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Abstract

In fractal image compression, the code is given by a contractive affine mapping
whose fixed point is an approximation to the original image. Usually, the mapping
is found by the collage coding method. We propose an algorithm that starts from
an initial mapping obtained by collage coding and iteratively provides a sequence of
contractive mappings whose fixed points are monotonically approaching the original
image. Experimental results show that the rate-distortion improvement over collage
coding is significant.
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1 Introduction and previous work

In fractal image compression (6; 3), the code for an image x is an efficient
binary representation of a contractive affine mapping 7" whose unique fixed
point (or attractor) xr is a good approximation to x. The decoding is based
on the contraction mapping principle, which gives x; as the limit point of
the sequence of iterates {x,},>0, where x,,11 = T'(x,) and xo is an arbitrary
initial image.

In practice, the image is partitioned into nonoverlapping blocks (range blocks)
Ry,...,R,,. For each range block R;, a transformation W; is found, which
maps a larger block (domain block) Dguy, d(i) € {1,...,np,} of the same
image to the range block. Here the blocks R; and Dy are considered as
vectors of pixel intensities. The action of W; can be described as follows:

Wi(Ri) = 8s(i)Tr5) ADag) + 00(i) 1,
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where s,;) € R, s(i) € {1,...,n,}, is a scaling factor, 0,5y € R, o(i) €

{1,...,n,}, is an offset, A is the downsampling operator which shrinks the
domain block via pixel averaging to match the range block size, 7.;, 7(i) €
{1,...,n;} is a permutation that shuffles the pixel intensities in the down-

sampled block, and 1 is the block with intensity 1 at every pixel. To ensure
convergence of the decoding, the scaling factor is restricted to the interval
[— Smax; Smax|, Where smax < 1 (see (3) p. 51). The mapping T is specified by
the image partition and for each range block in the partition, the indexes of
the scaling factor, the offset, the permutation, and the domain block. In the
following, we call these indexes fractal parameters. Also we sometimes call the
mapping 1" a fractal code.

Let us suppose that the image partition is fixed. Then, an optimal fractal code
Topt is one that minimizes the reconstruction error

E(T) = |lx — xrll3

over all feasible configurations

((s(1),0(1),7(1),d(1)), . .., (s(nr), 0(ng), T(nr), d(ng)))

of the fractal parameters. Since there is only a finite number N of such con-
figurations, T, could in principle be determined by exhaustive enumeration.
However, this approach is impractical because N is exponential in ng. In a
particular case where strong restrictions are imposed on the coding settings
(7), it is possible to find an optimal fractal code. But in this case, the rate-
distortion performance of fractal image compression is unsatisfactory. In a
general setting, it is unlikely that an algorithm that computes an optimal
fractal code in reasonable time could ever be found (9). For this reason, al-
most all researchers use a technique known as collage coding, which yields only
a suboptimal fractal code. In collage coding, the fractal parameters of a given
range block R; are determined as follows (3) . For each domain block D,,, and
each permutation 7,, the least squares problem

(s,0) = arg min ||R; — (s7,AD,, + o1)||5
$,0€ER

is solved. The coefficient s is clamped to [—Smax, Smax] and then both s and o
are uniformly quantized yielding s,,, and o,,,. This gives a collage error

Ci(m,p) = ||Ri = (SmpTpAD + Om,pl)”g-

Finally, the domain block and permutation index pair minimizing the col-
lage error is selected together with the corresponding scaling factor and offset



indexes.

Barthel et al. (1) and Lu (8) proposed to improve the fractal code obtained
by collage coding with the following algorithm.

Algorithm BL:

(1) Initialization: Let m be a maximum number of iterations. Set n := 0.
Find an initial fractal code T by collage coding.

(2) Compute x7, and the reconstruction error E(T,).

(3) For each range block R;, i = 1,...,ng of the original image, determine
a new set of fractal parameters by minimizing the collage error C;(m, p)
now using the image blocks of the attractor x1, as feasible domain blocks.
This gives a new fractal code 7}, 1. Set n :=n—+1. If n < m, go to Step 2.
Otherwise, stop.

The retained fractal code is the one (among m produced) yielding the smallest
reconstruction error. Note that the same image partition is used throughout
the algorithm. Thus, the initial compression ratio is not modified.

Although successful, this method has some drawbacks. First, there is no guar-
antee that the reconstruction error is reduced at each iteration or at least that
convergence occurs. Second, experimental results (see Section 3) show that
the gain over collage coding can be minor. Finally, the algorithm is compu-
tationally expensive. To accelerate it, Barthel suggests in Step 3 to keep for
a given range block the same domain block address, and to adjust only the
other fractal parameters (1). For the same complexity reason, Lu (see (8) p.
83) proposes to update only a small portion of the range blocks, namely the
10 % that have the highest ratio between their reconstruction error and the
corresponding collage error.

2 TIterative improvement

In Algorithm BL, at each iteration the fractal parameters of all range blocks
are updated. Instead, we propose to modify at an iteration step the fractal
parameters of only one range block. Moreover, we update the current fractal
code only if the new fractal code decreases the reconstruction error E(T'). This
gives the following algorithm.



Proposed Algorithm:

(1) Initialization: Let M be a maximum number of trials. Set n := 0, i := 0
and k£ := 0. Find an initial fractal code T; by collage coding. Compute
the attractor of the fractal code Tj. Let ng be the number of range blocks
in the partition.

(2) Let r := 1+ (¢ mod ng). Take range block R, from the original image.
Determine for this range block new fractal parameters by minimizing the
collage error C,(m,p) for the domain blocks of the attractor xr,. Set
i:=1+ 1.

(3) Construct a candidate fractal code T, by changing only the fractal pa-
rameters of range block R, according to the result of Step 2. Compute
the attractor of the candidate fractal code and the reconstruction error
E(T.).

(4) If E(T.) < E(T,), set T,41 = T,,n := n+ 1,k := 0. Otherwise set
k:=k+1.

(5) If ( < M and k < ng) go to Step 2. Otherwise stop.

The algorithm is successful in practice because in the first iterations the prob-
ability that a candidate fractal code decreases the current reconstruction error
is high. Moreover, the rate of decrease of the reconstruction error is largest at
the beginning. Thus, a satisfactory improvement is already obtained after a
few updates.

3 Experimental results

Tables 1 and 2 compare the performance of collage coding, Algorithm BL and
our proposed algorithm for several gray scale (eight bits per pixel) images. The
reconstruction error was measured with the peak signal-to-noise ratio (PSNR)
defined for n x n images by

2552

where x and X are the original image and the reconstructed image, respectively.
Note, however, that the PSNR is not a perfect measure of image quality.
Thus an increase of the PSNR may not necessarily be accompanied by an
improvement in perceived image quality.

The encoding was based on Fisher’s quadtree coder (4). At each quadtree
level, domain blocks had twice the linear size of the range blocks, and their
upper-left pixels were situated on a lattice with a spacing of d = 8 pixels. Full
search was used, that is, all domain blocks on the lattice were inspected. The



parameters ng, n,, and n, were equal to 32, 128, and 8, respectively. Table 1
shows results for uniform partitions into 8 x 8 range blocks. Table 2 shows
results for a four-level quadtree partition, where the largest range block size
was 32 x 32 and the smallest range block size was 4 x 4. The root-mean-square
(rms) threshold was set to 18. In Algorithm BL, m was set to 10. Since for
this algorithm the reconstruction error is not a decreasing function, it is not
clear if more iterations would provide better results. In our algorithm, M was
set to 2ng for the 256 x 256 images, to 2000 for the 512 x 512 image with
the four-level quadtree and to ng for the 512 x 512 image with the uniform
partition.

In Step 3, the attractor of the candidate fractal code T, was efficiently con-
structed by starting the iterations from the attractor of the current fractal
code T,, and using a Gauss-Seidel like technique (5). In this way, a satisfac-
tory approximation of the attractor x;, was obtained after only 2 iterations.

Image ngr | Compression | Collage coding | Algorithm BL | Proposed
ratio PSNR (dB) PSNR (dB) | PSNR (dB)
256 x 256 Lenna 1024 20.45:1 26.51 26.63 26.77
256 x 256 San Francisco | 1024 20.45:1 24.54 24.65 24.92
512 x 512 Boat 4096 18.96:1 29.74 29.87 30.01
Table 1
Reconstruction error in PSNR for uniform 8 x 8 partitions.
Image ng | Compression | Collage coding | Algorithm BL | Proposed
ratio PSNR (dB) PSNR (dB) | PSNR (dB)
256 x 256 Lenna 817 24.94:1 25.91 26.33 26.58
256 x 256 San Francisco | 1387 14.80:1 26.11 26.85 26.98
512 x 512 Boat 1603 46.88:1 26.87 27.42 27.55

Table 2
Reconstruction error in PSNR for four-level quadtree partitions.

In many cases, the attractor generated by the proposed algorithm had a clearly
better perceptual quality than the one obtained from collage coding. This is
illustrated in Figures 1 and 2. Here the 256 x 256 Lenna image was encoded
as in Table 2 with the exception of the rms threshold, which was set to 14 and
the lattice spacing d, which was equal to 4 pixels.




Fig. 1. Comparison of decoded images at a compression ratio of 17.62:1. (a) orig-
inal 256 x 256 Lenna image (b) collage coding: PSNR = 27.57 dB (c) proposed
algorithm: PSNR = 28.27 dB.

4 Discussion and future work

The proposed algorithm enhanced collage coding. The gain in image fidelity
was up to 0.8 dB for the same compression ratio. With respect to Algorithm
BL (1; 8), the improvement in PSNR was in some cases substantial, e.g., 0.27
dB for the San Francisco image.



(b)

Fig. 2. Zoomed images. (a) collage coding (b) proposed algorithm.

We conclude with some topics for further research. Though important, the gain
in rate-distortion performance over collage coding was somehow penalized by
an increase in encoding time. Including fast searching techniques (10) in Step 2
of the algorithm can be useful. Additional speed up is expected in Step 3 by
exploiting the dependence graph of the fractal code (2). For example, if the
range block R, is not overlapped by a domain block used in the fractal code
T,, then the attractor of 7T, can be computed from the current attractor xr,
in a straightforward manner by updating the pixel intensities of only R,.

Finally, it would be interesting to see if similar gains are obtained when our

algorithm is used with more adaptive image partitions (e.g., rectangular),
which enable a better rate-distortion performance than quadtrees.
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