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ABSTRACT
Most fractal coding scheme®mploy an iterative decodingalgo-
rithm in order to reconstructthe approximationof the original
signal from the fractal code. A necessarycondition for obtain-
ing a unique solution is the convegenceof the reconstruction
process.This paperreportson investigationsconcerninga nec-
essaryand sufficient condition for convegencewhich is based
uponthe spectralradiusof the transformatiormatrix. For a very
generalclass of fractal transformsa simple calculation of the
spectralradiuscan be performedin orderto decidewhetherthe
reconstructiorconvegesor not. This allowsmorefreedomin the
choiceof the encodingparametersesultingin a betterandfaster
reconstructiorprocess.Also the proposeddescriptionleadsto a
more accuratetheoreticalfoundationof fractal coding schemes.

1. INTRODUCTION

During the last yearsa novel coding and modeling schemefor
natural signals has been developedwhich is widely known as
fractal coding The basicideafor encodingof signalsby use
of fractal techniquesis originated in various publications of
Barnsleyetal., e.g. [1]. A first implementationfor automatic
encodingof gray-scalémagesatcommoncompressiomatioshas
beenproposedy Jacquin[2] andreviewedin [3]. An excellent
mathematicalfoundation of fractal signal modeling basedon
the theory of finite-dimensionalvector spacesis included in
[4]. Recentlysomeimprovementsand modificationshave been
published,e.g. [5, 6, 7], which make the fractal techniquea
challengingcandidateespeciallyfor encodingof images.

In contrastto common transformations,e.g. the DCT,
whosecoding gain emegesfrom the bindingsbetweenadjacent
samplesfractal codingschemesnainly exploit somesortof long
rangecorrelationswithin the signal. In the contextof fractalcod-
ing thesecorrelationsare termed(partial) self-similaritieswhich
arisesfrom the fact that many parts of natural signalsmay be
found in a scaledand/or geometrictransformedversion within
the samesignal. All theseschemescan be describedas vector
quantizationwith signal dependentodebook The main advan-
tagecomparedo conventionaMQ-algorithmsis the fact that no
codebooktraining is necessaryand that the vectorsmay be of
very high dimensionality

The encodingprocessworks as follows: The entire signal
x = (z1,22,---,2n)" € R™ consistingof n pixelsis segmented

into Nr = n/n g non-overlappindlocksx; with n r pixelseach.
Thenfor everyblock x;, : = 1,2,..., Nr acodebookentry y;

from a setof Np entriesis selectedwhich after scalingwith o;;

and adding an offset b; 1 minimizes some preddined distortion
measure

d(x,‘, )"(,‘) = min d(xi, iy + b,‘l) . Q)
je{1,2,..Np

The codebookis generatedrom the entire image x by use of

a codebookconstructionmatrix C which is mainly determined
by the type of the codingscheme.Let Cx denotethe collection
of all codebookentriesy; andlet F; bethe 'fetch-operation’of

the codebookentryy,; = F,;Cx from the codebook.Furtherlet

P; denotethe 'put-operation’of the optimal modified codebook
entry %, = ayy; +b1; 1 = (1,1,...,1)T € RYR into its

appropriateposition of the approximatedsignal x. Then the

mappingprocessof the entire signal W : IR™ — IR™ may be

formulated by
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From (2) it canbe seenthat this mappingis an affine transfor-
mation with a linear part A anda non-linearoffsetb. A very
simple coding schemecan be stated,if the mapping(2) results
in a convegentseriesof iteratesxxy+1 = Axx + b, which due
to Banach’sfixed point theolemthen convegesfor any arbitrary
initial signal xo to the uniquefixed point x; = (I—A) 'b.
A necessaryand sufficient condition is that the spectralradius
ro(A) = sup |}, which is the largesteigenvalueof the lin-
A€c(A

earpart A Wi;h )a(A) beingthe setof all eigenvaluef A, is
smallerthanone [4]. In thiscase(A, b) servesasfractalcodefor
the signalx ; which by presumptioris the approximationof the
original signalx. Thisis guaranteedty thecollagetheoem([1, 4,
8], which ensureghatthefixed point x; is closeto x if alsothe
distortiond(x, %) betweerthe original signalandits collagex is
small. In this casea codinggainis achievedf thetransformation
canbe representeavith fewer bits than the signalitself.
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Actually the fractal code should be determinedin a way
that the distortion betweenthe original signal and an appropri-
atedfixed point d(x, x ¢), which is reconstructedt the decoder,
is minimized. Obviously this is a very difficult task from the
computationalpoint of view and thereforein practicethe above
mentionedcollage-codinghas provenwell which insteadis in-
tendedto minimize the distortion betweerthe original signaland
the collage d(x, %), though this is not optimal. One possible
extensionof collage coding yielding a closer fixed-point by re-
calculatingthe offsetb for thegivenlinearpart A may be found
in [9].

Currently the investigations concerning fractal coding
mainly concentrateon library constructionand/or signal par-
titioning in orderto minimize the approximationerror d(x, X).
Howeverthe questionof convegenceis not addresse@xplicitly
in mostpublicationsthoughit is mostimportantfor the function-
ality of theseschemesTo overcomethis lack, this paperreports
on resultsconcerningthe convegenceproblemin fractal coding
schemes.This leadsto the questionwhetherthe eigenvaluesf
the linear partlie within the unit circle or not. Due to the huge
dimensionof the transformatiommatrix A, it is easilyunderstood
that straightforwarddeterminationof the eigenvaluedy solving
the characteristicequationdet (A — AI) = 0 is infeasible. In-
steadthis paperdescribeshow the eigenvaluesor at leastthe
spectralradius of the transformationmatrix can be determined
exactly for a wide rangeof coding approaches.

The paperis organizedasfollows: Section2 introducesthe
calculationof the eigenvalue®f thelinearpart. In subsectior2.1
it is shown how the eigenvaluesof a simple transformation
matrix can be derived easily. These results form the basis
for a very generalclassof transformationmatriceswith which
many existing fractal coding schemescan be describedexactly
when convegenceis the issue. The necessaryproceduresfor
determiningthe largest eigenvalueof the transformationmatrix
is presentedn subsectior?.2. The paperconcludeswith a short
summaryand a prospecton future investigations.

2. EIGENVALUES OF THE LINEAR PART

Jacquin’soriginal approach2] is the mostgeneraloneregarding
the variability of the transformationrmatrix. But dueto its com-
plex structure,a simple andgeneralsolutionfor the eigenvalues
hasnot beenfound yet. Thereforewe concentrateour investiga-
tions on a slightly simplified versionwhich implies someminor
constraintson the single block transformations.

We proceedin two steps: In the first stepwe investigate
a proposalby Monro and Dudbridge for encodingof single
imageblocks[5]. The structureof the transformationmatrix A
becomegathersimplein this casesinceeachblock of the signal
is treatedindependentlyfrom all others. An exactsolution for
the eigenvaluef this type of matrix hasbeenpresentedcartly
in [10, 11] and thereforetopic 2.1 only summarizeghe results
concisely.

Theseresultsserveas basisfor the secondstep on which
the main attentionis focused. Subsectior2.2 describesa later
on publishedextension12] including the previous mentioned
simple schemeas special case. It additionally allows jointly
encodingof signalblockswhich makest very similarto Jacquin’s
original proposalregardingthe structureof the transformation

matrix. This transformationis much more complex becauseof

theconcatenationf the singleblocktransformationsCodingand
decodingof eachblock now may dependon other parts within

the samesignal. Hencethe single block transformationsannot
be performedndependentlyrom eachother. Howeverthis paper
presentsan algorithmwhich allows an exactdeterminatiorof the
spectralradiusof the transformationmatrix during the encoding
processand therewith a necessaryand sufficient criterion for

convegenceof the reconstructiorprocess.

2.1 Eigenvalues of the block transformation matrix
Accordingto [5], the encodingprocessn this simple case
startsby segmentingthe entire image into Ng = n/ng non-
overlapping range blocks of nr pixels each. The so-called
domainblocks which also are demandedo be non-overlapping
are composeddf m =np/nr, m € IN adjacentrangeblocks.
The averagedand subsampleddomain block is then mapped
onto his underlyingrangeblocks for which accordingto (1) the
scaling-and offset parametersy;; andb; aredetermined.lt can
easily be shown,that the transformatiommatrix A for the entire
signalx thenis a block-diagonamatrix consistingof Np square
submatricesA; andhasthe following structure:

np block columns

a;i o --- 0
0 a;1 0
0 0 a;l
. 1 . . . .
A= dlani) A = — . . . : (3)
aim 0 0
0 Aim 0
0 0 Aim
with a; = (i, ®i,...,a), 0 = (0,0,...,0) € R™

V(e {l,2,...,Np},j € {1,2,...,m}). As canbe seen,the
columnsumof A; is constantand thereforethe spectralradius
is boundedby r,(A;) < L >oisy |eis| for arbitrary np, ng.
Equality holdsfor non-negativeA;, thisis if all «;; > 0.

Forthespecialcasethatbothn g andn p areintegralpowers
of 2, orthatm is anintegralmultiple of n z which arein practice
only minor restrictions,an exact eigenvaluedeterminationmay
be performedfor arbitrary o;;. In this casethe characteristic
determinant

_)\i *
0 =X
det (A; = \I)= 0 0 . (4)

T e
J=1

for calculationof the eigenvaluescan be transformedby some
elementaryoperationsnto an uppertriangularform, asoutlined
in Appendix|l. The characteristicequationis the productof the
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diagonalelements —\;)™ ™"

in the (m —1)-fold eigenvalue\;, i, ...;,,_, = 0 andonesingle
eigenvalue\;,, = = >_j—, @i;. Thespectraradiusof the entire
transformationmatrix A is thenexactly determinedby

m
j=1

((Zm a") - /\i) = 0 resulting

=1 m

re(A) = max
ie{1,2,..,Np}

)

re(A) = max %

It canbe seenfrom (5) that a convegentreconstructiorprocess
canbeobtainedevenif someof thescalingparameters;; exceed
theboundof 1.0 which canbederivedby examinatiorof themax-
norm||A||,,., of thetransformatiormatrix [2]. Therelationship
betweenany norm, the spectralradius, and Fisher’s eventually
contractivemaps[8] is outlinedin AppendixII.

2.2 Eigenvalues of a general transformation matrix

In the former describedsimple casethe relationshipsbe-
tweenthe range-and domainblocks are fixed, this is given any
arbitrary rangeblock the appropriatedomain block is known a
priori. Insteadthe more generaltransformatioraddressedh this
subsectioneavesmore freedomfor the encodingprocesssince
for any given collection of m adjacentrangeblocks a domain
block from a large set of possibleonesis selectedwhich fits
bestin the senseof a distortionmeasure.As a resultof this ex-
tensionthe transformationof the entire signal cannotbe decom-
posedinto single block transformationsas demandecdpreviously
in subsectior?.1, because block not necessarilys mappednto
itself but may be mappedonto anotherblock within the same
signal. This leadsto the transformationmatrix A havinga more
complexstructurecomparedo (3) sincethematrixis nolongerof
block diagonaltype. In generalit consistsof exactlyone subma-
trix A; # 0 in eachblock row but atany arbitraryblock column.
Dueto this someblock columnsmayonly consistof zeromatrices
0. Thoseblocksare not part of the iteration processand there-
fore do not contributeto the largesteigenvaluesincethe accom-
panyingdomain-blockis neverusedfor the mappingprocedure.
Analogousholdsfor the block rows describingthe corresponding
rangeblocks. For determinationof the largest eigenvaluethese
columnsandrows canthereforebe removediteratively. The re-
ducedmatrix Ar obtainedin this way describesonly thoseparts
of the transformationwhich influencethe convegence. The re-
sult of the reductionalgorithmis a block matrix with exactlyone
non-zerosubmatrixin eachblock row and block column. By
simultaneousexchangingof rows and columns,which doesnot
affect the eigenvaluesthe reducedmatrix

zZHD o0 .. 0
0o z® :
Ar=1| | . (6)
: 0
0o - 0 Z%

may be decomposednto a block-diagonalmatrix with K non-
zerodiagonalelementéz(’“). Eachof thesematricesontheblock-
diagonalof Ay represent®neof K partsof the (reduced)signal
which can be treatedindependentlyfrom all other parts. The
collectionof all K partstogetherwith the non-iterativeonesthen
form the entire signal.

For non-overlappingdomainblocks asis also presumedn
subsectior?.1 the singlematricesZ*), k = 1,2,..., K maybe
transformedy simultaneougxchangeof rows and columnsinto
the structure

0 A
AP o
Zo- |0 AP 0 o0 | g
: : : k :
0 A(L()k) 0

One can seethat eachmatrix Z(*) describesa closedcycle of
block mappingswithin the k-th part of the signal. A full cycle
itself consistsof L(k) single block mappingseachrepresented
by a matrix Agk),i = 1,2,..., L(k) which hasthe structureof
A; asoutlinedin (3).

The spectral radius of the matrix Z*) now determines
whetherthe reconstructiorprocesof the corresponding:-th part
of the signal convegesor not. Thereforeconvegencefor the
entire signalcanbe achievedf andonly if the reconstructiorof
all K partsof the signalconveges. This leadsto the problemof
calculatingthe spectralradiusfor all matricesZ*). The suffix k
describingthe k-th part of the signalis omittedin the following
for the purposeof simplification unlessotherwisenoted.

In orderto determinethe largesteigenvalueof Z, the I-th
power Z! is examined. It can be showneasily that for I = L
the matrix

L
z" =diagD); D =[] A ®)

=1

is a block diagonalmatrix with identical diagonalelementsD.
Sincein all matricesA; the columnsum p(A:) = 7, %7—
is constant,also the product matrix D has a constantcolumn
sum. For the consideredspecialcasethatn r andrp areintegral
powersof 2 or m is anintegralmultiple of n r, the columnsum
p(D) = [1&, p(A:) is the productof all columnsumsp(A,;)

and equalsthe spectralradiusof Z% so that

()= i

=1y
The spectralradiusr. (Z*) of the power matrix Z* is equalto
the L-th power (r-(Z))" of the spectralradiusof the matrix Z.
Consequentlythe spectralradius r,(Z) is the L-th root of the
columnsump(D) of the singleblock transformationsvhich are
involved in the consideredcycle, so that

re(Z) = (ro (ZL))”L =

ay
m
1

: 9

m

1/L

HZ% . (10)

1=1y5=1

By reintroducingthe suffix k, the condition r. (Z(k) <1

is necessaryand suficient for a convegent reconstructionof
the k-th part of the signal. Otherwise,if o (Z*)) > 1, the
reconstructiorof this partof the signalis divergentandno unique
fixed-point is guaranteed. Therefore convegencein a global
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senseis ensuredf the spectralradiusof the reducedmatrix Ar
representinghe iterative part of the transformationof the entire
image

_ (k)
ro(An) =, max ro(2")
L(k) | m
3 aff

j=1

1
= max —
ke{1,2,.., K} m b

is smaller than one.

3. SUMMARY AND CONCLUSION

In this papera new resultconcerningthe convegenceproperties
of fractal coding schemesvas presented A necessaryand suffi-
cientconditionfor convegenceis the fact thatall eigenvalueof
thelinearpartof thetransformatiorlie within theunit circle. In a
first stepthe eigenvaluedor arathersimple classof transforma-
tion matriceshasbeendetermined.Using this resultthe second
stepconsistedn a generalizatiorof the structureof the transfor-
mation matrix which enablesto describea wide classof fractal
codingschemesvith respecto their convegenceproperties.The
necessarycalculationof the spectralradiusfor this purposecan
be donevery easily by evaluatingthe scalingcoeficients.

The presentedresultsalso allow to judge existing fractal
codingschemewith respecto their convegence.Someinvesti-
gationsconcerningthis topic are publishedin [13]. Futurework
is directedto a more generaldescriptionof convegencewhich
alsointendsto include Jacquin’soriginal approach.

4. APPENDIX |
By useof thealgorithmoutlinedin pseudacodebelow,the matrix
E; = A; — I = (ejx), with A; from (3) and I being the
identity matrix canbe transformednto an uppertridiagonalform
for which the determinantan be calculatedvery easily.

For j=1:Np-1
column(j) := column(j) - column(j+1);
end

For j=2:Np
row(j) := row(j) + row(j-1);
end

For j=2:Np
For k=1:j-1
If (ex)<>0) then
swap column j with column k
swap row j with row k
end
end
end

5. APPENDIX Il
Most investigationsconcerningthe convegence properties of
fractal codingschemesrebasediponsomekind of norms||-|| of
the transformatiomrmatrix A which leadsto strongerconstraints
for the scaling coeficients comparedto thosederivedfrom the

spectralradius as shownabove. Consequentlyit has beenob-

servedthat convegencewasobtainedevenif thosestrongercon-

straintshavenot beenmet. Fisheret al. [8] termedthis behavior
eventuallycontractive thisis if thep-fold applicationof thetrans-
formationis contractive.By regardingthe operatomormonecan
showthat an eventuallycontractivemappingwith exponentp is

characterizedy ||AP|| < 1. By useof the relationshipbetween
any norm and the spectralradius of a matrix

ro(A) S IIATI'7; ro(A) = lim lATIT7 - (12)

it canbe seenthatthe caseof eventuallycontractivemappingss
includedin the criterion basedon the spectralradius.
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