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ABSTRACT

This paperreportson investigationsconcerningthe convegence
of fractal transformsfor signal modelling. Convegenceis es-
sentialfor the functionality of fractal basedcodingschemesThe
coding processis describedas non-lineartransformationin the
finite-dimensionalvector space. Using spectraltheory, a neces-
saryandsufficient conditionfor the contractivityis derivedfrom

the eigenvaluesof a speciallinear operator. In the sameway
someconstraintsfor the choice of the encodingparametersre
deducedvhich arelessstrict thanthoseimposedsofar. The pro-

posedcontractivity measurecan be calculateddirectly from the
transformatiorparametersluringthe encodingprocess.Forcom-

plex encodingschemeshe calculationof the eigenvaluesnay be
infeasible.For thosecasesa contractivity criterion derivedfrom

the norm of the operatoris suggested.

1. INTRODUCTION

The main purposeof fractal coding schemesds to exploit self-
similar structuresin natural signals for data compressionpur-
poses.Self-similarityin the way we will defineit maybe viewed
asaspecialkind of redundancylIn contrasto commontransfor-
mationse.g. DCT, whosecoding gain is dueto the correlations
of adjacentsamplef the signal, fractal coding schemesnainly
exploit the long range correlationswithin the signal.

The basicidea for encodingof imagesusing fractal tech-
nigueshasbeenreportedby Barnsley[1, 2, 3]. A first practical
implementationcapableof encodinggrey-scaleimagesat com-
mon compressiorratios hasbeenproposedby Jacquin[4, 5, 6].
Someimprovementsand modifications,e.g. [7, 8, 9, 10, 11]
have been published, but the underlying conceptof blockwise
approximationof the imageby partsof itself is still the same.A
review on fractal image coding may be found in [12].

A signal x is denotedself-similar if all its parts approxi-
matelyresembleotherpartsof the samesignalusingonly scaling,
rotating, mirroring, andshifting operations A signalof this kind
then fulfills the invariancecondition

x ~ W(x) 1)
with W representingthe allowed operations. A very simple

methodfor reconstructingthe signal x from the transformation
W can be statedif W is contractive Thenx can be viewed

as the fixed point of the transformation’ and accordingto
Banach’sfixedpointtheoemit may be reconstructedolely from
the knowledge of the transformation¥. A coding gain is
achieved,if the transformationcan be representedvith fewer
bits than the signal itself.

To the knowledgeof the authors,Lundheimwas the first
who analyzedfractal signalmodellingfor discretesignalsin the
finite dimensionalectorspaceby useof functionalanalysis.An
excellentintroductionin this field containingsomenew results
may be found in [13].

By describingthe coding schemeas affine transformation
in thefinite-dimensionalectorspaceR™, we obtain somecondi-
tions for the choiceof the encodingparametersvhich aretighter
than the onesimposedso far. Utilizing theseresults, existing
approacheganbe improvedin termsof convegencespeed e-
constructionquality, and compressiorratio.

After reviewingthe theoryof normedmetric spacesa nec-
essaryand sufficient criterion for the contractivity of the used
transformatioris derivedfrom the eigenvalue®f the correspond-
ing operatorwhich alsoimplies constraintsfor the encodingpa-
rameters. As applications,two fractal coding implementations
for grey-scalédmagesarediscussedThe direct calculationof the
eigenvaluess feasiblefor rathersimple coding schemesonly,
whereasfor a more complex schemea norm basedcriterion is
proposed. The summaryconcludeswith someexperimentalre-
sults obtainedfor naturalgrey-scaleimages.

2. THEORY
Considerasignalx = (z1, 22, - -, :cn)T consistingof n samples
aspoint in the n-dimensionalector spaceR™. The components
z;; 1 <1 < n; z; € R representhe samplevalues. In order
to measurethe distanceof a point x within this spacefrom the
zero-point0d = (0,0,---,0)" severalnorms denotedby ||x||,
are defined. For our applicationsthe Euclideannorm

@)

definedby the squareroot of theinner product(x, x) is the most
suitedone. By this definition R™ becomesa normedspaceand
by inducing a metric

o(x,y) =[x —y|l, Vx,ye R" 3)
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a normed metric spacedenotedby (R", g).
within this spacecanbe describedy linear operators.Therefore
a suited operator- or matrix norm is required. One which is
consistentwith the Euclideanvector norm in the sensethat
|Ax|| < ||A|||x]| holds, is the so called spectral- or Hilbert
norm, definedby

sup /A (4)

rec(ATA)

1A

sp =

It is the squareroot of the largest eigenvaluein magnitudeof
the matrix AT A. Additionally for every linear operatorA the
spectralradius r-(A) is definedby

To(A) := sup [A] (5)
A€c(A)

which is themagnitudeof thelargesteigenvalueof A. Any norm
||A|| andspectralradiusr, of alinearoperatorA areconnected
throughthe following equations:

ro(A) < [|A]l
ro(A) = lim AT . (6)

2.1 Fractal encoding

All existing practical implementationsfor block-oriented
fractal coding schemesemepge from an affine transformation
which is capableof performingthe scaling, rotating, mirroring,
and shifting operationsin orderto exploit the presupposedelf-
similarities of the signal. An affine transformationi¥ of the
entire signal x is definedby

W:R"—R" = x— Ax+b @

consistingof a linear part Ax and an additive part b. The
transformation/V is called contractiveif thereexistsa constant
s < 1, suchthat

e(W(x),W(y)) <so(x,y)Vx,y € R™ (8)

With the ddfinition of the metric (3), the affine transformation
(7), and the contractivity (8) we obtainthe sufficient condition

A <s <1 9)

for contractivity in the senseof any norm.

The encodingprocessfor a given signal x now consists
in finding a matrix A and a vector b fulfilling the invariance
condition (1) at leastapproximately. This means,that the ap-
proximation error

o(W(x),x) = ¢(Ax+b, x) (10)

must be small. Additionally it must be assuredthat W is a
contractivetransformationin orderto getthe schemework, this
is if ||A]| < 1 holds. Datacompressiorcan then be achieved,
if the matrix A andthe vectorb canbe storedmore efficiently
than the signal x itself.

Transformations

2.2 Fractal decoding

Banach’sfixed point theolem gives us an ideahow the decoding

processworks:
Let W R™ — R™ be a contractive transformation and
(R™, 0) a metric spacewith metric g, then the sequenceof
signals {xx} constructedby xx+1 = W (xx) convegesfor
any arbitrary initial signalxo € R™ to the uniquefixedpoint
x; € R™ of thetransformationW, i.e.

Xf:W(Xf):AXf-l—b. (ll)

The reconstructiorerror g(x s, x) betweenthe original sig-
nal x andits fractal reconstructionk ¢ is thenboundedby

olxs,%) < %Me(vv(x»x) - (12)

The contractivitycondition(9) is only sufiicient butnotnec-
essaryfor the convegenceof the iteration process.A suficient
and necessaryondition canbe formulatedby usingthe spectral
radius of the transformationmatrix.

Emeging from any arbitrary initial signalx, the decoder
iteratively appliesthe transformation(7). For the k-th iterate
then follows:

k-1
xp = W (x0) = AFxo + (Z Ai) b. (13)

=0

If and only if the spectralradius satisfiesro(A) < 1, then
k—1 |
lim A* =0 andklim SY AP = (I— A)~" with theidentity T

k—o0

andthenull matrix 0 [14]._ Therebythesequencdxx} conveges
to the fixed point

xg = lim x; = (I~ A)"'b (14)

of the transformation.

According to eq. (6) the spectralradiusr(A) is a lower
bound for every norm ||A]. In literature the special case
ro(A) < 1 < ||A]| is termedeventualcontractivity (see[15,
13] andsection4). This is dueto the fact that ||A|| < 1 is only
a sufiicient but not necessarycondition for the convegenceof
the iteration process(13).

3. APPLICATIONS

Themostimportantquestionconcerningractalcodingschemess

whetherthe reconstructiorprocesds convegentor not. Consid-
eringthe abovedefinitionsof the normandthe spectralradiuswe

investigatedhis propertyfor two widely knownschemesisedfor

encodingof grey-scalémages.Thefirst encodesingleblocksof

the signalindividually while the secondoneencodes blocksde-
pendenton other partsof the signal. Hence,the first is a special
caseof the secondscheme.
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3.1 Encoding a single block

An interestingproposalfor encodingof single blocks of a
signal has been publishedby Monro and Dudbridge[8]. The
basicideaof the encodingprocessonsistsin mappingthe entire
block consistingof D samplesonto m = D/ R non-overlapping
underlyingsubblockseachconsistingof R samples.Themapping
is chosento minimize the distancebetweenthe original block
andthe approximatioraccordingto eg. (10). By usingthe above
notationit canbe describedby a linear operator

m times
——
Qp - - -1 0 0
0 aq -0 0
0 0
0 0 o] [e5]
a2 -2 0 0
A=l ’ e 15
= 0 0 0 - (19)
0 0 a2 %]
Qm - Qm 0 0
0 Om - O
0 0
0 Oy - O
R groups

By (4) the spectralnorm ||A p is definedby the largesteigen-

value of the symmetricblock diagonalmatrix AT A. For the
linear operator(15) one obtains:

VI =

|All,,= sup
res(aTA)

Obviously ||A|| < 1 holdsfor eachlai| < 1V 1 <1 < m,
as is presupposedn [8], but the contractivity constraint(16)
allows more freedomin the choice of the parameterssince it
only constrainsthe squaresum of the elements.

Due to the very simple structureof the operatorA in this
casenotonly theeigenvaluesf theblock diagonalmatrix AT A,
butalsotheeigenvalue®f A itself maybe calculated.This gives
usthe possibilityto determinethe spectralradiusrs(A) in order
to obtaina sufficient and necessargonditionfor the convegence
of the decodingprocess.For this purposethe magnitudeof the
largest eigenvalueof the matrix A hasto be determined. For
arbitraryelementsy; € R thelargesteigenvalueof A is bounded
by the constantsum of the absolutevaluesof any columnof A,
hence

m

A< 3 el a7

=1

7o(A) = sup
A€c(A)
Equality is only met if A is non-negative,this is if a; >
0V 1 <1 < m. In generalthe transformationmatrix is not
necessarilynon-negative.Due to eq. (17), negativeelementsy;
evenimprove the convegence. This has also beenconfirmed
experimentally.

3.2 Joined encoding of all blocks

The original proposalfrom Jacquin[6] is a typical repre-
sentativeof this scheme.The entiresignalis partitionedinto Nr
non-overlappingangeblocksconsistingof R samples.For each
of theseblocksoneof Np domainblockswith size D sampless
choserwhichfits bestin the senseof thedistancemeasurg3). So
onesamplein the approximatiorof therangeblock is determined
by the averageof m = D/R samplesin the domainblock. A
now describeghe transformationof the whole signal. Therefore
it consistof alarge numberof matrix elements.Hencethedirect
calculationof the eigenvalueavhich leadsto the spectralradius
is computationallyprohibitive. Insteadthe determinationof the
spectralnorm [|A || is presentedor this scheme.For the case
of decimatingmatrices,this is if eachrow of A containsone
and only one non-zeroelement(no averaging),Lundheim[13]
presentedan exactsolutionfor the eigenvalues.

In the special case of Jacquin’s proposalone can show
without going too much into detail, that the matrix

Z AﬂA,‘l 0
ieI(j=1)
B=A"A= .
0 > Alvp Ay
i€I(j=Np)

(18)
is a block diagonal matrix with submatricesof size D x D
elements. The matrix

m times
. oy 0 0
Aj=—| 0 aiar e 0 (19)
0 0 oG O
R groups

describeghe mappingfrom the j-th domainblock onto the i-th
rangeblock (seeeq. (15)). I(j) is thesetof indicesof thoserange
blocks onto which the j-th domainblock is mapped.The matrix
5= Al A;; hasR—timesthenon-zeroeigenvalue: 5~ «of
i€I(j) i€I(y)
and (D — R)—times the eigenvaluezero. Due to the special
structureof the matrix B, the eigenvaluesof the submatrices
are alsothe eigenvalueof B itself. Therebythe matrix B has
the non-zeroeigenvaluesr% ST a?V1<j<Np. Thisway,
ieI(y
the spectralnorm of thetransfo(rr%ationnatrix |All,, definedby
eg. (4) may be calculatedby

1
IAll., = sup  [— > a? (20)
1<G<Np \[ ™ i€ I(5)
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4. RESULTS AND CONCLUSION

Fisher[10] showedby experimentabnalysisof Jacquin’scoding
scheme,that the constraint|o;| < 1V ¢ is not necessaryin
order to obtain a convegent sequenceof iterates. He called
this behavior the eventualcontractivity of the transformation
W . R™ — R". Thisis if thereexistsa positiveintegerp called
the exponenbf eventualcontractivity so that the transformation
Wer(x) = W(W(---(x))) is contractive. According to the
S—————

times
relationshimetwgerthe spectrakadiusandthe norm (6) eventual
contractivity with exponentp meansthat /A7 < 1V j > p.
Therebyall matricesA?,V j > p are also contractivein the
senseof the norm ||A7].

Lundheim[13] proved,that eventualcontractivity is not a
questionof the choiceof thenorm. This meanghatif anoperator
is eventualcontractivein onenorm, it alsois eventualcontractive
in any other norm. This is due to the fact that from all norms
only a sufiicient but not necessargonditionsfor contractivity of
the operatorcan be derived.

Neverthelessot all normsareequallysuitedfor the consid-
eredapplicationof signalencoding.Table1 showsa comparison
betweenthe maximumnorm ||A||,.., (seee.g. [10]) which is
mostly applieddueto its easeof computationandthe proposed
spectralnorm || A .p- As canbe seen the usageof the spectral

moge | @ | NAlne | AL, | ro(a)

LENA 1.0 0.9953 0.7665 0.4989
1.5 1.4956 0.9120 0.5661
5.0 4.7582 2.8361 0.6695

BOATS 1.0 0.9995 0.7782 0.5273
1.5 1.4973 0.9900 0.5687
5.0 4.9981 2.5559 0.6983

Table 1: Comparisorof maximumnorm [|A]| .,
the spectrainorm [|A ||, and the spectralradius
r+(A) for sometestimagesand a-boundsamasx .

norm resultsin contractivetransformationseven if the scaling
parametersy; arenot boundedby one. In thesecaseswhich are
the mostimportantones,the maximumnorm is uselesssinceit
yields divergent operators(in the senseof the norm). A tighter
approximationis obtainedby the spectralnorm. The calculation
of the spectralradiusoffers the bestresultsbut this is computa-
tionally feasibleonly for simple encodingschemesas described
in topic 3.1.

The considerationof the spectralnorm or spectralradius
insteadof the maximum norm for determiningconvegence of
fractal encodingschemedeavesmore freedomin the choice of
the encodingparametersso thatreconstructiorguality aswell as
convegencespeedcan be increased.
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