the distance

� ­ § �>� � Ì Í �sÎ � � Á]Ï Í �/Î © � �«�J� (9)

with respectto the scaling parameterÌÑÍ �sÎ , the offset parameterÏÐÍ �sÎ , and the optimal fractal basis
function � � . By using the Euclideanmetric the leastmeansquare algorithm offers the optimal solution
for Ì�Í �sÎ and ÏËÍ �sÎ if the rangeblock �>� and the correspondinglibrary block � � are given.

4. CODEBOOKSEARCH

The ideaof fractal block codingsuffers from its greatcomputationaleffort dueto thenumerousdistance
calculations.As is shownin the following, a hierarchicalsearchalgorithm combinedwith a structural
block analysisis capableof reducingthe computationaleffort to a fraction but still yields almost the
samereconstructionquality. As mentionedabove,thegreatbut finite numberof possibletransformations
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enablesus to perform a “full search”in order to find the best library block for eachrangeblock. For
typical applicationsthe numberof range-and domainblocks is about Ò-ÓÕÔ-Ö each. With eight possible
isometricmappingsthe hugenumberof Ò-Ó-Ô-ÖØ×ÙÒ-Ó-Ô-ÖØ×ÅÚVÛ�Ü+Ý-ÒØ×ÞÜ+Ó-ß distancecalculationshaveto
be performed. This simple exampleillustratesthat it is necessaryto improve encodingspeedin order
to makethe fractal coding schemefeasible. We thereforeproposeto reducethe computationalburden
in the following way:

• Not all library blocks are testedfor an appropriatematchand
• the calculationof the distanceàÐá accordingto equation(8) is partially replacedby a simpler one

in the senseof the computationalcosts.

Thepropertiesof thefractalcodebookwhich aredescribedin section4.1 leadusto a spiral-shapedsearch
addressedin section4.2 andto a hierarchicalsearchschemepresentedin section4.3. Replacing à á by
a simplerdistancemeasureis baseduponthe fact thata goodmatchpresupposesrangeandlibrary block
to be of similar grey level distribution. For this purposein section4.4 a structuraldistancemeasureàËâ
is proposedwhich canbe derivedmucheasierin termsof computationalcomplexity than the Euclidean
distanceà®á .

4.1. Codebookproperties

Due to the restrictionswe madeto the transformationsãyä they do not operateon the entire image
but only on thecorrespondingimagearea å ä . This meansthatself similarity is not exploitedin a global

but in a local senseonly. Figure(2) depictsthe probability densityof the offset vector æ�ç�è ä�éêìë ç-è äséíïîËð .
It canbe noted,that the spatialdistancebetweena domainblock from which the library block is taken
andthe block to be encoded(rangeblock) is typically small, i.e. near library blocksmorelikely provide
a goodmatchthan far ones.It canbe seenthat the mostlikely offset vectoris ñçóòõô�Ó ë Ó~ö ð . This effect
is exploitedby restrictingtheallowedrangefor theoffset vector ñç or by applyinga hierarchicalscheme,
both describedin the following sections.
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Figure 2: Probability density for offset vector ùújû]ü�ý-þ�ÿ����� ý0þ ÿ��� ���
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4.2. Restrictedsearcharea

Fromfigure 2 it canbeseen,thatlibrary blockswhicharespatiallyfar awayfrom theconsideredrange
block arevery unlikely to providea goodmatch.Thereforethesearchorderis adaptedto theprobability

densityfunction of the codebookoffset vector 	�

�������� 
����������� , so that thosecodebookcandidateswhich
are most likely are testedfirst. This is performedby a spiral-shapedsearchorder emerging from the
codebookentry ��� � �! � of smallestoffset vectorsto larger ones. The searchendsafter a predefined
number of tests. The library block providing the best match up to this point is taken. As can be
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Figure 3: Dependencyof Signal to noiseratio (SNR) from numberof testedblocks. Full Searchcorrespondsto 100 %.

seenin figure 3 the reconstructionquality only slightly decreases,but encodingspeedwhich is roughly
proportionalto the numberof library testsdrasticallyincreases.Anotherway to breakoff the searchis
to provide a minimum distortion level " dependenton the desiredreconstructionquality which hasto
be fulfilled for eachlibrary block. So the library block #%$ is takenasapproximationfor the considered
rangeblock &(' for which )�*,+ & '.-0/
1 '�2 #%$4365 1 '0287:9<;

(10)

holds first.

4.3. HierarchicalSearch

Thesecondway to decreasethenumberof necessaryblock comparisonsis to generatea maskwhich
determinesthosecodebookentries,which are consideredin the searchfor an optimal library block.
In contrastto the restrictedsearchdescribedabove,also somecodebookentrieswhich are “far” away
from the rangeblock are takeninto account. According to the distribution of the offset vectorsin the
neighborhoodof theconsideredrangeblock a full searchstartingat codebookentry =?> - >!@�A is performed.
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Sincefar codebookentriesare less likely to provide a good match,not eachof them but only a small
subsetis tested.The setof allowedoffset vectorsis referredto assearchmaskexemplarilydepictedin
figure 4. One can seethat the structureof this mask is adaptedto the probability density function of
the offset vector BC , sincein the neighborhoodof the codebookentry DFEHG�E!I�J manyblocks,but for large
offset vectorsonly a few are tested.

Offset vector (0,0)

Figure 4: Searchmask with 11% occupancy

Becausenot all codebookentriesareconsidered,the optimal matchmay not be found. To improve
this scheme,a secondstepis performedby applyinga full searchin the neighborhoodof the codebook
entry which wasfound to be bestin the first step. Resultsasdepictedin table1 show,that the number
of necessaryblock comparisonsis significantly reducedbut the reconstructionquality is only slightly
affected when comparedwith the full search.

image: 512x512lena
percentageof block

comparisons
SNR

full search 100% 32.2dB

hierarchicalsearch 12% 31.9dB

restrictedsearch 12% 29.7dB

Table 1 Comparisonbetweenhierarchical,restricted,and full search

4.4. Structuralclassification

Despiteof thehierarchicalsearchdescribedin section4.3,manycalculationsof theEuclideandistanceK�L
accordingto equation(8) havestill to be performedin order to find a satisfactorymatchfor every

rangeblock. For typical block sizes,e.g. MONPM pixels, the calculationof each
K L

needsabout 64
subtractionsand multiplications. Encodingspeedthereforecan be increasednot only by reducingthe
numberof distancecalculationaswith the hierarchicalscheme,but alsoby reducingthe computational
complexity of the useddistortion measure

K
.

It can be shownthat only library blocks of similar spatialgrey level distribution as the considered
rangeblocksarelikely to providea goodmatch. In orderto exploit thisproperty,astructuralclassification
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of all rangeand library blocksbaseduponthe local meanis proposed.From thesea structuraldistance
measureQ�R is derivedwhich canbeusedto determinethoseblocksfor which it is worth to calculatethe
EuclideandistanceQ�S . This means,that the Euclideandistancecalculationis only performedfor those
block pairs which havea similar spatialgrey level distribution.

Let TVUWT be thenumberof pixelswithin a squaresizedimagepartition X with its upperleft corner
at position YFZ\[%]_^![a` . The meangrey level bc[ is then definedas

b [ed fThg ikjmlno�prq iajmlnstprq XuYvZ [xwzy ]�^ [:w|{ `�} (11)

Let X q ]�X l ]�X g ]_X(~ bethenonoverlappingsquaresubblocksof theimageblock X with X d�� ~� prq X �
and b [m����������� ] f ]��!]_�H� be the meanof eachsubblock. When using the block mean b [ and the
four correspondinglocal meanvaluesb|[ � , a feature vector �([ d YF� q ]�� l ]_� g ]�� ~ ` canbedetermined
in the following way:

� � d � f ] b [ �W� b [� ] bc[\�W��bc[ (12)

The simplestway to derive a distancemeasurebetweentwo blocks X and � basedon the spatialgrey
level distribution is to comparethe single componentsof the associatedfeaturevectors �([ and ��� .
So the distancemeasure

Q�RmY�X�]���` d�� � ] � [ d � �� ] �([��d � � (13)

simply resultsin a decisionwhetherthe featurevectorsare the sameor not.

Theencodingprocessis nowmodifiedin thefollowing way: In a first stepa featurevector � for each
rangeandlibrary block is calculatedaccordingto equation(12). Then,in orderto find thebestmatchfor
eachrangeblock, thehierarchicalcodebooksearchis appliedasdescribedin section4.3. The difference
is, that thecostlycalculationof theEuclideandistanceQ S YFX�]_��` betweena rangeblock X anda library
block � is only performedfor thoseblock pairs,for which the structuraldistanceQ�R\YFX�]��¡` d�� holds.
Sincethe calculationof the featurevectorsfor eachrangeand library block only hasto be doneonce
at the beginningof the encodingprocess,it doesnot increasethe computationalcost significantly. On
the other hand a great numberof calculationsof QHS¢YFX�]��¡` can be avoided. Encodingspeedcan be
increasedby a factor of aboutfive to ten, becausethe calculationof the structuraldistanceQ�R\YFX�]��¡`
requiresmuch less computationaleffort.

Figure(5) showsthe distributionof the featurevectorsobtainedfrom a wide variety of test images.
Thesquarepatternsat thebottomdepictthepossiblespatialgreyleveldistributionof theconsideredblock
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andarerepresentedby the number £ . The black areadenotesthat the meanvalueof the corresponding
subblockis lower comparedto the meanvalue of the entire block.
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Figure 5: Distribution of featurevectors

Becausethe Euclideandistanceonly hasto be calculatedin the caseof zero structuraldistanceª�«
betweentwo blocks, the numberof remainingnecessarycalculationsof ª­¬ can be estimatedin the
following way:

Let ®°¯²±´³�µ%¶·®h¸�¹!º¼»¾½À¿�Á ¿�Â ½ÀÃ�Á Ã�Â ½�ÄÅÁ Ä%Â ½ÀÆ�Á Æ ¶·ÇÉÈ
(14)

be the probability that the featurevector

³
is of type

Ç
. The featurevectorsof rangeandlibrary blocks

were found to havethe samedistributiondepictedin figure 5. Hencethe probability that two blocks Ê
and Ë havethe samefeaturevector

³ ¶Ì³�ÍÎ¶�³(Ï
can be determinedby.®�¸�¹Ðº!ÑÒ³(Íe¶�³(Ï!Ór¶ Ä�ÔÕÖ�× Æ ÖÕØt× Æ ® Ö ® Ø (15)

Coding resultsobtainedfrom severalstandardtest imagesare depictedin table2. The left and middle
column show the resulting reconstructionquality in termsof signal to noise ratio (SNR) without and
with a structuredclassification,respectively.The right columndepictsthe relativenumberof remaining
necessaryEuclideandistancecalculationswhen the classificationschemeasdescribedaboveis applied.
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It can be seen,that by performingthis classificationthe numberof costly distancecalculationscan be
reducedto about12 % without any significantloss in reconstructionquality.

512x512
test image

SNR
no struct. classification

SNR
with struct. classification Ù�Ú�Û!ÜÐÝßÞ(àâá�Þ ã!ä

lena 32.2dB 32.0dB 11.9%

baltimore 25.2dB 25.5dB 12.5%

Table 2 Reductionof necessaryEuclideandistancecalculations

4.5. Codebookrefinement

The hierarchicalsearchaddressedin section4.3 and the structuralblock classificationdescribedin
section4.4 are both techniquesto speedup the computationalcostly codebooksearch.Apart from this
anotherpoint of interestis to increasethereconstructionquality. Obviouslya full searchin thecodebook
resultsin the bestquality for the given set of a priori definedtransformations.

Onepossibilityto improveencodingquality is to reducethesizeof rangeanddomainblocks. By using
smallerblocks it is more likely to obtaina goodmatchbecausethe distancebetweenthe original image
and its fractal approximationusually becomessmaller and thereforereconstructionquality increases.
Sincein somecases,e.g. flat imageareas,the approximationwith large blocks is sufficient, it doesnot
seemto be meaningfulto decreasethe block sizefor the entire imagebut only for thoseareaswhereno
good matchcould be achieved.A very well suitedprocedureseemsto be a quadtreesegmentationas
describedin [11]. It hasbeenshownthat reconstructionquality in termsof signal to noiseration (SNR)
could be improvedby 1–3 dB without any increasein datarate.

Another way to enhancequality is to enlarge the set of allowed transformations,which we refer
to as codebookrefinementin the following. Due to the contractivity constraint,the scalingparameterå�æ�ç�è (seeequation(9)) has to be in the range å
æ¾ç0èêé ëíì�î�ïñðóò�ôõô�ôõò�îöïñð!÷ . The offset parameterÛ æ�ç�è
has to be determinedin a way that the resulting valuesrepresentingthe grey level are in the rangeømëFù°ò�ú\÷ á Ý ðHò�ô�ôõô�òüû�ý�ý ä if 8 bpp imagesare considered.So the only parameterwhich can be tuned

is the rangeof the allowed offset vector þ Ü æÿç�è� ò Ü æ�ç0è� ���
. As mentionedin section3, the single Ü ����� are

only allowedto be multiple of the usedblock size. We thereforeproposeto enlarge the usedcodebook
by allowing a finer quantizationfor the offset vectorsin order to increasereconstructionquality. This
can be done in the following way:

In a first step the optimal set of transformations� is determinedby performing a full search
or applying a more sophisticatedschemeas describedin the previoussections. In a secondstep the
previouslydeterminedoptimaloffsetvectoris slightly varied. If thereexistsanyvector 	Ü�
 	��
 for which
the appropriatedistancemeasurebecomessignificantlysmaller,then the vector 	Ü�
 	� 
 is takenasnew
offset vector. By this way the setof a priori definedtransformationsis enlargedsincethe offset vector
is no longer constrainedto multiples of the usedrangeblock size.

The results we obtainedshow, that reconstructionquality can be increasedby 2–3 dB with an
additionalcomputationalexpenseof about5–10%. Also it shouldbe mentionedthat dueto the vector
	� ç about4–6 extrabits are neededfor representationof oneblock transformation� ç .
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5. SIMULATION RESULTS

Coding simulationswere carriedout on the original 512x5128 bits per pixel “lena” imageshown in
figure 7. The propertiesof the transformations,especiallythe distributionof the offset vectorwhich has
beenderived from a large set of test imagesare depictedin figure 2. Emerging from theseresultsit
hasbeenshownin figure 3 that the reconstructionquality only slightly decreasesif the codebooksearch
is restrictedto the neighborhoodof the consideredrange block. Some improvementsare achieved
by introducing an hierarchicalsearchwhich is basedupon a searchmask as depicted in figure 4.
Simulation results presentedin table1 show that the hierarchicalsearchschemenearly reachesfull
searchperformancewith a fractionof its computationaleffort. Furthermodificationsleadusto astructural
classificationof the codebook.Sinceonly library blockshaving the samespatialgrey level distribution
are likely to provide a good matcha structuralclassificationis introducedand its resultsare depicted
in table2 for somedifferent test images.
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Figure 6: Coding resultsfor somesearchschemes
1: full search
2: hierarchicalsearch
3: full searchwith structuralclassification
4: hierarchicalsearchwith codebookrefinement
5a: as4 but with additionalstructuralclassification
5b: as 5a but with reducedsearchmask Figure 7: Original 512x5128 bpp “lena” image

A brief summaryof our coding results is shown in figure 6. It can be seenthat in all casesthe
computationaleffort, which is mainly causedby the block testsin order to obtain a satisfactorymatch,
is drastically reducedbut the reconstructionquality nearly remainsthe same. By applying a codebook
refinementthe reconstructionquality evenis beyondthe full searchboundarybut with a fraction of its
costs.

6. CONCLUSIONS

Basedon thoroughstudiesof thefractal codebooka fasthierarchicalsearchalgorithmis describedwhich
significantly increasesencodingspeedwhile retainingfull searchperformance.In contrastto the latter
only a subsetof all possiblelibrary blocksis testedfor a satisfactorymatch.The selectionof this subset
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containingaboutfive to ten percentof all library blocks is basedupon the following propertiesof the
fractal codebook:

• The spatialdistancebetweena library block andthe block to be encoded(target block) is typically
small, i.e. near library blocksmorelikely providea goodmatchthanfar ones.Thereforethesearch
order is adaptedto the probability densityfunction of the codebookentriesusinga weightedsearch
mask.

• A goodmatchpresupposestargetandlibrary blocksto beof similarstructurewhichhasbeenexploited
by a codebookclassification.On thebasisof a local meananalysisa structuraldistancemeasurehas
beendevelopedwhich partially replacesthe costly calculationof the usedEuclideandistance.

Emerging from the optimal matchthe initial codebookhasbeenlocally refined anda secondsearch
is applied.By this meansthe reconstructionquality comparedto the full searchcouldevenbe increased
with a fraction of its computationaleffort.

Further investigationsare directedto apply the proposedfast hierarchicalsearchalgorithm to the
field of video coding. Especiallyin this caseit is necessaryto perform a fast encodingproceduredue
to the high encodingrate required.
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