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Abstract

A new decoding technique based on an iterative method with pixel updating
is proposed for fractal image compression. We prove that the new iterative
method converges in the most general case of variable shape segmentations,
unconstrained domains, and use of pixel shuffling. We show that in some
important cases the new method has a greater rate of convergence than the
conventional method. Furthermore, it is indicated how standard iterative
methods can be efficiently implemented in fractal image compression. Fi-
nally, experimental results confirming the superiority of our technique are
presented.



1 Introduction

Fractal image compression [1, 2, 3| suffers from long encoding times. How-
ever, the decoding is both simple and fast. This makes it a good candidate
for storage and retrieval applications where the encoding is performed once
using special hardware, while the decoding is to be repeated several times
in software by the user. One such application is CD-ROM encyclopedia for
personal computers. So it is worth asking if one can further simplify the
decoding algorithm for those environments.

The conventional decoding algorithm can be described as follows [1].
First, the original image x* € R" is stored implicitly as the unique fixed
point x7 of a contractive affine mapping 7" defined by T'(x) = Ax+ b, where
Ais areal N x N sparse matrix and b is a real column vector of dimension
N. The reconstruction of the fixed point x7 by the decoder proceeds by it-
eratively applying T to any arbitrary initial image x(*). Banach’s fixed point
theorem ensures the convergence of the sequence of iterates {T®*)(x(9)}, to
the fixed point x; = (I — A) b, where I is the identity matrix of order N.
Here a vector T®)(x(©)) which we will also denote by x(¥) is defined by the
recurrence relation

B+ — T(x(’“)) = Ax®) +b. (1)

The fixed point xr is also known as the attractor of 7. The encoding consists
of finding a contractive affine mapping 7" such that the attractor xr and x*
are as close as possible. The usual approach to handle this problem is by
trying to minimize the distance between x* and T'(x*). The success of this
approach has been attributed to the Collage theorem [4] !, a corollary of
Banach’s fixed point theorem which states that

Ier 7)) <
xp — X' < ———
1—]4]
In this paper we present a new decoding procedure for fractal image
compression observed independently in [6, 7, 8]. It is based on an iteration
technique in the spirit of the Gauss-Seidel method providing a faster conver-
gence and relieving memory requirements at the decoding. We extend here
the description of our initial algorithm to more general encoding schemes,

nconsistencies in the application of the theorem are raised in [5].



allowing variable shape partitionings and unconstrained domains with pixel
shuffling. Furthermore, we provide details and proofs that were omitted in
our original publication, and discuss the implementation of classic iterative
methods in fractal image coding.

The rest of the paper is organized as follows. In Section 2 we present
definitions and notations that will be needed throughout the text. We also
discuss the convergence of the conventional iterative method. In Section 3
we explain our decoding algorithm and prove its convergence. Moreover,
we argue that two standard iterative methods can be efficiently used in the
decoding. Then the computational complexity of the various methods is
compared. Next, it is shown that under certain fair conditions the new
method has a greater rate of convergence than the conventional method.
Section 4 presents experimental results. Finally, we summarize and provide
suggestions for future work.

2 Notations and definitions

We begin this section with some notations and definitions. The first two
definitions are borrowed from [9].

Definition 1 Let A = (ay,) and B = (byy) be two n X n matrices. Then,
A > B(> B) if ayy > byy(> byy) foralll <u<n, 1<v<mn. IfOis
the null matriz and A > O(> O), we say that A is a nonnegative (positive)
matriz. Finally, |A| denotes the matriz with entries |ay,y|.

Definition 2 For n x n real matrices A, My, and My, A= M; — M, is a
reqular splitting of the matriz A if M, is nonsingular with M7+ > O, and
My > O.

Definition 3 The spectral radius p(A) of a matriz A is the largest absolute
value of the eigenvalues of A. The rate of convergence of an iterative method
with iteration matriz A is —In p(A).

Definition 4 An image of size N = 2™ x 2™ s a real valued function f
defined on T = {1,...,2m} x{1,...,2™}. The elements of T are called pizels.
An image piece of size n is the restriction of f to a subset B C Z having n
elements. Now let ¢ be a one-to-one indezxing mapping from T to {1,..., N}.



Through v we identify B with the subset B = %(B) C {1,...,N}. When
there is mo ambiguity on the function f, both subsets B and B will also be
called image pieces. To each image piece B = {b,...,b,} we associate an
n—dimensional vector xg such that

xp = (fY7H(br), ., ST (Ba))"

This vector xg will be also called an 1mage piece. Finally, two image pieces
B and By are said to be overlapping if By N\ By # 0.

In the encoding step, an image of size NV is partitioned into nz nonoverlap-
ping image pieces R; of size n;, Npyin < N < Nynas, called ranges. It is always
possible to assume that ¢ is chosen such that for R; = {(r:),, ..., (r:),.} we
have

(ri)gs1 = (i), +1, forallie{l,...,ng} and k€ {1,...,n; — 1}

and
(’f'i)m, +1= (TZ'_|_1)1, for all 7 € {1, ..., R — ]_}
Then each range xg,, 2 =1,...,ng, is approximated by the linear combina-
tion
Xr;, = 8:9:Pxp, + 01y, (2)
where
e 1, is the constant vector 1,, = (1,...,1)T € R™.

e s; and o; are scalar quantization coefficients called scaling factor and
offset, respectively.

e D;={(di);---,(di)n, } is an image piece of size m;n; called domain,
where Mumin S my S Mmaz-

e P, is a permutation matrix of order m;n;.

e S; is an n; X m;n; matrix defined by



1 0 . 0
1 01 . 0
Si:— . . ’
m; :
0 0 1

where 1 =(1...1) and 0 = (0...0) are 1 x m; submatrices.

For each range R;, the domain D; is chosen from a large set of available
domains called domain pool. The matrix P; shuffles the components of the
domain xp,. The matrix S; shrinks the size of the vector F;xp, to the size of
the range by averaging m,; consecutive components. Finding an optimal do-
main from the domain pool is the most time consuming part in the encoding.
We now define for each i € {1,...,ng} a mapping

T, :RY - RV
such that
Ti(x) = 8iGiSi P Fix + 0,Gi1,,,
where
e The m;n; x N matrix F; = (f; ) is defined by

i {1, if (U,’U):(lﬁ, (dz)k)7 kzl,,m,nz,
wv 10, otherwise.

e The N x n; matrix G; = (g}, ,) is defined by

i _{L if (U,U):((Ti)k,k), k:17anza
w? 0, otherwise.

The operator T'(x) = Ax + b of the previous section is equal to > 7% T;. It
is not difficult to see that 7' can model the most general encoding schemes
known in the literature, where image pieces may have arbitrary shapes and
sizes, domains of the same size may be overlapping, and pixel shuffling is per-
mitted. We point out at this stage that the sparse matrix A = >, s,G;S; B F;
is not explicitly stored at the decoder. For any image x*) the next iterate

T(x®) is obtained by applying formula (2) successively to the domains x(DI?,
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1 =1,...,ng. The matrix A has been introduced only to help the mathe-
matical treatment of the problem.

It is a well known fact that the convergence of the iterative method (1) is
guaranteed if all scaling factors are bounded by one in absolute value. This
is a simple consequence of Banach’s fixed point theorem and the following
proposition.

Proposition 5 If |s;| < 1 for all i =1,...,ng, then T is a contraction in
the Lo, norm.

Proof. First, observe that A is such that each row has m; components equal
to s;/m; and N —m; components equal to zero. Due to this simple structure
we have

N
1Al = @%; [0
= max m;|s; /).
This shows that T is a contraction with contractivity maxi<i<ny |sil- O
It has been pointed out by several authors [3, 10] that the decoding may
converge even if there exists i € {1,...,ng} such that |s;| > 1. Indeed, a

necessary and sufficient condition for the convergence of the iterative method
(1) is p(A) < 1. Unfortunately, the computation of p(A) is not an easy task.
This has been done so far only in some special cases [10]. Thus to control
the convergence of the decoding a priori, it is common use in fractal coding
to restrict the value of the scaling factors to the interval (—1,1). In the
following, this assumption will also be made.

3 New algorithms for the decoding

3.1 The new scheme

We introduce in this section our new decoding technique. Let x(*) be the
decoded image at iteration step k. In conventional decoding it is necessary to
keep all the components of the image x*) until we achieve the computation of
x+1)_ We propose instead, as in the Gauss-Seidel method, to use the latest
estimates of the components z{¥*1) as soon as available. Thus one immediate



advantage is that we do not need the simultaneous storage of x(*) and x(*+1.
Our technique can be loosely described by saying that the domains x%:) are
updated progressively at the same iteration k. We now give a more precise
description of the new iteration technique. Let the matrix A be expressed
as the matrix sum A = L + U, where the matrix L = (l,,) is strictly lower
triangular defined by

- 0, if v > u;

wr {au,v, otherwise.

Then the new decoding scheme corresponds to the iterative method
xHD) = [xk+) 4 gx®) b, (3)
or equivalently
x®+D) = (1 — L)"'ux™ + (I — L)™'b. (4)

Note that the method proposed in [8] was slightly different as a newly calcu-
lated component of a range was not allowed to update a component of the
same range. We now give the main result of the paper.

Theorem 6 If |s;| < 1, for all 1 < i < ng, then the iterative method (4)
converges to xr, the limit vector of method (1), for any starting vector x(0),

Proof. Suppose that the iteration scheme (4) is not convergent. Then
p((I — L) 'U) > 1. Thus there exists an eigenvalue A of (I — L) *U such
that [A\| > 1. Let @ = I — U — L. Then @ is singular since if x is an
eigenvector of (I — L) 'U associated to the eigenvalue A, we have @x = 0.
Let us now show that @) is strictly diagonally dominant. Since |s;| < 1 for
alli € {1,...,ng}, and due to the structure of A, we have

1 > ) |yl
v
= Z |lu,v| + Z |uu,v

v<u v>U
1
> Z || + W Z | U0
<y v>u

> | . luw| + . |
= — <U — — U
= 2 u,v u,v ‘)\| U,



Thus

1
uu|  — 1—— uu_luu
sl = 1= L
> 1 1\ |
— U
- |)\| U,u
1
> Z| qu,v lu,v
vEU
= Z|Qu,v|
vEU

But this is a contradiction since by Theorem 1.8 of [9] a matrix () cannot be
strictly diagonally dominant and singular. The fact that the limit vector is
xp is trivial from (3). O

3.2 Related methods

We show in this section how well known iterative methods can be efficiently
applied in the computation of the fixed point x; = (I — A)"'b. Let D be
the diagonal matrix obtained from A by setting all off-diagonal entries of A
to zero. Then U can be expressed as the matrix sum U = D + F', where F
is strictly upper triangular. The point Jacob: method associated with the
solution of the problem (I — A)x = b is given by the iterative method

x*) = (I — D)"Y (A — D)x®) 4 (I — D)™ 'b, (5)

and the point Gauss-Seidel method associated to the same problem is given
by the iterative method

x®+) = (1 — D — L)' Fx® + (I - D — L)"'b. (6)

In the case of encodings with constrained scaling factors, both methods con-
verge.

Proposition 7 If |s;| < 1, for all 1 < i < ng, then both the point Jacobi
method (5) and the point Gauss-Seidel method (6) are convergent for any
initial vector x©.



Proof. The result follows from Theorem 3.4. in [9] since I — A is clearly
strictly diagonally dominant. O

The following proposition gives a relation between the various methods
presented so far.

Proposition 8 If a,, = 0 for all u = 1,...,N, then the conventional
method (1) reduces to the point Jacobi method and the iterative method (4)
reduces to the point Gauss-Seidel method.

Proof. If a,, = 0 for all w = 1,..., N, then D is the null matrix which
proves our claim. O

A sufficient condition for the diagonal matrix D to vanish is that for each
range R;, either s; = 0 or R;( D; = (). However, this is unlikely to happen.
First, zero scaling factors are an exception. Second, it has been observed
that domains overlapping the ranges are the most frequently chosen domains
in the encoding [3].

We now compare the computational complexity of the proposed methods.
Obviously, our iterative method (4) requires in the general case for each
iteration the same amount of arithmetical operations as the conventional
method (1). For the other methods we have the following result.

Proposition 9 Both the point Jacobi method (5) and the point Gauss-Seidel
method (6) need at most ng more arithmetical operations per iteration step
than the conventional method (1).

Proof. We need only show that the result holds for one of the methods (5)
or (6), since both have the same complexity. Now let us write (5) in the
equivalent form

N
(1 — Gyy)zt) = > Oy o) + by
v=1, v#u

If a,, = 0, then the same number of arithmetical operations is required for
the computation of z{¥*1) by methods (5) and (1). Otherwise, we have for (5)
one addition less, but one subtraction and one division more. We conclude
the proof by remarking that the subtraction 1 — a,, needs to be computed
only once for all u € R;, i € {1,...,ng}, where R; is a range. O

Note that even though the two methods (5) and (6) do not require many
more arithmetical operations than our proposed method (4), they demand for
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allu =1,..., N testing if a,, = 0. This leads to an undesirable additional
computational work. For this reason, we will not consider these methods any
further in this paper.

3.3 Rate of convergence

In this section we compare the rate of convergence of methods (1) and (4).
We need first some preliminary results.

Lemma 10 The matriz (I —|L|)~! is nonnegative.

Proof. Since |L| is strictly lower triangular, it is nilpotent. Thus there exists
k = N > 0 such that |L|¥ = 0. From the equality

(I = L) + L]+ -+ |[L[F) =1,

we obtain (I — |L|) ' =T+ |L|+---+|L|* !> 0. O
Lemma 11 Let 0 < s; <1 for all i € {1,...,ng} or —1 < s; <0 for all
i € {1,...,ngr}. Then I — |A| is nonsingular. Moreover, its inverse is
nonnegative.

Proof. If ) is an eigenvalue of I —|A[, then 1 — X is an eigenvalue of |A|. But
p(|A]) = p(A) < 1. Thus A # 0, which proves that I — |A| is nonsingular.
We have for k£ > 0,

(L= [A)T = I+ A+ + A} = (T - |A)~HAR
Thus
I =AD" = (L + [Al+ -+ AP < 1T = AN~ - A

Since p(|A]) < 1, the sequence {|||A[¥||}x converges to zero. Thus, by letting
k tend to co in the above inequality, we obtain

(I—|A) = lim I+ |A|+---+ |A[,
k—o0

which shows that (I — |A|)™' > O. O

We are now ready to prove that if all scaling factors have the same sign,
then the iterative method (4) has a greater rate of convergence than the
conventional method.



Proposition 12 Suppose that 0 < s; < 1 for all i € {1,...,ng} or —1 <
$; <0 forall i €{1,...,ng}. Then p((I — L)7*U) < p(A).

Proof. Define the matrix M = I—|A| = (I —|L|)—|U|. From Lemma 10, one
can see that these two splittings of M are regular. Furthermore, |A| > |U],
and by Lemma 11, M~' > O. The inequality p(|A|) > p((I — |L|)~HU])
follows then from Corollary 5.6. p. 125 in [11]. We complete the proof by
noting that p(A) = p(|A]) and p((I — L)*U) < p((I — |L|)7!|U]). The last
inequality being due to

(I-L)7'U| < |(I-L)H||U]
= [I+L+ -+ LV U
< T+ LI+ + LYY
= (I-I[L))"|ul.
and Theorem 2.8. in [9]. O

If the scaling factors are not of the same sign, we cannot ensure the
inequality in Proposition 12. We argue that this is not a severe limitation for
two reasons. First, it has been observed that restricting the scaling factors
to be positive does not degrade the rate-distortion performance significantly
[12]. Actually, this was the choice of Jacquin in his original work [1], and
seems also to be preferred by Iterated Systems, Inc. [13]. Second, we have
noticed in our simulations that our decoding method converged faster even
if the scaling factors were not all of the same sign (see next section).

As already mentioned, it may happen that the conventional method (1)
converges even if some of the scaling factors are larger than one in absolute
value. How will method (4) behave in those cases?

Proposition 13 If the conventional method (1) converges and all scaling
factors are of the same sign, then the new method (4) converges also. More-
over, method (4) has a greater rate of convergence than method (1).

Proof. In the proof of Proposition 12, the assumption that the scaling
factors are bounded by one in absolute value, was needed only to ensure that
p(|A]) < 1. Now, method (1) converges if and only if p(A) < 1. When in
addition all scaling factors are of the same sign, we have p(|A4]) = p(4) <
1. Hence we can use the proof of Proposition 12 to obtain the inequality
p((I = L)'U) < p(A), which gives the desired result. O

10



If in Proposition 13 we drop the condition that all the scaling factors are
of the same sign, then the convergence of method (4) cannot be guaranteed
any more as shown by the following example. Let

5 5 0 0

N A
T\ — 2 2
(I L) U= -5 -5 =5 -5

10 10 10 8

and
p((I—L)"'U) = %(11 +V41) > 1.

4 Experimental results

The tables presented in this section show the root mean square error between
the attractor x7 and the iterate x*) as a function of the number of iteration
steps k, starting from an initial black image x(© = (0,...,0)” for both the
conventional decoding and the new method (4). In a practical implementa-
tion, since x7 is not available, one may decide to stop iterating if

[x® - x|
Egl

< eor k> ky,

where € is a tolerance bound and kq is a maximum iteration step. The
first tables provide results for images encoded with Fisher’s quadtree code
[14]. The scaling factors and the offsets were uniformly quantized with 5
bits and 7 bits, respectively. Domains at each level of the quadtree had 4
times the size of the ranges. They were selected as subsquares of the image
whose upper-left corners were positioned on a lattice with a fixed vertical and
horizontal spacing equal to d. Pixel shuffling was allowed and three domain
classes out of 72 were searched (see [14]). Table 1 shows the results for the

11



Iteration | Conventional | New method
1 82.82092 61.36793
2 50.46009 26.65044
3 30.19527 10.31304
4 17.47030 3.66579
5 9.80071 1.26984
6 5.39547 0.44142
7 2.93693 0.15110
8 1.58974 0.05089
9 0.85756 0.01709
10 0.46205 0.00574
11 0.24900 0.00193
12 0.13424 0.00065

Table 1: Convergence of the decoding for the two methods measured by the
root mean square error between an iterate and the attractor for the 512 X
512 Bridge image. Only nonnegative scaling factors were used.

512 x 512 Bridge image. A uniform partitioning with 4096 ranges of size
8 x 8 was employed. Only nonnegative scaling factors were allowed. The
domain pool step size d was equal to 2. Thus, there were 62001 overlapping
domains of size 16 x 16. Note that a domain here was not necessarily a
union of ranges. Table 2 shows the results for the 512 x 512 Lenna image
for a three level quadtree segmentation and a root mean square tolerance
value of 8 The domain pool step size was equal to 8. Thus, there were
4096 nonoverlapping domains of size 8 x 8, 3969 overlapping domains of size
16 x 16 and 3721 overlapping domains of size 32 x 32. Both positive and
negative scaling factors were allowed. Table 3 compares the convergence of
the decoding for the two methods for the 512 x 512 Barbara image. Here
we used the code of [15] in the encoding. With this scheme each range is
a union of edge connected small square image pieces (see Figure 1). In all
cases our new decoding scheme converged faster than the conventional one.
The same observation held for all other tested images.
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Iteration | Conventional | New method
1 69.93440 55.51971
2 39.89977 22.44756
3 23.04110 8.77134
4 13.03152 3.11604
5 6.96367 1.02256
6 3.62978 0.32492
7 1.87708 0.09921
8 0.95866 0.02951
9 0.48477 0.00867
10 0.24328 0.00253
11 0.12125 0.00074
12 0.06008 0.00021

Table 2: Convergence of the decoding for the two methods measured by the
root mean square error between an iterate and the attractor for the 512 X
512 Lenna image. Both positive and negative scaling factors were allowed.

5 Conclusion and future work

We have introduced a fast decoding technique for fractal image compression
that needs only half the storage requirements of the conventional decoding
method. Convergence of the new method was proved in the most general
case of variable size and shape segmentations where searching, unconstrained
domains and pixel shuffling were allowed. If all scaling factors are of the
same sign, it is shown that the new iterative method has a greater rate of
convergence than the standard decoding technique. Experimental results on
a large set of test images showed that the decoding was faster even without
this restriction.

Other methods have been previously proposed to accelerate the decoding
procedure. They are based on a hierarchical interpretation of the fractal code
[16, 17]. However, these methods were described for special cases where,
particularly, each domain was a union of ranges. This may be a serious
restriction since unconstrained domain pools are known to provide the best
rate-distortion performances [14, 15, 18, 19]. On the other hand, the method
in [17] prescribes the usual iterations at, however, a lower resolution, and may
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Figure 1: Partitioning of the 512 x 512 Barbara image in 600 ranges of
various sizes and shapes.

be thus combined with our technique in a straightforward manner yielding a
further improvement.

Whereas the order in which the pixels are decoded has no effect on the
resulting image when the conventional method is used, it is clear that this
will not be the case with our method. In [20] we propose a technique where
the order is based on the frequency in the fractal code of the range to which
the pixel belongs. By frequency of a range R in the fractal code we mean the
number of times there existed i € {1,...,ng} such that RN D; # 0. Here
D,,...,D,, are the domains retained for the decoding. The expected gain
is twofold. First, this strategy will increase the number of pixels that will be
used in their updated form yielding, hopefully, a faster convergence. Second,
as a consequence of the sorting of the range frequencies, the decoder can
identify those ranges that are not present in the fractal code. These ranges,

14



Iteration | Conventional | New method
1 63.99485 44.34036
2 33.11056 15.05124
3 18.25223 4.46381
4 8.47017 1.22855
5 3.56080 0.32108
6 1.37339 0.07997
7 0.50095 0.01755
8 0.16188 0.00393
9 0.04962 0.00083
10 0.01662 0.00018
11 0.00571 0.00004
12 0.00201 0.00001

Table 3: Convergence of the decoding for the two methods measured by the
root mean square error between an iterate and the attractor for the 512 X
512 Barbara image. Both positive and negative scaling factors were allowed.

as pointed out in [10, 21] in a different context, need only be decoded at the
last iteration. Note that for arbitrary domain pools where a given domain
is not necessarily a union of ranges, it may happen that a range gets a big
frequency although only a small part of it is actually present in the fractal
code. To deal with this, one may consider fractional range frequencies. For
example, if only m pixels of the range of size n are covered by the domain D;,
then the frequency of this range will be increased by 7. Another approach
would be to compute the frequency in the fractal code of each pixel and to
decode pixelwise. Table 4 compares the convergence of the decoding for the
512 x 512 Lenna image for the following three schemes.

e Scheme 1: The conventional decoding without pixel update.

e Scheme 2: The new decoding technique where the ordering is as in the
encoding.

e Scheme 3: The new decoding technique with a range frequency based
ordering.

15



A uniform partitioning in square ranges of size 8 x 8 was used. The domain
pool consisted of square blocks of size 16 x 16 whose upper-left corners were
positioned on a lattice with a vertical and horizontal spacing of 8 pixels.
Figure 2 provides statistics on the frequency of each range in the fractal code.
Even though the decoding with the frequency based ordering did not converge
much faster than Scheme 2, it still may be preferred since at each step the
iterates provided a better approximation. Similar results were obtained for
all other tested images and domain pools.

Iteration | Scheme 1 | Scheme 2 | Scheme 3
1 73.1453 59.6675 46.8337
42.2518 25.1607 17.1060
24.6055 9.5244 4.7620
14.0406 2.3372 0.9230
4.5585 0.3805 0.1472
1.3235 0.0740 0.0287
0.3726 0.0168 0.0070
0.1080 0.0037 0.0020

|| S| O x| W N

Table 4: Convergence of the decoding for the three methods. The values
given in the table are the root mean square errors between the attractor and
successive iterates of an initial black image.

Acknowledgment. I would like to thank Matthias Ruhl and Dietmar Saupe
for making the C code of [15] available.
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