
Rate-Distortion Based Fractal Image Compression

Raouf Hamzaoui and Dietmar Saupe

Universität Leipzig
Institut für Informatik, Augustusplatz 10–11

04109 Leipzig, Germany

Abstract: In fractal image compression a contractive affine mapping whose
fixed point is an approximation to the original image has to be determined.
Usually, this mapping is found in a heuristic way. In this paper, we discuss
rate-distortion based fractal image coding where the code corresponding to the
mapping is optimal in the sense that it guarantees the lowest collage error (distor-
tion between the original image and its first iterate) over a large set of admissible
codes subject to a rate constraint. We show how optimal codes can efficiently be
obtained. We begin with a fine scale partition of the image which gives a fractal
encoding with many bits and a low collage error. The partition is hierarchical,
thus, corresponds to a tree. We use a pruning strategy based on the generalized
BFOS algorithm where we extract subtrees corresponding to partitions and frac-
tal encodings which are optimal. We give results for fractal image compression
with rectangular partitions. We also provide a comparison with heuristic tech-
niques and review other rate-distortion based approaches.

1 Introduction

In fractal image compression a contractive affine mapping W of a complete metric
space of images (X, δ) has to be found such that its unique fixed point fW =
W (fW) is an approximation to the original image f [1, 16, 8]. The decoding
is based on the contraction mapping principle, which guarantees that fW can
be computed as the limit point of the sequence of iterates {fn}, where fn+1 =
W (fn) and f0 is an arbitrary initial image. In practice, images are digitized both
spatially and in amplitude. In this situation, the metric space (X, δ) is taken
as the n-dimensional space Rn together with a distance derived from a vector
norm (e.g. the L2 norm).

The affine mapping W is composed of blockwise affine transformations each
approximating a block of the image (range block) by a larger block from the same
image (domain block) [8]. W is given by a partition of the original image f into
disjoint range blocks R1, . . . , RnR

, and for each range block R a transformation
list consisting of:

• a domain block D larger than the range block and taken from the same

1

2 Rate-Distortion Based Fractal Image Compression

image f .

• a scaling factor s ∈ {s1, . . . , sns
} ⊂ [−smax, smax] ⊂ R.

• an offset o ∈ {o1, . . . , ono
} ⊂ R.

Each transformation list associates to the range block R a local collage error

Ec(R, D, s, o) = ‖R− (sAD + o1)‖22, (1.1)

where the operator A downsamples a domain block by pixel averaging to match
the range block size, and 1 is the flat block with intensity 1 at every pixel. Here
blocks are considered as column vectors by reading their pixel intensities row by
row, left to right and top to bottom.

According to the Collage Theorem [1], we have

‖f − fW ‖ ≤ 1
1− L

‖f −W (f)‖,

where 0 ≤ L < 1 is the contraction factor of W for a norm ‖ · ‖ in which W is
contractive. Thus, by finding for each range block in the partition a transfor-
mation list minimizing its collage error, one hopes to generate a fixed point of
W close enough to the original image. Direct optimization of the reconstruction
error ‖f − fW ‖2 is an intractable problem as shown by Ruhl and Hartenstein in
[21].

In this paper we call optimal rate-distortion fractal code a solution of the
discrete constrained optimization problem

min
W∈W

d(W) =
nR∑

i=1

Ec(Ri, D, s, o) (1.2)

subject to
l(c(W)) ≤ r0

where

• W is the finite set of contractions obtained by considering all admissible
range partitions, and for each range block in the partition all admissible
domain blocks, scaling factors and offsets,

• c(W) is a variable length binary code of W ,

• l(c(W)) is the bit length of the code c(W), and

• r0 is a given bit budget.

The binary code c(W) consists of bits for the range partition, the domain block
addresses, and the scaling factor and offset indices.

In principle, since W is a finite set, the above problem could be solved by
exhaustive search. However, due to the huge number of admissible solutions,

Raouf Hamzaoui and Dietmar Saupe 3

this approach is infeasible. For this reason, only a limited number of partition
types are used: uniform, quadtree, rectangular, triangular, other polygonal, and
irregular partitions [8].

If the image partition is fixed and if for a range block the codewords of
respectively all domain blocks, all scaling factors and all offsets are of the same
length, then an almost optimal fractal code can be found as follows. First, for
a domain block Dk, use the method of least squares to compute the best fitting
scaling and offset parameters s and o. Then, quantize theses parameters and
compute the collage error

Ec(R, Dk) = Ec(R,Dk, s, o)

with the quantized parameters s, o. Finally, select the domain block that mini-
mizes Ec(R, Dk).

If the partition is not fixed, heuristic methods, which yield suboptimal so-
lutions have been developed. The most common approach is proceeding in a
top-down direction, i.e., larger ranges are split into several smaller ones, which
are subject to further subdivision [9, 3, 10]. A range block is subdivided if an
estimate of the collage error for this block is above some threshold. On the
other hand, one may start with a fine partition (e.g., a uniform one consisting of
small range blocks, all of the same size), and then iteratively merge some of the
ranges [15, 22]. In this case the range block merging can be organized so as to
minimize the overall collage error. In contrast to these partition methods based
on local collage error computations, one may design a partition solely based on
some segmentation methods from image processing, thereby not searching for
any range-domain pairs until the partition is complete. The advantage of this
approach is increased speed [26, 6].

In this paper, we show that optimal solutions to problem (1.2) can be effi-
ciently determined in a general context. The tool to achieve these rate-distortion
optimal codes is the generalized BFOS algorithm [5], which we review in the fol-
lowing section. In Section 3 we apply the method to fractal image coding with
rectangular (HV) partitions. Section 4 contains simulation results where greedy
techniques are compared to our optimal strategy. In Section 5 we discuss ex-
tensions of the method and in Section 6 we briefly present other rate-distortion
based fractal coding schemes.

2 Optimal tree pruning using the generalized BFOS algo-
rithm

The terminology and notation used in this section closely follow those in [12]
where more details on the algorithm can be found.

Let T be a tree with root node n0. A branch Tn of a tree T is a subtree of
T rooted at a node n such that the leaf nodes of the subtree are also leaf nodes
of T . We say that S is a pruned subtree of T , and write S ¹ T if S is a subtree

4 Rate-Distortion Based Fractal Image Compression

of T with the same root node n0. A tree functional u is a real function defined
on the set of all subtrees of T .

Let r and d denote two tree functionals (such as rate and distortion). Assume
that for each S ¹ T we have r(S) ≥ rmin. Then we call an optimal pruned subtree
any solution of the discrete optimization problem

min
S¹T

d(S)

subject to
r(S) ≤ r0,

where r0 ≥ rmin

When T has a large number of nodes, finding a solution by full search is im-
practical. Fortunately, if we assume that the tree functionals r and d are mono-
tonic and linear, with r monotonically increasing and d monotonically decreasing,
then the problem can be efficiently treated by the algorithm proposed by Chou
et al. [5, 12], which is a generalization of the BFOS algorithm of Breiman, Fried-
man, Olshen, and Stone [4]. Here a tree functional u is said to be monotonically
increasing (resp. monotonically decreasing) if

S ′ ¹ S ⇒ u(S ′) ≤ u(S) (resp. u(S ′) ≥ u(S)),

and it is said to be linear if its value is given by the sum of its values at the leaf
nodes, that is, if

u(S) =
∑

n∈S̃
u(n),

where S̃ is the set of leaf nodes of the subtree S.
Let u(S) = (r(S), d(S)) denote the point with coordinates r(S) and d(S).

Let H denote the lower boundary of the convex hull of the set of all points
u(S) corresponding to pruned subtrees S ¹ T . Then any point u(S) on H
corresponds to a pruned subtree that is a solution to the optimization problem.

The generalized BFOS algorithm finds the optimal subtrees associated to
the extreme points (vertices) u(Si), i = 1, . . . , m of the lower boundary of the
convex hull using the following two results (proofs are in [5]):

1. These optimal pruned subtrees are nested, that is, Sm ¹ · · · ¹ S2 ¹ S1.

2. Any pruned subtree Si+1 can be obtained from Si by successively pruning
one single branch and the interim pruned subtrees correspond to points
on the segment connecting u(Si) and u(Si+1). Thus the interim pruned
subtrees are also optimal. Pruning is done at the interior node n that
minimizes the magnitude of the slope of vector u(S(n))u(Si). Here S(n)
is a pruned subtree of Si obtained by pruning one single branch rooted at
n (see Figure 1).

Due to the monotonicity assumption we have Sm = n0 and S1 = T . Thus, one
starts from the whole tree T and proceeds by successively pruning one branch
until n0 is reached. A pseudocode of the generalized BFOS algorithm using an
efficient data structure is given in [12].

Raouf Hamzaoui and Dietmar Saupe 5

. ..

.
.

 .
.

.

.

..

.

.

.
. .

.

.

.

.

.

.

u(Si+1)

u(Si)

r(S)

u(Si+3)

u(Si+2)
u(S(n))

u(S(n′))

d(S)

Figure 1. Optimal tree pruning.

3 Implementation of optimal tree pruning for fractal image
compression

The generalized BFOS algorithm has been successfully used in many applications
including tree-structured vector quantization [5] and optimal bit allocation. In
[25], we give the first application of the generalized BFOS algorithm to fractal
image compression. The method presented there proceeds as follows.

• Step 1. Top-down heuristic hierarchical partitioning without searching.

• Step 2. Bottom-up merging of the ranges in optimal rate-distortion sense.

Given a range block corresponding to an inner node in the partition tree there are
many different ways to split the block into two or more subblocks corresponding
to the child nodes of the given inner node. The quadtree scheme is one of the
simplest possible ways. We use the optimal pruning algorithm with hierarchical
partitions consisting of rectangles (HV partitions, [10]). This choice is motivated
by three reasons:

• 1. Rectangular partitions lead to better results than quadtrees, both in
terms of rate-distortion performance and visual quality [10].

• 2. Generating the initial fine grained partition is computationally simple.

6 Rate-Distortion Based Fractal Image Compression

• 3. It allows a comparison with one of the best pure (i.e., non-hybrid) fractal
coding schemes, the HV coder [10] of Fisher.

3.1 The initial HV partition

In an HV partition a rectangular range block can be split either horizontally or
vertically into two smaller rectangles. A decision about the split location has
to be made. Whereas [10] adopts a criterion based on edge location, we follow
[30, 20] and propose to split a rectangle such that an approximation by its DC
component1 in each part gives a minimal total square error. We expect fractal
coding to produce relatively small collage errors with this choice because

• approximation by the DC component alone (which is part of the fractal
encoding) will already give small sums of squared errors by design of the
splitting scheme, and

• for the approximation of the dynamic part of the range blocks we have
more domains available, if the range block variances are low. This comes
from the limitations of the scaling factor, |s| ≤ smax.

The details are as follows. We consider a digital image given by a real-valued
function f : R0 → R, where R0 is a set of integer pixel coordinates (x, y) from
a rectangular grid. For any range block R the set of pixel coordinates R can be
written as

R = {xmin, ..., xmax} × {ymin, ..., ymax}.
We define the size |R|, the mean µ(R), and the square error E(R) with respect
to DC approximation:

|R| = (xmax − xmin + 1) · (ymax − ymin + 1)

µ(R) =
1
|R|

∑

(x,y)∈R
f(x, y)

E(R) =
∑

(x,y)∈R
(f(x, y)− µ(R))2

We define the vertical split of a rectangle R into

Rleft(xsplit) = {xmin, ..., xsplit} × {ymin, ..., ymax},
Rright(xsplit) = {xsplit + 1, ..., xmax} × {ymin, ..., ymax}

such that the split position xsplit minimizes EV (x) the square error with respect
to DC approximation , that is,

xsplit = arg min
x=xmin,...,xmax−1

EV (x),

1The DC component of a block is defined here as the block whose pixel values are equal to
the average intensity of the block.

Raouf Hamzaoui and Dietmar Saupe 7

where
EV (x) = E(Rleft(x)) + E(Rright(x)).

In the same way we define a horizontal split at y = ysplit with minimal square
error EH(ysplit). The rectangle R will be split vertically at x = xsplit, if
EV (xsplit) ≤ EH(ysplit). Otherwise R will be split horizontally at y = ysplit.

We also prescribe a minimal horizontal and vertical rectangle size of 2 pixels
and proceed to recursively divide blocks as long as possible. At the end we arrive
at a hierarchical partition in which all leaf nodes of the partition tree correspond
to range blocks of size 2 × 2, 2 × 3, 3 × 2, and 3 × 3 pixels.

In addition one can multiply the square errors EV (x) and EH(x) with a bias
function B(x) to penalize a split that results in very thin or very flat rectangles.
We use a factor 0.4t2 + 1, where t goes from −1 to 1 as x runs from xmin to
xmax − 1, respectively, y runs from ymin to ymax − 1.

3.2 Encoding a range block

Given a range block Ri we wish to approximate it as Ri ≈ sC+o1 where C = AD
is a codebook block of the same size. The codebook blocks are provided in a very
simple way:

• by pixel averaging we downsample the original image by a factor of 2, and

• for a given range block Ri we define the corresponding codebook blocks
as all vectors obtained from all possible blocks of the same size in the
downsampled image.

We assume that the codewords of respectively all domain blocks, all scaling
factors and all offsets are of the same length. Thus, as explained in Section
1 almost optimal parameters are found by least squares optimization. This
requires for all range blocks Ri in the hierarchical partition (leaf nodes and inner
nodes) and all corresponding codebook blocks C the computation of the inner
products 〈Ri,1〉, 〈Ri, Ri〉, 〈Ri, C〉, 〈C,1〉, 〈C, C〉 (see [24]). These computations
can be done efficiently by using the hierarchical ordering of the range blocks. We
save some of the inner products in arrays and reuse them for rapid inner product
calculation for the range block corresponding to the parent node in the hierarchy.
To achieve this with the minimum overhead of memory usage the computation
should be organized recursively so that temporary storage for arrays of inner
products is necessary only for a sequence of nodes on a single path from the root
node to a leaf node of the partitioning tree.

In our implementation we use a very simple bit allocation scheme for a given
range block, explained here using the example of a 512 × 512 grey scale image.
In this case the downsampled image is of size 256 × 256 and storing a domain
block address (xmin, ymin) costs 8 bits for the x- and y-components each. The
quantization of the offset o proceeds along the improved method devised in [14].
Overall, we have the bit allocation

8 Rate-Distortion Based Fractal Image Compression

• 5 bits for the quantized scaling coefficient s,

• 6 bits for the quantized offset o,

• 16 bits for the domain block address.

If s = 0, then the range is approximated as a DC block and no domain address
is necessary. Thus, either 11 or 27 bits are used per range block.

3.3 Optimal tree pruning

For the optimal tree pruning with the generalized BFOS algorithm we define
two tree functionals for our application, the rate r(·) and the distortion d(·) as
follows.

The rate must include the bits for the transformation lists and for the par-
tition. We can store the HV partition using a tree traversal. At each node we
specify with one bit whether it is an inner node or a leaf node. For an inner
node n we also must specify the way the corresponding rectangle is split, using
rsplit(n) bits,

rsplit(n) =
{

1 + dlog2(width(n)− 3)e vertical split,
1 + dlog2(height(n)− 3)e horizontal split.

The first bit indicates a horizontal or vertical split whereas the remaining bits
are used to specify the split location relative to the upper left corner of the
rectangle. Note that blocks have width and height of at least 2 pixels.

We are now ready to apply the setting of the generalized BFOS algorithm as
explained in Section 2. Let T denote the initial partitioning tree as obtained in
Section 3.1. The rate associated with a node n ∈ T is

r(n) = rcode(n) + rside(n)

where rcode(n) = 27 bits (11 bits, if the scaling factor s = 0) and the partition
information rside(n) of the tree, charged to the node n, is defined recursively by

rside(n) =
{

1, if n is the root node,
1 + 1

2 (rside(n.p) + rsplit(n.p)), otherwise,

where n.p ∈ T denotes the parent node of n ∈ T . Then, for any subtree S ¹ T
we have that the total rate

r(S) =
∑

n∈S̃
r(n)

precisely indicates the number of bits needed to store the corresponding partition
and the transformation lists.

The distortion at node n ∈ T is the least squares collage error

d(n) = min
k

Ec(R(n), Dk),

Raouf Hamzaoui and Dietmar Saupe 9

where R(n) denotes the range corresponding to node n. For any subtree S ¹ T
the total distortion

d(S) =
∑

n∈S̃
d(n)

is the overall collage error.
To apply the generalized BFOS algorithm we must ensure that our tree func-

tionals are linear and monotonic. Both rate and distortion are linear already by
construction. Moreover, it can be shown that they are also monotonic. This,
however, may necessitate a technical modification at those few nodes of the tree
where both child ranges, encoded with only 11 bits as DC blocks, require a com-
bined rate that is less than that of the parent node where 27 bits are used for
the transformation list. Therefore, the theory is applicable, and optimal sub-
trees can be extracted with the generalized BFOS algorithm. As a result the
corresponding fractal codes are optimal.

3.4 Greedy tree growing

As an alternative to the optimal hierarchical partitions we consider faster, but
suboptimal, greedy tree growing strategies. They produce hierarchical HV par-
titions with a user given number of range blocks. Two parameters are used:

• a small tolerance for some block error estimate, τ ,

• a minimal linear block size, lmin.

Let R(n) be a block at node n corresponding to an image rectangle R. For the
error estimate we use either the traditional collage error in the root-mean-square
(rms) version √

min
k

Ec(R(n), Dk)/|R|

or, much simpler and faster to compute, just the block variance

E(R)/|R|

of the corresponding rectangle R.
The procedure operates with a maximum heap of image rectangles R. The

heap is sorted with respect to rms collage error or block variance. Then we
iteratively extract rectangles R from the maximum heap and process them as
follows. Depending on the choice of the type of greedy method (rms-error based
or variance based), if either

√
min

k
Ec(R(n), Dk)/|R| ≥ τ or E(R)/|R| ≥ τ

and
max(width(R), height(R)) ≥ 2lmin,

10 Rate-Distortion Based Fractal Image Compression

number comp. partition infor- list code PSNR
ranges ratio mation (bits) size (bits) (dB)
10000 6.47 54865 269071 39.10
5000 12.65 31750 134004 36.07
4000 15.70 26571 107027 35.12
3000 20.76 20976 80022 33.89
2000 31.00 14889 52751 32.13
1000 61.43 8195 25942 29.43
500 123.78 4412 12531 27.05

Table 1. Encoding results with the optimal tree pruning technique for the 512 × 512

Lenna image.

then we subdivide the rectangle as in Section 3.1 and insert the two subrectangles
into the heap. Otherwise, we output rectangle R. If the sum of the number of
rectangles already output and the number of rectangles that are still in the heap
is equal to the number of desired ranges, we output all rectangles in the heap
and end the partitioning procedure.

4 Results

In this section we show the encoding results for the 512 × 512 (8 bpp) Lenna
image. For the rate-distortion optimal encodings Table 1 lists the compression
ratios, the way the bits are distributed between partition code and list code,
and the peak-signal-to-noise ratios. In Figure 2 we plot the corresponding rate-
distortion curve along with the ones obtained using the greedy methods discussed
in Section 3.4. With quadtree partitions the simple method based on block vari-
ance produces partitions that yield the same quality encodings as the standard
top-down collage rms-error based approach [26]. For the hierarchical HV parti-
tions, however, the greedy collage error based partitioning method is better than
the simpler one using the block variance threshold. But the method based on
the BFOS tree pruning algorithm outperforms both of them. Of course, this is
to be expected due to the proven optimality of the algorithm.

The HV coder of Fisher and Menlove in [10] uses the greedy collage error
based partitioning approach (not with the same split strategy though). Their
best result, obtained by allowing more codebook blocks than in our experiment
and with entropy coding of the scaling factor and offset indices, is of the same
quality as the top curve in our graph.

Because we did not use complexity reduction techniques, the encoding time in
the experiment reported here is large (several hours for the entire rate-distortion
curve).

Raouf Hamzaoui and Dietmar Saupe 11

28

30

32

34

36

38

0 10 20 30 40 50 60 70 80

P
S

N
R

 (
db

)

Compression Ratio

Optimal
Greedy collage error based

Greedy variance based

Figure 2. Rate distortion curve for 512 × 512 image Lenna.

5 Extensions

Three further improvements of this work are currently being investigated.

5.1 Entropy coding of the partition information.

The partition code can be made shorter by considering contextual entropy cod-
ing. The bit which distinguishes inner nodes from leaf nodes, for example, is
highly dependent on the corresponding range block size. The bit specifying a
horizontal or vertical split depends to some extent on the aspect ratio of the
range block (a vertical split is more likely for a wide range, a horizontal split
more likely for a tall range). Also the split location for a given range size has a
strongly non-uniform probability distribution which can be exploited by entropy
coding. Most of these modifications can be integrated, so that the reduced bit
rates are observed by the optimization technique. First tests indicate that with
such context-based adaptive arithmetic coding the information for the partition
can be reduced to about 80% of the sizes reported in the table.

12 Rate-Distortion Based Fractal Image Compression

5.2 Variable length coding.

Instead of fixed length encoding for the coefficients s, o and the domain block
address, variable length codes can be considered. The design of these codes
can be organized so that an implementation within the concept of optimal tree
pruning is possible. The trees then may contain sequences of unary nodes corre-
sponding to range block encodings with an increasing number of bits. (In fact, in
the implementation used here we already allow a crude variant of such variable
length coding of a range block by considering coding it the regular way, i.e., as
sAD+o1, as well as a constant intensity block, i.e., with s = 0 which saves some
bits for the domain block address.)

5.3 Other adaptive initial partitions.

The splitting criterion for the rectangular partitions, considered in [25] is only
one possible heuristic. Other splitting strategies as well as more adaptive parti-
tions can be tested. For example, the polygonal partition [30, 20] in which the
rectangular one is extended to allow also a split in the diagonal or anti-diagonal
direction is straightforward to implement in the context of the generalized BFOS
algorithm.

6 Other rate-distortion based schemes

Most of the fractal image compression schemes proposed in the literature use
heuristic techniques and do not guarantee optimal codes. In this section we
review works that rely on a rate-distortion criterion.

In [2] and for uniform partitions, it is observed that in many cases best
domain candidates are located in the neighborhood of the range blocks. Thus,
rate-distortion gains can be achieved by allowing domain blocks to have variable
length codewords. For each range block a codebook of domain blocks is designed
such that domain blocks nearest to the range block have shortest codewords.
With this setting, for a given bit budget r0, optimal domain blocks in problem
(1.2) are not necessarily those that minimize the collage error. Therefore, it is
suggested to select the domain blocks as follows. The encoder starts with a fractal
code where all range blocks are encoded at lowest rate, that is, domain blocks in
each transformation list have shortest codewords. Then, the objective function d
is reduced iteratively by allocating at each step more bits to the domain block of
one of the range blocks. This range block Rk is one that maximizes the reduction
in collage error per additional domain block bit, that is,

k = arg max
i=1,...,nR

λi

where

λi = max
m

Ec(Ri, D)−Ec(Ri, Dm)
rDm − rD

.

Raouf Hamzaoui and Dietmar Saupe 13

Here D is the domain block in the current transformation list of Ri, and Dm is a
domain block whose codeword size rDm

is strictly larger than rD, the codeword
size of D. The iteration is stopped when the total bit rate of the code becomes
larger than the bit budget r0. One can prove that this algorithm finds an optimal
solution to the constrained problem (see [29]).

Lu [18] uses an algorithm, which finds an optimal solution to problem (1.2)
in the context of quadtree partitions (hierarchical partition where all ranges are
square blocks) and domain blocks of variable length codewords. The algorithm,
which was previously proposed in [27] for quadtree-based vector quantization,
relies on a Lagrange multiplier method and consists of solving the unconstrained
optimization problem

min
W∈W

d(W) + λl(c(W)) (6.1)

where λ ∈ [0,∞). Indeed, one can show [7] that for any choice of λ ≥ 0 a solution
W ∗ to the unconstrained problem (6.1) is a solution to the constrained problem

min
W∈W

d(W)

subject to

l(c(W)) ≤ l(c(W ∗)).

In the quadtree scheme, a (parent) square block is either accepted in the
partition or subdivided into four smaller (child) square blocks. A more adaptive
scheme [11] can be obtained by allowing 10 other intermediary configurations
(see Figure 3). The authors use the Lagrange multiplier technique to determine
the optimal adaptive partition corresponding to a three-level hierarchy.

Finally, the performance of fractal image coding is improved by hybrid schemes
which incorporate other coding techniques, e.g., Discrete Cosine Transform or
wavelet-based. These hybrid schemes are particularly efficient when a rate-
distortion criterion is used [2, 13, 28, 19, 17].

7 Conclusion

We have presented a framework for creating rate-distortion optimal hierarchical
partitions for fractal image compression. Even though our implementation based
on rectangular HV partitions is crude, we reach the state-of-the art results of [10].
We regard our work as a contribution to a general solution of the optimal bit
allocation problem in fractal image compression. The goal of these efforts is to
allow variable bit rates not only considering many possible range block sizes but
also by applying variable length codes for all components of the transformation
parameters (s, o, domain address) of each range block. Even though the number
of such possible fractal image codings is huge, a rate-distortion optimal encoding
can be derived efficiently by the generalized BFOS algorithm.

14 Rate-Distortion Based Fractal Image Compression

Figure 3. Admissible block partitions. The parent block is the large square and the

child blocks are the smaller blocks inside marked with a cross.

Bibliography

1. Barnsley, M., Fractals Everywhere, Academic Press, San Diego, 1988.

2. Barthel, K. U., Schüttemeyer, J., Voyé, T., Noll, P., A new image coding
technique unifying fractal and transform coding, in: Proc. ICIP-94 IEEE
International Conference on Image Processing, Vol. III, pp. 112–116, Austin,
Texas, Nov. 1994.

3. Bedford, T., Dekking, F. M., Breewer, M., Keane, M. S., van Schooneveld,
D., Fractal coding of monochrome images, Signal Processing: Image Com-
munication 6 (1994) 405–419.

4. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J., Classification and
Regression Trees, Wadsworth, Belmont, California, 1984.

5. Chou, P. A., Lookabaugh, T., Gray, R. M., Optimal pruning with applications

Raouf Hamzaoui and Dietmar Saupe 15

to tree-structered source coding and modeling, IEEE Trans. Inform. Theory
35 (1989) 299–315.

6. Davoine, F., Robert, G., Chassery, J.-M., How to improve pixel-based frac-
tal image coding with adaptive partitions, in: Fractals in Engineering, J. L.
Vehel, E. Lutton and C. Tricot (eds.), Springer Verlag, London, 1997.

7. Everett, H., Generalized Lagrange multiplier method for solving problems of
optimum allocation of resources, Operations Research 11 (1963) 399–417.

8. Fisher, Y. (ed.), Fractal Image Compression — Theory and Application,
Springer-Verlag, New York, 1994.

9. Fisher, Y., Jacobs, E. W., Boss, R. D., Fractal image compression using
iterated transforms, in: Image and Text Compression, J. A. Storer (ed.),
Kluwer Academic Publishers, Boston, 1992.

10. Fisher, Y., Menlove, S., Fractal encoding with HV partitions, in: Fractal
Image Compression — Theory and Application, Y. Fisher (ed.), Springer-
Verlag, New York, 1994.

11. Fuchigami, T., Yano, S., Komatsu, T., Saito, T., Fractal block coding with
cost-based image partitioning, in: Proc. International Picture Coding Sym-
posium PCS’96, pp. 335–340, Melbourne, March 1996.

12. Gersho, A., Gray, R.M., Vector Quantization and Signal Compression,
Kluwer, Boston, 1992.

13. Gharavi-Alkhansari, M., Huang, T., Fractal image coding using rate-
distortion optimized matching pursuit, in: Proc. SPIE Conf. Visual Commu-
nications and Image Processing, pp. 1386–1393, Vol. 2727, Orlando, Florida,
March 1996.

14. Hartenstein, H., Saupe, D., Barthel, K. U., VQ-encoding of luminance pa-
rameters in fractal coding schemes, in: Proc. ICASSP’97 IEEE Int. Conf.
Acoustics Speech and Signal Processing, Vol. IV, pp. 2701–2704, Munich,
April 1997.

15. Jackson D. J., Mahmoud W., Stapleton W., Gaughan P. T., Faster fractal
image compression using quadtree recomposition, Image and Vision Comput-
ing (15)10 (1997) 759–767.

16. Jacquin, A. E., Image coding based on a fractal theory of iterated contractive
image transformations, IEEE Trans. Image Processing 1 (1992) 18–30.

17. Li, J., Kuo, C.-C. J., Fractal wavelet coding using a rate-distortion constraint,
in: Proc. ICIP-96, IEEE International Conference on Image Processing, Vol.
II, pp. 81-84, Lausanne, Sept. 1996.

18. Lu, N., Fractal Imaging, Academic Press, 1997.

16 Rate-Distortion Based Fractal Image Compression

19. Melnikov, G., Katsaggelos, A., A non uniform segmentation optimal hybrid
fractal/DCT image compression algorithm, in: Proc. ICASSP’98 IEEE Int.
Conf. on Acoustics, Speech and Signal Processing, Seattle, Washington, May
1998.

20. Reusens, E., Partitioning complexity issue for iterated function systems based
image coding, in: Proc. EUSIPCO’94 VIIth European Signal Processing Con-
ference, Vol. I, pp. 171–174, Edinburgh, Sept. 1994.

21. Ruhl, M., Hartenstein, H., Optimal fractal coding is NP-hard, in: Proc.
DCC’97 Data Compression Conference, J. A. Storer and M. Cohn (eds.),
IEEE Comp. Soc. Press, pp. 261–270, March 1997.

22. Ruhl, M., Hartenstein, H., Saupe, D., Adaptive partitionings for fractal im-
age compression, in: Proc. ICIP-97 IEEE International Conference on Image
Processing, Vol. II, pp. 310–313, Santa Barbara, California, Oct. 1997.

23. Saupe, D., Lean domain pools for fractal image compression, in: Proc.
IS&T/SPIE 1996 Symposium on Electronic Imaging: Science & Technology
– Still Image Compression II, Vol. 2669, pp. 150–157, San Jose, California,
Jan. 1996.

24. Saupe, D., Hartenstein, H., Lossless acceleration of fractal image compres-
sion by fast convolution, in: Proc. ICIP-96 IEEE International Conference
on Image Processing, Vol. I, pp. 185-188, Lausanne, Sept. 1996.

25. Saupe, D., Ruhl, M., Hamzaoui, R., Grandi, L., Marini, D., Optimal hier-
archical partitions for fractal image compression, in: Proc. ICIP-98 IEEE
International Conference on Image Processing, Chicago, Oct. 1998.

26. Saupe, D., Jacob, S., Variance-based quadtrees in fractal image compression,
Electronics Letters 33,1 (1997) 46–48.

27. Sullivan, G. J., Baker, R. L., Efficient quadtree coding of images and video,
IEEE Trans. on Image Processing 3,3 (1994) 327–331.

28. Wakefield, P., Bethel, D., Monro, D., Hybrid image compression with implicit
fractal terms, in: Proc. ICASSP’1997 IEEE International Conference on
Acoustics, Speech and Signal Processing, Vol. IV, pp. 2933–2936, Munich,
April 1997.

29. Westerink, P. H., Biemond, J., Boekee, D. E., An optimal bit allocation al-
gorithm for sub-band coding, in: Proc. ICASSP’88 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp. 757–760, 1988.

30. Wu, X., Yao, C., Image coding by adaptive tree-structured segmentation,
in: Proc. DCC’91 Data Compression Conference, J. A. Storer and M. Cohn
(eds.), IEEE Comp. Soc. Press, 1991.

